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1. Introduction 
 

The non-classical theories of thermoelasticity so-called 

generalized thermoelasticity have been developed to 

remove the paradox of physically impossible phenomenon 

of an infinite velocity of thermal signals in the 

conventionally coupled thermoelasticity, Lord-Shulman 

theory (1967) and Green-Lindsay theory (1972). In the 

decade of the 1990s, Green and Naghdi (1992) (G-N) have 

formulated three models (I, II, III) of thermoelasticity for 

homogeneous and isotropic material. The model I of (G-N) 

theory after linearization reduced to the classical thermo-

elasticity theory. The model II of (G-N) theory (1993) does 

not suction the dissipation of the thermoelastic energy. In 

this model, the constitutive equations are derived by starting 

with the reduced energy equation and by including the 

thermal displacement gradient among the constitutive 

variables. 

Chandrasekharaiah (1996) used the Laplace method to 

study the one-dimensional thermal wave propagation in a 

half- space based on the (G-N) theory of type II due to a 

sudden application of the temperature of the boundary. The 

reflection of plane waves from electro-magneto-thermo-

elastic half-space with a dual-phase-lag model was 

explained by Abd-Alla et al. (2016). Othman et al. (2014) 

studied the effect of gravitational field and temperature-

dependent properties on two-temperature thermoelastic 

medium with voids under G-N theory. The effect of rotation 

and inclined load on transversely isotropic magneto -

thermoelastic solid was studied by Lata and Kaur (2019). 

Also, the effect of heat source and gravity on a fractional-  
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order fiber-reinforced thermoelastic medium was 

investigated by Jain et al. (2018). The wave propagation in 

a two-temperature fiber-reinforced magneto-thermoelastic 

medium with the three-phase-lag model was studied by Said 

and Othman (2016). Marin and Öchsner (2017) explained 

the effect of a dipolar structure on the Holder stability in 

(G–N) thermoelasticity. The disturbances produced in a 

half-space by the application of a mechanical point load and 

thermal source acting on a boundary of the half-space is 

investigated by Sharma and Chauhan (2001). Model III of 

(G-N) theory confesses a dissipation of energy, where the 

constitutive equations are derived starting with a reduced 

energy equation. It includes the thermal displacement 

gradient, in addition to the temperature gradient among it is 

independent constitutive variables. The theory of thermo-

elasticity concerned with (G-N) theory has been the aim of 

many research papers (Othman and Jahangir 2015, Othman 

and Atwa 2012, Othman et al. 2015, Abd-Elaziz et al. 2019, 

Kumari and Mukhopadhyay 2016, Kothari and 

Mukhopadhyay 2012, Mukhopadhyay et al. 2011, Marin et 

al. 2017, Marin et al. 2019, Shirvan 2017, Esfahani et al. 

2017, Rashidi et al. 2017, Rashidi et al. 2018, Yousif et al. 

2019, Asadollahi et al. 2018, Bhatti and Lu 2019). 

The theory of nonlocal elasticity has been studied by 

many researchers (see Altan 1984, Chirita 1976). The 

nonlocal elasticity theories characterized by the presence of 

nonlocality residuals of fields (like body force, mass, 

entropy, internal energy, etc.) and determined these 

residuals, along with the constitutive laws, with the help of 

suitable thermodynamic restrictions was developed by 

Edelen and Laws (1971), Edelen et al. (1971), Eringen and 

Edelen (1972). The concept of non-locality has been 

extended to various other fields by (Eringen 1972; 1981, 

1990; 1991), McCay and Narasimhan (1981). New non-

conventional methods for quantitative concepts of 
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anomalous rheology was studied by Jun (2019a,b). Jun et 

al. (2019) investigated new mathematical models in 

anomalous visco-elasticity from the derivative with respect 

to another function view point. Jun (2018) explained new 

rheological problems involving general fractional 

derivatives with non-singular power-law kernels. Jun et al. 

(2017) studied new rheological models within local 

fractional derivative. In the nonlocal theory of elasticity, the 

stress at any reference point x within a continuous body 

depends not only on the strain at that point but also 

significantly influenced by the strains at all other points x

of the continuous body. Thus, the nonlocal stress forces act 

as remote action forces. These types of forces are frequently 

encountered in the atomic theory of lattice dynamics. 

Nonlocal continuum mechanics is now well established and 

is being applied to the problems of wave propagation; see 

Khurana and Tomar (2016), Sarkar and Tomar (2019). 

Using nonlocal continuum mechanics for modeling, the 

analysis of nanostructures has been made by several 

researchers, for example, Narendar (2012), Narendar and 

Gopalakrishnan (2010).  

Very rapid thermal processes under the action of an 

ultra-short laser pulse are interesting from the standpoint of 

thermoelasticity because they require deformation fields 

and an analysis of the coupled temperature. This means that 

the laser pulse energy absorption results in a localized 

temperature increase, which causes thermal expansion and 

generates rapid movements in the structure elements, thus 

cause the rise of vibrations. These effects make materials 

susceptible to the diffusion of heat by conduction. The 

ultra-short lasers are those with pulse duration ranging from 

nanoseconds to femtoseconds. The high intensity, energy 

flux, and ultra-short duration laser beam have studied 

situations where very large thermal gradients or an ultra-

high heating rate may exist on the boundaries, this in the 

case of ultra-short-pulsed laser heating (see Bromwich, 

1898). The microscopic two-step models that are parabolic 

and hyperbolic are useful for modifying the material as thin 

films. When a metal film is heated by a laser pulse, a 

thermoelastic wave is generated due to thermal expansion 

near the surface. Wang and Xu (2002) investigated the 

stress wave induced by Pico and femto-second laser pulses 

in a semi-infinite metal by expressing the laser pulse energy 

as a Fourier series. Othman and Song (2009) studied the 

effect of rotation on 2-D thermal shock problems for a 

generalized magneto-thermoelasticity half-space under 

three theories.  
The present article aims to determine the distributions of 

the displacement components, the stresses and the 
temperature in a homogeneous, isotropic, thermoelastic 
medium under influence of the laser pulse in the case of the 
absence and the presence of the gravity and two values of 
the time. The model is illustrated in the context of (G-N) 
theory of types II and III. Expressions for the physical 
quantities is obtained using the normal mode analysis and 
represented graphically. 
 

 

2. Formulation of the problem 
 

Consider a homogeneous, linear; isotropic thermally 

conducting nonlocal elastic half-space (x≥0) in the 

rectangular Cartesian coordinate system (x,y,z) having 

originated on the surface z=0. In the used equations, a dot 

denotes differentiation with respect to time, while a comma 

denotes the material derivative. For two-dimensional 

problems assume the dynamic displacement vector as 

u=(u,v,0) all the considered quantities will be functions of 

the time variable t, and of the coordinates x and y. 

Following Green and Naghdi (1992), the field equations 

and the constitutive relations of a linear, homogenous, 

isotropic thermally conducting non-local elastic medium 

without body forces in the context of the G-N theory of type 

III can be written as 

2 2
, , ,( ) (1 ) ,i jj j ij i i,ttu u T u     + + − = − 

 
(1) 

*
, , , 0 , , ,ii iit e tt tt tkT k T C T T e Q  + = + −

 
(2) 

2 2
,(1 ) ( ) 2 ,ij s s ij iju T e     −  = − +

 
(3) 

, ,

1
( ),

2
ij i j j ie u u= +

 
(4) 

where λ, μ are the Lame' constants, ξ(=a0e0) is the elastic 

nonlocal parameter having dimension of length, a0, e0, 

respectively are an internal characteristic length and a 

material constant (see Eringen and Edelen, 1972) for 

details, T is the temperature distribution, β = (3λ+2μ)αt  

such that αt is the coefficient of thermal expansion, ρ is the 

density, Ce is the specific heat, k is the thermal conductivity, 

k* is the material constant characteristic of the theory, T0 is 

the reference temperature chosen so that |(T−T0)/T0|<<1 e is 

the dilation, eij =(ui,j+uj,i)/2, the strain tensor components, σij 

are the stress tensor components, δij is the Kronecker delta 

and Q is the heat input of the laser pulse. In the above 

equations, I,j,s = x,y. When k* → 0, Eq. (2) reduces to the 

heat condition equation in (G-N) theory of type II.  

The plate surface is illuminated by the laser pulse given 

by the heat input as Abd-Elaziz and Othman (2019) 

2
0

2 2 2
00

( , , ) exp( )
2

I t y t
Q x y t x

tr t r





= − − −

 

(5) 

where I0 is the energy absorbed, t0 is the pulse rise time, r is 

the beam radius, γ is constant.  
If we restrict our analysis in plan strain problem parallel 

to the x−y plane, then the basic governing equations (1)-(5) 
are simplified to  

2
2 2 2

2
( ) (1 ) ,

e T u
u

x x t
     

  
 + + − = − 

    
(6) 

2
2 2 2

2
( ) (1 ) ,

e T v
v

y y t
     

  
 + + − = − 

    
(7) 

2 2
2 * 2

02 2
,e

T e Q
k T k T C T

t tt t
  

   
 +  = + −

    
(8) 

where 
2 2 2 2 2/ /x y    + 

. 

To facilitate the solution of the problem, introduce the 

following dimensionless variables  
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T
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,

e

Q
Q

T C
 = 2

1

2
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+
=

 

2
* 1
1

eC c

k


 = 

 

Equations (6)-(8), with the help of the above non-

dimensional variables will be rewritten into the non-

dimensional form with dropping primes for convenience 

22 2
2 3

2
1 2

(1 ) ,e uu b b b
x x t

    + − = − 
    

(9) 

22 2
2 3

2
1 2

(1 ) ,e vv b b b
y y t

    + − = − 
    

(10) 

2 2

3 2 12 2
.2 2 e Q

t tt t


    

   
 +  = + −

    
(11) 

Here, 

 
1 ,b

 



+
=

 

0
2 3 1, 1 ,

T
b b b




= = +

 
1 ,

eC





=

 

 

* *
1

2 2
1

,

e

k

C c





=

 
3 2

1

,

e

k

C c



=

 

where 1, 2 and 3  are the coupling constants. Using the 

expressions, relating the displacement components 

( , , )u x y t
 and 

( , , )v x y t
 to the scalar potential function 

1( , , )x y t
 and the vector potential function 2 ( , , )ψ x y t

 

in the dimensionless form as follows: 

1 2 ,u
x y

  
= +
 

 

1 2 ,v
y x

  
= −
 

 
(12) 

2
1

u v
e

x y


 
= + = 
 

 
(13) 

Using (12) and (13) into Eqs. (9)-(11), we get 

2 2
3 2

2 2

2 2
[(1 ) ] 0,b b

t t
  

 +  − − =
 

 
(14) 

2 2
3 3

2 2

2 2
[(1 ) 0,b b

t t
  

 +  −  =
 

 
(15) 

2 2
1 1 3 2

2 2

2 2
( ) .

Q

tt t t

    
  −  + +  − = −

  
 

(16) 

The non-zero stress components of interest are  

2 2
1 2(1 ) ( ) ,xx

u v
b e b

x y
  

 
−  = + − −

 
 

(17) 

2 2
1 2(1 ) ( ) ,yy

u v
b e b

x y
  

 
−  = − − −

 
 

(18) 

2 2(1 ) .xy

u v

y x
 

 
−  = +

 
 

(19) 

 
 

3. The normal mode analysis  
 

We can decompose the solution of physical quantities in 

terms of the normal mode as the following: 

* * *
1 2 1 2[ , , ]( , , ) [ , , ]( )exp[ ( )],x y t x i t a y      = +

 
(20) 

where 
* * *
1 2[ , , ]( )x    are the amplitude of the physical 

quantities, ω is the angular frequency, i 1= −  and a is 

the wave number. 

On using (20), the Eqs. (14)-(16) will take the form 

2 * *
1 1 2[D ] 0,B B − − =

 
(21) 

2 *
3 2[D ] 0,B − =

 
(22) 

2 2 * 2 *
4 1 5

2
6 0

2 2 2
0 00

[D ] [D ]

(1 )exp[ ( )].
2

B a B

B I t y t
x i t iay

t tr t r

 


 



− + −

= − − + + + +

 

(23) 

where 
2

2
1 2 2

,
1

B a


 
= −

−  

2
2 2 2

1

,
(1 )(1 )

b
B

b  
=

+ −
  

2
2 3

3 2 2
3

,
1

b
B a

b



 
= −

−

2
1

4
3 2

,B
i

 

  
=

+

2
2

5
3 2

,B a
i



  
= −

+
  

6
3 2

1
,B

i  
= −

+
 and 

d
D

dx
= 

  

Eliminating θ* between Eqs. (21) and (23), we obtain 

the following differential equation satisfied by 
*
1 : 

4 2 *
1 2 1

2

3 2
0 0

[ D D ]

(1 )exp[ ( )],

L L

t y t
L x i t iay

t tr



 

− +

= − − + + + +

 

(24) 

Where 

1 1 5 2 4 ,L B B B B= + − 2 1 5 2 4
2 ,B B a B BL = −

 

2 6 0
3 2 2

0

.
2

B B I

r t
L




=

 
Similarly, θ* satisfies the following differential equation 

4 2 *
1 2

2

4 2
0 0

[ D D ]

(1 )exp[ ( )],

L L

t y t
L x i t iay

t tr



 

− +

= − − + + + +

 

(25) 

where  

2
6 0 1

4 2 2
0

( )
.

2

B I B
L

r t

 



−
=

 

Eqs. (24) and (25) can be factored as 
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2 * *
1 2 1

2

3 4 2
0 0

2 2 2(D )(D ){ , }

( , )(1 )exp[ ( )],

k k

t y t
L L x i t iay

t tr

 

 

− −

= − − + + + +

 

(26) 

where ( 1,2)nk n =  are given by 

2 2
1 1 2 1 1 2

1 2

4 4
, , Re( ) 0.

2 2
n

L L L L L L
k k k

+ − − −
= = 

 

(27) 

The general solutions for 1( , , )x y t  and ( , , )x y t , 

bounded as x → ∞, are given by  

2

1 n n 3
n 1

( , , ) exp( ) ( , , ),x y t R k x i t i a y L gf x y t 
=

= − + + +
 
(28) 

2

n n n 4
n 1

( , , ) exp( ) ( , , ).x y t H R k x i t i a y L gf x y t 
=

= − + + +
 
(29) 

Here, 
2
n 1

n
2

( )
,

k B
H

B

−
=

4 2
1 2

1
,g

L L 
=

− +
 

2

2
0 0

( , , ) (1 )exp[ ( )],
t y t

f x y t x
t tr

= − − + +

 
and Rn (n=1,2) are some constants to be determined from 

the boundary conditions of the present problem. 

For x → , the solution of Eq. (22) can be written as 

2 3 3( , , ) exp( ),x y t R k x i t i a y = − + +
 

(30) 

where 3 3 0k B=   and R3 is another constant as defined 

above. 

To obtain the components of the displacement vector, 

substitute from (28) and (30) in (12) and we get 

2

n n
n 1

33 3

( , , ) [ exp( )

exp( )]exp( ) ( , , ),

n

g

u x y t k R k x

ia R k x i t i a y L f x y t 

=

= − −

+ − + −
 

(31) 

2

n n
n 1

3
3 3 n 2

( , , ) [ exp( )

2
exp( )]exp( ) ( , , ).

v x y t i a R k x

L g
k R k x i t i a y yf x y t

r


=

= −

+ − + −
 

(32) 

Inserting from (29), (31) and (32) in the Eqs. (16)-(19), 

and after detail calculations, we get the non-zero stress 

components in a non-local thermoelasticmedium in the 

following forms: 

3

1n n 1

1

( , , ) exp( )exp( ) ( , , ),xx n

n

x y t M R k x i a y i t I f x y t 

=

= − + +
 

(33) 

3

2n n 2

1

( , , ) exp( )exp( ) ( , , ),yy n

n

x y t M R k x i a y i t I f x y t 

=

= − + +
 

(34) 

3

3n n 3

1

( , , ) exp( )exp( ) ( , , ),xy n

n

x y t M R k x i a y i t yI f x y t 

=

= − + +
 
(35) 
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n
3n 2 2 2

2
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−
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3

2
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a ia
M
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−
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2 2
3
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=
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4. The boundary conditions 
 

In this section, we shall consider the following boundary 

conditions (in the non-dimensional form) on the surface x=0 

to determine the constants Rn (n=1,2,3): 

(1) The thermal boundary condition: 

A ramp-type thermal shock is applied to the boundary of 

the surface x=0 in the form 

0(0, , ) ( ) ( ),y t y h t  =
 

(36) 

where θ0 is a constant temperature, δ (y) is the Dirac-delta 

function and h(t) is a prescribed function of t, given by 

0
0

0

0 0

( ) 0

1

t

t
h t t

t






 



=  

   

(37) 

(2) The mechanical boundary conditions: 

The surface x=0 is taken to be traction-free which in 

turn means 

(0, , ) (0, , ) 0xx xyy t y t = =
 

(38) 

By using the normal as defined in (20), the above 

boundary conditions reduce to 

0
*

0 02
0

1
( ) ( , ),

e
y P



   
 

− −
= = 

 
   

(39) 

* *( ) ( ) 0xx xyy y = =
 

(40) 

Substituting the expressions of the considered variables 

in the above boundary conditions, we can obtain the 

following equations satisfied by the constants Rn: 
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2

1

,n n

n

H R P

=

=
 

(41) 

3

1

1

0,n n

n

M R

=

=
 

(42) 

3

3

1

0,n n

n

M R

=

=
 

(43) 

After applying the inverse of the matrix method, we 

obtain the three constants Rn (n=1,2,3) as follows 

1

1 1 2

2 11 12 13

3 31 32 33

0

0 .

0

R H H P

R M M M

R M M M

−
    
    

=     
    
      

(44) 

With (44), the expressions (29) and (31)-(35) yield the 

temperature, displacements, and the stress components 

analytically for the present problem. 
 
 

5. Numerical results and discussion 
 

For numerical computations, following Dhaliwal and 

Singh (1980) the magnesium material was chosen for 

purposes of numerical evaluations. All the units of 

parameters used in the calculation are given in SI units. The 

constants of the problem were taken as  

10 22.17 10 / ,N m =   
10 23.278 10 / ,N m = 

 

6 22.68 10 / ,N m K =   31.04 10 / ,eC J kg K=  
 0 298 ,T K=

 

* 11
1 5.338 10 / ,s = 

 
5 11.78 10 ,t K − −= 

 

The laser pulse parameters are 

2 2

0 010 / , 0.2 , 25/ , 10I J m r m m t n s. = = = =
 

The nonlocal parameter is taken from Sarkar and Tomar 

(2019) as 
9

0 0.5 10a −=  m, e0=0.39. 

The comparisons were carried out for 
* 100 / ,k W m K=  0.5,a = 2.9, = 2.0,y = 0.9,t = 0 1.0 =

 
These values are used for the distribution of the real 

parts of the temperature, displacement components, and the 

stresses with the distance x(0≤x≤4.0) for (G–N) theory of 

both types II and III in different values of the non-local 

parameter (ξ = 0.00, 0.05) Here, (ξ = 0) stand for the case 

when the nonlocality of the medium considered and for 

nonlocal medium, we take the value of the nonlocal 

parameter (ξ =0.05) which is quite admissible (see Sarkar 

and Tomar, 2019). 
Fig. 1 represents the distribution of the temperature θ in 

the case of (ξ =0) (i.e. for local medium) and (ξ =0.05) (i.e. 
for nonlocal medium) in the context of both types II and III 
of (G–N) theory. It is noticed that the distribution of θ 

decreases with the distance from the boundary of the half-
space. At a larger distance from the boundary plane, the 
temperature getting more and more closure to zero, and 
finally, it becomes zero. This phenomenon ensures the fact 
of the finite speed of the thermal signal, which is the main 
essence of non-classical thermoelasticity. Moreover, a 
significant difference in temperature near the boundary 
plane is observed for GN-II and GN-III theory. The larger 
value of the temperature is noticed GN-II model as 
compared to GN-III model. In addition, for nonlocal 
medium, temperature found smaller than the local medium. 
One may conclude from here, that the nonlocality of the 
medium diminishes the magnitude in the temperature field. 
Fig. 2 represents the distribution of the displacement u for 
the same set of parameters. The nonlocality of the medium 
acts to decrease the magnitude of u. Larger magnitude in u 
is found for the GN-II model as compared than GN-III 
model. It is revealed in Fig. 3 that, in non-local medium, 
stress component σxx has a smaller magnitude than that of in 
a local medium. Additionally, for GN-III model, magnitudes 
in σxx observed smaller as compared to the GN-II model. 
Fig. 4 is drawn to understand the effect of nonlocality on 
stress component σyy for both the said models. From this 
figure, the presence of nonlocality decreases the magnitude 
of σyy for both GN models. For the GN-III model, we found 
smaller magnitudes in the major portion of the half-space. 
Maximum variations for stress components σxx, σyy are 
notices at the boundary plane (x=0) and both the stress 
components reduce to zero magnitudes at a large distance 
apart from the boundary. The behavior of the stress 
component σxy is revealed in Fig. 5. This figure ensures that 
our theoretical boundary condition [Eq. (38)] have been 
satisfied as σxy becomes zero at (x=0) and σxy becomes zero 
as x increases. The nonlocal parameter ξ makes the stress 
component σxy small. Along with this, for GN-III model, we 
noticed a larger magnitude in σxy as compared to the GN-II 
model. Figs. 6-10 are drawn to study the behavior of all the 
physical fields at different times. For the computational 
purpose, we choose the non-dimensional time as t= 0.3 and 
t= 0.5 It is revealed from these five figures that at a 
comparatively larger time, larger magnitudes in all the 
studied fields are noticed. From Figs. 6-9 we found greater 
magnitudes for the GN-II model than GN-III model in all 
the field quantities. The only exception is found for σxy in 
Fig. 10. Here we observed that larger magnitudes are found 
for GN-III models than GN-II model. 
 

 

 
Fig. 1 Distribution of the temperature θ against x when 
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Fig. 2 Distribution of the displacement u against x when 

0.3.t =  
 

 
 

 
Fig. 4 Distribution of the stress σyy against x when t=0.3 

 

 

Fig. 5 Distribution of the stress σxy against x when t=0.3 

 

 

 
Fig. 6 Distribution of the temperature θ against x for 

different time t when t=0.05 
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Fig. 3 Distribution of the stress σxx against x when t=0.3 
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Fig. 7 Distribution of the displacement u against x for 

different time t when t=0.05 

 

 
Fig. 8 Distribution of the stress σxx against x for different 

time t when ξ = 0.05 

 

 
Fig. 9 Distribution of the stress σyy against x for different 

time t when t=0.05 

 
 
6. Conclusion  

 

The results of the present work can be summarized as: 

1. The values of all physical quantities converge to zero 

by increasing the distance x, and all functions are 

continuous. 

2. The nonlocalities of the medium have a significant 

role in the considered physical quantities. 

 
Fig. 10 Distribution of the stress σxy against x for different 

time t when t=0.05 
 
 

3. The laser pulse has significant influences on the 

distribution of the considered physical quantities. 

4. All the field quantities change majorly depending on 

time. 
 

 

Declaration of conflicting interests 
 

The author(s) declared no potential conflicts of interest 

with respect to the research, authorship, and/or publication 

of this article. 

 

 

Funding 
 

The author(s) received no financial support for the 

research, authorship, and/or publication of this article. 
 

 

Acknowledgments 
 

The research described in this paper was not financially 

supported by the Natural Science Foundation. 

 

 
References 
 

Abd-Elaziz, E.M. and Othman, M.I.A. (2019), “Effect of Thomson 

and thermal loading due to laser pulse in a magneto-thermo-

elastic porous medium with energy dissipation”, Zeitschrift für 

Angewandte Mathematik und Mechanik, (ZAMM), 99(8), 1-18. 

e201900079. https://doi.org/10.1002/zamm.201900079. 

Abd-Alla, A.M., Othman, M.I.A. and Abo-Dahab, S.M. (2016), 

“Reflection of plane waves from electro-magnetothermoelastic 

half-space with a dual-phase-lag model”, Comput. Mater. Continua, 

51, 63-79. https://doi.org/ 10.3970/cmc.2016.051.063.pdf. 

Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), “On the 

effect of Thomson and initial stress in a thermo-porous elastic 

solid under G-N electromagnetic theory”, Symmetry, 11(3), 413-

430. https://doi.org/10.3390/sym11030413. 

Altan, B.S. (1984), “Uniqueness in the linear theory of non-local 

elasticity”, Bullet. Tech. Univ. Istanbul, 37, 373-385. 

Asadollahi, A., Rashidi, S., Esfahani, J.A. and Ellahi, R. (2018), 

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 x

 u

 

 

G-N III, t=0.3

G-N II, t=0.3

G-N III, t=0.5

G-N II, t=0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
-7

-6

-5

-4

-3

-2

-1

0

1

 x

 
x
x

 

 

G-N III, t=0.3

G-N II, t=0.3

G-N III, t=0.5

G-N II, t=0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

 x

 
y
y

 

 

G-N III, t=0.3

G-N II, t=0.3

G-N III, t=0.5

G-N II, t=0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
-16

-14

-12

-10

-8

-6

-4

-2

0

2

 x

 
x
y

 

 

G-N III, t=0.3

G-N II, t=0.3

G-N III, t=0.5

G-N II, t=0.5

477

https://doi.org/10.3390/sym11030413


 

Nantu Sarkar, Sudip Mondal and Mohamed I.A. Othman 

“Simulating phase change during the droplet deformation and 

impact on a wet surface in a square microchannel: An application 

of oil drops collision”, Europ. Phys. J. Plus, 133, 306-321. 

https://doi.org/10.1140/epjp/i2018-12135-6. 

Bhatti M.M. and Lu, D.Q. (2019), “Analytical study of the head-

on collision process between hydroelastic solitary waves in the 

presence of a uniform current”, Symmetry, 11(3), 333-361. 

https://doi.org/10.3390/sym11030333. 

Bromwich, TJI'A. (1898), “On the influence of gravity on elastic 

waves and in particular on the vibrations of an elastic globe”, 

Proc. London Math. Soc., 30, 98-120.  

Chandrasekharaiah, D.S. (1996), “One-dimensional wave 

propagation in the linear theory of thermoelasticity 

withoutenergy dissipation”, J. Therm. Stress., 19(8), 695-710. 

https://doi.org/10.1080/01495739608946202. 

Chirita, S. (1976), “On some boundary value problems in non-

local elasticity”, Amale Stiinfice ale Universitatii “AL. I. CUZA” 

din Iasi Tomul, vol. xxii, s.Ia, f.2. 

Dhaliwal, R.S. and Singh, A. (1980), Dynamic Coupled Thermo-

Elasticity”, Hindustan Publ. Corp, New Delhi, India. 

Edelen, D.G.B., Green, A.E. and Laws, N. (1971), “Non-local 

continuum mechanics”, Arch. Rational Mech. Analy., 43(1), 36–

44.  

Edelen, D.G.B. and Laws, N. (1971), “On the thermodynamics of 

systems with non-locality”, Arch. Rational Mech. Analy., 43(1), 

24–35. 

Eringen, A.C. and Edelen, D.G.B. (1972), “On non-local 

elasticity”, J. Eng. Sci., 10(3), 233-248. 

https://doi.org/10.1016/0020-7225(72)90039-0. 

Eringen, A.C. (1972), “Non-local polar elastic continua”, J. Eng. 

Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72) 90070-

5. 

Eringen, A.C. (1981), “Non-local continuum theory of liquid 

crystals”, Molecular Crystals Liquid Crystals, 75(1), 321–343. 

https://doi.org/10.1080/00268948108073623. 

Eringen, A.C. (1990), “Memory dependent non-local electro-

dynamics”, Mechanical Modelling of New Electromagnetic 

Materials, Proceedings of IUTAM Symposium, 45–49. 

Eringen, A.C. (1991), “Memory-dependent non-local electro-

magnetic elastic solids and superconductivity”, J. Math. Phys., 

32(3), 787–796. https://doi.org/10.1063/1.529372. 

Esfahani, J.A., Akbarzadeh, M., Rashidi, S., Rosen, M.A. and 

Ellahi, R. (2017), “Influences of wavy wall and nano-particles on 

entropy generation over heat exchanger plate”, Int. J. Heat Mass 

Transfer, 109, 1162-1171.  

https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.006. 

Green, A.E. and Lindsay, K.A. (1972), “Thermoelasticity”, J. 

Elast. 2(1), 1-7. http://dx.doi.org/10.1007/BF00045689. 

Green, A.E. and Naghdi, P.M. (1992), “On undamped heat waves 

in an elastic solid”, J. Therm. Stress., 15(2), 253-264. 

https://doi.org/10.1080/01495739208946136. 

Green, A.E. and Naghdi, P.M. (1993), “Thermoelasticity without 

energy dissipation”, J. Elast., 31(3), 189-208. 

https://doi.org/10.1007/BF00044969. 

Jain, K., Kalkal, K.K. and Deswal, S. (2018), “Effectof heat source 

and gravity on a fractional order fiber reinforced thermoelastic 

medium”, Struct. Eng. Mech., Part L, 68(2) 215-226. 

https://doi.org/ 10.12989/sem.2018.69.2.215. 

Jun, Y.X.(2019a), “New non-conventional methods for 

quantitative concepts of anomalous rheology”, Therm. Sci., 

23(6B), 4117-412. https://doi.org/10.2298/TSCI191028427Y. 

Jun, Y.X. (2019b), “New general calculi with respect to another 

functions applied to describe the newton-like dashpot models in 

anomalous viscoelasticity”, Therm. Sci., 23(6B), 3751-3757 . 

https://doi.org/10.2298/tsci180921260y. 

Jun, Y.X., Gao, F. and Wen, J.H. (2019), “New mathematical 

models in anomalous viscoelasticity from the derivative with 

respect to another function view point”, Therm. Sci., 23(3A), 

1555-1561 . https://doi.org/ 10.2298/TSCI190220277Y. 

Jun, Y.X. (2018), “New rheological problems involving general 

fractional derivatives with nonsingular power-law kernels”, 

Proceedings of the Romanian Academy Series A, 19(1), 45-52 . 

Jun, Y.X., Gao, F. and Srivastava, H.M. (2017), “New rheological 

models within local fractional derivative”, Rom. Rep. Phys., 

69(3), 113 . 

Khurana, A. and Tomar, S.K. (2016), “Wave propagation in non-

local microstretch solid”, Appl. Math. Model., 40(11-12), 5858-

5875. https://doi.org/ 10.1016/j.apm.2016.01.035. 

Kothari, S. and Mukhopadhyay, S. (2012), “Study of harmonic 

plane waves in rotating thermoelastic media of type III”, Math. 

Mech. Solids, 17(8), 824-839. 

https://doi.org/ 10.1177/1081286511432021. 

Kumari, B. and Mukhopadhyay, S. (2016), “A domain of influence 

theorem for thermoelasticity without energy dissipation”, Math. 

Mech. Solids, 22(11), 235-257. 

https://doi.org/10.1177/1081286516661026. 

Lata, P. and Kaur, I. (2019), “Effect of rotation and inclined load 

on transversely isotropic magneto thermoelastic solid”, Struct. 

Eng. Mech., Part L, 70(2), 245-255. https://doi.org/ 

10.12989/sem.2019.70.2.245. 

Lord, H.W. and Shulman, Y. (1967), “A generalized dynamical 

theory of thermoelasticity”, J. Mech. Phys. Solids, 15, 299-309. 

https://doi.org/10.1016/0022-5096(67)90024-5. 

Marin, M. and Öchsner, A. (2017), “The effect of a dipolar 

structure on the Holder stability in Green-Naghdi thermo-

elasticity”, Continu. Mech. Thermody., 29, 1365-1374. 

https://doi.org/ 10.1140/epjp/i2018-12135-6. 

Marin, M., Ellahi, R. and Chirilă, A. (2017), “On solutions of 

Saint-Venant's problem for elastic dipolar bodies with voids”, 

Carpathian J. Math., 33(2), 219-232. 

Marin, M. Vlase, S. Ellahi, R. and Bhatti, M.M. (2019), “On the 

partition of energies for backward in time problem of the 

thermoelastic materials with a dipolar structure”, Symmetry, 11 

(7), 863-878. https://doi.org/10.3390/sym11070863. 

Mukhopadhyay, S., Prasad, R. and Kumar, R. (2011), “Variational 

and reciprocal principles in linear theory of type-III thermo-

elasticity”, Math. Mech. Solids, 16(4), 435-444. 

https://doi.org/10.1177/1081286511399015. 

McCay, B.M. and Narsimhan, M.L.N. (1981), “Theory of non-

local electromagnetic fluids”, Arch. Mech., 33, 365-384.  

Narendar, S. (2012), “Spectral finite element and non-local 

continuum mechanics based formulation for tortional wave 

propagation in nanorods”, Finite Elements Analysis Design, 62, 

65-75. https://doi.org/ 10.1016/j.finel.2012.06.012. 

Narendar, S. and Gopalakrishnan, S. (2010), “Non-local scale 

effects of ultrasonic wave characteristics of nanorods”, Physica E, 

42, 1601–1604. https://doi.org/ 10.1016/j.physe.2010.01.002. 

Othman, M.I.A. and Jahangir, A. (2015), “Propagation of plane 

waves of rotating microstretch elastic solid with temperature 

dependent elastic properties under Green-Naghdi theory”, Appl. 

Math. Inform. Sci., 9, 2963-2972. 

http://dx.doi.org/10.12785/amis/090624. 

Othman, M.I.A. and Atwa, S.Y. (2012), “Response of micropolar 

thermoelastic medium with voids due to various source under 

Green-Naghdi theory”, Acta Mech. Solida Sinica, 25(2), 197-

209.  

Othman, M.I.A., Hasona, W.M. and Mansour, N.T. (2015), “The 

influence of gravitational field on generalized 

thermoelasticityelasticity with two-temperature under three-

phase-lag model”, Comput., Mater. Continua, 45, 203-219. 

Rashidi, S., Esfahani, J. and Ellahi, R. (2017), “Convective heat 

transfer and particle motion in an obstructed duct with two side-

by-side obstacles by means of DPM model”, Appl. Sci., 7(4), 

431-444. https://doi.org/10.3390/app7040431. 

478

https://ui.adsabs.harvard.edu/link_gateway/2018EPJP..133..306A/doi:10.1140/epjp/i2018-12135-6
https://doi.org/10.1080/01495739608946202
https://doi.org/10.1016/0020-7225(72)90039-0
https://doi.org/10.1080/00268948108073623
https://doi.org/10.1063/1.529372
http://dx.doi.org/10.1016%2Fj.ijheatmasstransfer.2017.03.006
https://doi.org/10.1080/01495739208946136
https://www.researchgate.net/profile/Feng_Gao27?_sg%5B0%5D=ms-77RvBxdC3yg-E8_MNsYweiuZo1FEdqtLyy3p2sVqR8XwYLfBuh3StL4cw1ZE88uimxPE.YyFxLIm_vOdSBFd0xqgGLyZWpQb3mN2HmppevAXPjPN0ASkIPVH6C0RKnAAQvDmfptPEL6dblZBGXdixS_dpCA&_sg%5B1%5D=y0VSZoW_bCpGV32p6ySCLTLYwCISIdNA8WTkU0OfJMkG70fEVQ9G2E4gKaY7iTtz0ll_1YknaN0lXvM.GPbc53mtTMxRyFnAaed-TNt6w1lkq-7OFhExzs-0LfGmYJyAFHtPl5Y8KcVCiP1ooyk52pfpBSHuEEJyPcvZdQ&_sg%5B2%5D=BYnzMBUxs4bzFHVkO1z4KoyZXUICQIEMSFDUjZO2xzCWsqbU3XoIxGcwemFrERq49iW1hxw.YgicN8raiD2fN4fhtlitVIkmCyEePQNw8TPXRU1EaEnAkNIxdlDIlFsTQlhULZ1fTGQg08DptmN7suhPEU60nQ
https://www.researchgate.net/scientific-contributions/2158303088_Jing_Hong-Wen?_sg%5B0%5D=h6Si8fikTClAAzKFQLmr6IO5ruqgptzRTfLgkG2dHVkJ4Ng-Cez85T0YwwlLXBrg7i8wbgE.3yfdTZxXLx2Y1IKQxAGwZ-YXJtCEMGyS1YBix8G2o3Wyd2VQIYdz_nnJHtBI7OYIIB6bcZIG9VIToywXauMqdg&_sg%5B1%5D=AC4lUVydt-EyJiLxw5-goGZeUTjrK31Cmp189WNsQOCW-v18jsL9iXKN3t-Pg5B5ZrAm8tdjJCXXBJ4.O0z9LX8sAlSQep7VhmWGny5KPxUnyONwQbAo21YQRVzI5l1z3ziEZjYH1X31GUmXwB8VuS0kH0XY_B1t3awY7w&_sg%5B2%5D=0L6ViLZSQY5djGf2In3YBGro-B0WWDBIhLi21dERq5Ot0xknry9NSaW-qKxYUudygW037Rg.qAWyGMTxK5J3c0h2WFTnnV0wO-6bF8Lo1ckBUrLj0mrHjtawS4w6zblyivlX0MTnFAjtyuEzAU7obEBIIFegEg
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.2298%2FTSCI190220277Y?_sg%5B0%5D=hWjRuUbQSJepVdxZPJC8E45zi61W9WyBkocZGT5_y_KrrsvN9bJ3xt2gRR_enEFL3GOWlpSNfXEcNTFi9gsUJSbizA.AefosWN4ykHKHLai_gcRDh79wTPGfxRB2vXevkKYBtsTd_b8QSbfJLh7fULLVlA2pmfXtRFmZHkrE5ECxfm32w&_sg%5B1%5D=pjZTo6JTJbeNzylHdXj2WGvUDk3dSnjZ6QtwjcL8VVD8xv0BmJdCARNU5Cufjx4AchOBw2Iwcp0F.DNP_Yw836tLuVkRO5fSJLA-57iKGS7AABNNThJE12-539FECz_dgst2e7BxK5Ov2aA74ydRPHbLVqT8MckmCJg
https://www.researchgate.net/profile/Feng_Gao27?_sg%5B0%5D=ms-77RvBxdC3yg-E8_MNsYweiuZo1FEdqtLyy3p2sVqR8XwYLfBuh3StL4cw1ZE88uimxPE.YyFxLIm_vOdSBFd0xqgGLyZWpQb3mN2HmppevAXPjPN0ASkIPVH6C0RKnAAQvDmfptPEL6dblZBGXdixS_dpCA&_sg%5B1%5D=y0VSZoW_bCpGV32p6ySCLTLYwCISIdNA8WTkU0OfJMkG70fEVQ9G2E4gKaY7iTtz0ll_1YknaN0lXvM.GPbc53mtTMxRyFnAaed-TNt6w1lkq-7OFhExzs-0LfGmYJyAFHtPl5Y8KcVCiP1ooyk52pfpBSHuEEJyPcvZdQ&_sg%5B2%5D=BYnzMBUxs4bzFHVkO1z4KoyZXUICQIEMSFDUjZO2xzCWsqbU3XoIxGcwemFrERq49iW1hxw.YgicN8raiD2fN4fhtlitVIkmCyEePQNw8TPXRU1EaEnAkNIxdlDIlFsTQlhULZ1fTGQg08DptmN7suhPEU60nQ
https://www.researchgate.net/profile/Hari_Srivastava?_sg%5B0%5D=ms-77RvBxdC3yg-E8_MNsYweiuZo1FEdqtLyy3p2sVqR8XwYLfBuh3StL4cw1ZE88uimxPE.YyFxLIm_vOdSBFd0xqgGLyZWpQb3mN2HmppevAXPjPN0ASkIPVH6C0RKnAAQvDmfptPEL6dblZBGXdixS_dpCA&_sg%5B1%5D=y0VSZoW_bCpGV32p6ySCLTLYwCISIdNA8WTkU0OfJMkG70fEVQ9G2E4gKaY7iTtz0ll_1YknaN0lXvM.GPbc53mtTMxRyFnAaed-TNt6w1lkq-7OFhExzs-0LfGmYJyAFHtPl5Y8KcVCiP1ooyk52pfpBSHuEEJyPcvZdQ&_sg%5B2%5D=BYnzMBUxs4bzFHVkO1z4KoyZXUICQIEMSFDUjZO2xzCWsqbU3XoIxGcwemFrERq49iW1hxw.YgicN8raiD2fN4fhtlitVIkmCyEePQNw8TPXRU1EaEnAkNIxdlDIlFsTQlhULZ1fTGQg08DptmN7suhPEU60nQ
http://dx.doi.org/10.1016%2Fj.apm.2016.01.035
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Kothari%2C+Shweta
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Mukhopadhyay%2C+Santwana
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Kumari%2C+Bharti
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Mukhopadhyay%2C+Santwana
https://doi.org/10.1177%2F1081286516661026
http://www.techno-press.org/?page=container&volumeno=70/2&journal=sem
http://www.techno-press.org/?page=container&volumeno=70/2&journal=sem
https://doi.org/10.1016/0022-5096(67)90024-5
https://ui.adsabs.harvard.edu/link_gateway/2018EPJP..133..306A/doi:10.1140/epjp/i2018-12135-6
https://doi.org/10.3390/sym11070863
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Mukhopadhyay%2C+Santwana
https://doi.org/10.1177%2F1081286511399015
https://doi.org/10.3390/app7040431


 

Effect of the laser pulse on transient waves in a non-local thermoelastic medium under Green-Naghdi theory 

 

Rashidi, S., Akar, S., Bovand, M. and Ellahi, R. (2018), “Volume 

of fluid model to simulate the nanofluid flow and entropy 

generation in a single slope solar still”, Renewable Energy, 115, 

400-410. https://doi.org/ 10.1016/j.renene.2017.08.059. 

Said, S.M. and Othman, M.I.A. (2016), “Wave propagation in a 

two-temperature fiber-reinforced magneto-thermoelastic medium 

with three-phase-lag model”, Struct. Eng. Mech., 57(2), 201-220. 

http://dx.doi.org/10.12989/sem.2016.57.2.201. 

Sarkar, N. and Tomar, S.K. (2019), “Plane waves in non-local 

thermoelastic solid with voids”, J. Therm Stress., 42(5), 580–

606. https://doi.org/10.1080/01495739.2018.1554395. 

Sharma, J.N. and Chauhan, R.S. (2001), “Mechanical and thermal 

sources in a generalized thermoelastic half space”, J. Therm. Stress., 

24(7), 651-675. https://doi.org/10.1080/014957301300194823. 

Shirvan, K.M., Mamourian, M., Mirzakhanlari, S. and Ellahi, R. 

(2017), “Numerical investigation of heat exchanger effectiveness 

in a double pipe heat exchanger filled with nanofluid: A sensitivity 

analysis by response surface methodology”, Power Technol., 313, 

99-111.  https://doi.org/ 10.1016/j.powtec.2017.02.065. 

Wang, X. and Xu, X. (2002), “Thermoelastic wave induced by 

pulsed laser heating”, J. Therm. Stress., 25(5), 457-

473.https://doi.org/10.1080/01495730252890186. 

Yousif, M.A., Ismael, H.F., Abbas, T. and Ellahi, R. (2019), 

“Numerical study of momentum and heat transfer of MHD 

Carreau nanofluid over exponentially stretched plate with internal 

heat source/sink and radiation”, Heat Transfer Res., 50(7), 649-658. 

https://doi.org/10.1615/heattransres.2018025568. 

 

 

CC 

479

https://doi.org/10.1080/01495739.2018.1554395
https://doi.org/10.1080/014957301300194823
https://doi.org/10.1080/01495730252890186
https://doi.org/10.1615/heattransres.2018025568



