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1. Introduction 
 

The process of fiber-reinforcing has been developing 

continuously with advanced technology and the products 

are in use in various fields. Carbon fiber is ideal as a 

strengthening member in pipes for deepwater installations. 

Most concrete construction includes steel reinforcing, at 

least nominally. Fiber-reinforced materials are used for 

structures vulnerable to more or less violent vibrations 

during an earthquake and for similar disturbances. The 

study of wave propagation in a fiber-reinforced medium can 

justify the effectiveness of fiber-reinforcing in civil 

engineering and geophysics. Fiber-reinforced composites 

are widely used in engineering structures because of their 

superiority over the structural materials in applications 

requiring high strength and stiffness in lightweight 

components. A continuum model is used to explain the 

mechanical properties of such materials. A reinforced 

concrete member should be designed for all conditions of 

stresses that may occur and in accordance with principles of 

mechanics. The characteristic property of a reinforced 

concrete member is that its components, namely concrete 

and steel, act together as a single unit as long as they remain 

in the elastic condition (i.e., the two components are bonded 

together so that there can be no relative displacement 

between them). In the case of an elastic solid reinforced by 

a series of parallel fibers, it is usual to assume transverse 

isotropy. In the linear case, the associated constitutive 

relations, relating infinitesimal stress and strain components 

have five material constants. In the last three decades, the  
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analysis of stress and deformation of fiber-reinforced 

composite materials has been an important research area of 

solid mechanics. Belfield et al. (1983) have introduced the 

idea of continuous self-reinforcement at every point of an 

elastic solid. Othman and Abbas (2011), Abbas et al. 

(2011), Abbas and Othman (2012) have done pioneer works 

on this subject. Fibers are assumed as an inherent material 

property rather than some form of inclusion in such models. 

One can find some work on transversely isotropic elasticity 

in the literature (Pipkin 1973, Othman and Said 2012). 

During the last three decades, generalized theories 

involving a finite speed of heat transportation (hyperbolic 

heat transport equation) in elastic solids have been 

developed to remove this paradox. The first generalization 

is proposed by Lord and Shulman (1967) and is known as 

the extended thermoelasticity theory which involves one 

thermal relaxation time parameter (single-phase-lag model). 

The second generalization of the coupled thermoelasticity 

theory is developed by Green and Lindsay (1972), which 

involving two-thermal relaxation time is known as 

temperature rate-dependent thermoelasticity. The third 

generalization is known as low-temperature thermo-

elasticity introduced by Hetnarski and Ignaczak (1999) 

called H–I theory. The fourth generalization is concerned 

with the thermoelasticity without energy dissipation and 

thermoelasticity with energy dissipation introduced by 

Green and Naghdi (1991, 1992, 1993) and provide 

sufficient basic modifications in the constitutive equations 

that permit treatment of a much wider class of heat flow 

problems, labeled as types I, II, III. 

Another interesting field of recent study is in the field of 

magneto-thermoelasticity in which interacting effects of 

applied magnetic field on elastic and thermal deformations 

of a solid are studied. Such studies have applications in 

several areas, particularly in nuclear devices, biomedical 

engineering and geomagnetic investigations. Some of the 
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works related to the interaction of the electromagnetic field, 

the thermal field, and the electric field may be available in 

kinds of literature by Marin and Craciun (2017), Marin and 

Nicaise (2016), Abbas (2014a,b), Abbas and Youssef 

(2013), Zenkour and Abbas (2014), Othman et al. (2019), 

Othman and Said (2014). A number of discussions relating 

wave propagation in rotating isotropic or transversely 

isotropic media were reported in literature by Roy 

Choudhuri (1984), Marin and Florea (2014), Marin, et al. 

(2017), Othman and Atwa (2014), Ahmad and Khan (2001), 

England and Rogers (1973), Othman and Said (2015), 

Othman and Abbas (2012), Said and Othman (2016). 

In the present work, we shall formulate a magneto-fiber-

reinforced thermoelastic medium with variable thermal 

conductivity under the effect of hydrostatic initial stress and 

gravity. State-space approach used to obtain the exact 

expressions for displacement components, force stresses 

and temperature. Distributions of the considered variables 

are given and represented graphically. Comparisons 

conducted between the considered variables as calculated 

from the 3PHL model, Green-Naghdi theory with 

dissipation (G-N III), and coupled theory in the presence 

and absence of magnetic field as well as variable thermal 

conductivity. A comparison is also made in the three 

theories in the presence and absence of gravity as well as 

hydrostatic initial stress. 

 

 

2. Formulation of the problem and basic equations 
 

We consider the problem of a fiber-reinforced thermoe-

lastic half-space (x≥0). The medium is permeated into a 

uniform magnetic field with a constant intensity 0( 0, ,0)H=H  

which is parallel to the y −axis. We interested in a plane 

strain in the xz − plane with displacement vector 
( ,0, ).u w=u  The field equations and constitutive relations 

can be written as Belfield et al. (1983), Roy Choudhuri 

(1984), Montanaro (1999) and Othman et al. (2013) in the 

context of generalized thermoelasticity as follows: 

The constitutive law of the theory of generalized 

thermo-elasticity is 

2 ( )
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L T i k kj j k ki
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x z

 
= +
  , , ,i j x z=
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where, σij  are the components of stress, eij are the 

components of strain, ekk is the dilatation, λ, μ are the elastic 

constants, γ = (3λ + 2μ) αt αt is the thermal expansion 

coefficient, α, β, γ, (μL−μT) are the reinforcement parameters, 

P is  the initial pressure, �̂� = 𝑇 − 𝑇0 , where T is the 

temperature above the reference temperature T0, δij, is  the 

Kronecker  delta and a ≡ (a1,a2,a3), 
2 2 2
1 2 3+ + = 1a a a .  We 

choose the fiber-direction as a ≡ (1,0,0). The heat 

conduction equation as Othman and Said (2014):  

2
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(3) 

where, K* is the coefficient of thermal conductivity, K  

is the additional material constant, ρ is the mass density, CE 

is the specific heat at constant strain, 0 1 2 3 4, , , ,n n n n n  are 

integers, τ0 thermal relaxation time τT and τq are the phase-

lag of temperature gradient and the phase-lag of heat flux 

respectively. Also 
* *,K K  = +  where τv is the phase-lag 

of thermal displacement gradient.  

Using Eqs. (1), then we have 
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Where 
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P
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2 .

2
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The equation of motion: 

0 i( ) .i ji, j iρ u σ F= +  +J H
 (8) 

Where 

1 2 3, 0, .
w u

F g F F g
x x

 
 

= = = −
   

The variation of the magnetic and electric fields are 

perfectly conducting slowly moving medium and are given 

by Maxwell’s equation as Othman and Said (2015) 

0 ,
t




=  −


E
J h 0 ,

t



 = −



h
E

0 ( ), . 0.= −   =E u H h  
(9) 

Where μ0 is the magnetic permeability, ε0 is electric 

permeability, J is the current density vector and u is the 

particle velocity of the medium and the small effect of 

temperature gradient on J is also ignored. Expressing the 

components of the vector 1 2 3( , , )J J J=J  in terms of 

displacement by eliminating the quantities h and E from 

Eq. (9), thus yields 

2
2 2
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,

h u
G H H

x t
  

 
=− −

 

 
 2 0,G =     

 

2
2 2

3 0 0 0 0 0 2
.

h w
G H H

z t
  

 
= − −

 

 
(10) 

Where 
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i 0 i( )= G J H
 

Introducing Eqs. (4) ˗ (7) and (10) in Eqs. (8), thus we 

have 

2 2 2 2

11 1 22 2 2

2
2 2

0 0 0 0 0 2

ˆ

,

u u w u T w
A B S g

x z x xt x z

h u
H H

x t

  

  

     
= + + − +

     

 
− −

   

(11) 

2 2 2 2

2 1 222 2 2

2
2 2

0 0 0 0 0 2

ˆ

,

w w u w T u
S B A g

x z z xt x z

h w
H H

z t

  

  

     
= + + − −

     

 
− −

   

(12) 

where, 

1 12 1.B A S= +    
 

 

3. Variable thermal conductivity 
 

Generally, the assumption that the solid body is thermo-

sensitivity (the thermal properties of the material vary with 

temperature) leads to a nonlinear heat conduction problem. 

The exact solution of such a problem can be found by 

assuming the material to be (simply nonlinear) meaning that 

the thermal conductivity K* and CE specific heat depend on 

the temperature. The thermal conductivity K* is assumed to 

vary linearly with temperature according to (Noda 1986) 

* *
0 1( ) (1 ).K K K K = = +  (13) 

Where K0 is the thermal conductivity at ambient 

temperature T0 and K1 is the slope of the thermal 

conductivity-temperature curve divided by the intercept K0. 

Now, we will consider the Kirchhoff transformation (Noda 

1986) 
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where ψ is a new function expressing the heat 

conduction. The above equation with the aid of Eq. (13) 

gives 
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From Eqs. (13) and (15), it follows that   
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For linearity, since 0 ,T T = −  such that 0/ 1,T   then 

the above equation will be reduced to 

, .
i ix x t t
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(18) 

From Eqs. (15) and (18) in Eqs. (11), (12) and (3), thus 

we have 
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Introducing the following non-dimension quantities in 

the above equation (dropping the primes for convenience): 
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For harmonic solutions of the Eqs. (23)-(25), we choose 

[ , , , , ]( , , ) [ , , , , ]( )exp( i ).ij iju w e x z t u w e z ct bx   = +
 (26) 

Where ( ),u z  etc. is the amplitude of the function 

( , , )u x z t etc., i is the imaginary unit, c (complex) is the 

time constant and b is the wave number in the x −  

direction. 

Introducing Eq. (26) in Eqs. (23) - (25), we get 

2
1 2 3 4D D ,u C u C w C C w= + + +  (27) 

2
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The system of Eqs. (27)-(29) can be written in a vector-

matrix differential equation in the following way as 

(Othman and Said 2015, Noda 1986, Zorammuana and 

Singh 2015) 
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4. Solution of the vector-matrix differential equation 
 

Following the solution methodology through the eigen 

value approach (Othman and Said 2015), we now proceed 

to solve the vector-matrix differential equation (30). The 

characteristic equation of a matrix A is (by using the Matlab 

program)  

6 4 2
1 2 3 E  E  0,E F F F− + − =  (32) 
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Let 
2 2 2
1 2 3, ,E E E  be the roots of the characteristic Eq. 

(32) with positive real parts. Then all the six roots of the 

above characteristic equation, which are also the eigen 

values of the matrix A are of the form 1 2 3E E , E , E .=       

Suppose 1 2 3 4 5 6[ , , , , , ]Tx x x x x x =  be a right 

eigenvector corresponding to the eigen value E of the 

matrix A. Then, after simple manipulations, we get 
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For our further reference, we shall use the following 
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Solution of Eq. (30) which is bound as ,→z  is given by 
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where Rj are parameters,  
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Introduce Eqs. (15), (22), (26) and (34) - (36) in Eqs. 

(5)-(6), we get 
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5. Application  
 

In this section we determine the parameters Rj (j=1,2,3) 

In the physical problem, we should suppress the positive 

exponential that unbounded at infinity. The constants Rj 

(j=1,2,3) have chosen such that the boundary conditions on 

the surface at 0z =  are as follows: 

* exp( i ) , 0,zz p xz
T

P
R f ct b x 


= − + − =

  1. =  
(39) 

Where f* is constant, Rp is the magnitude of hydrostatic 

initial stress and 
2

1 2 2 1
1

.
2

p p K = +  

Using the expressions of the variables considered into 

the above boundary conditions (Eqs. (39)), we can obtain 

the following equations satisfied with the parameters: 
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Where 0 1 exp( ).ct ibx = − −  Invoking Eqs. (40), we 

obtain a system of three equations. After applying the 

inverse of the matrix method, we have the values of the 

three constants Rj (j=1,2,3)  

Hence, we obtain expressions for the displacements, 

temperature distribution, and other physical quantities.  

1
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After obtaining ψ, the temperature increment θ can be 

obtained by solving Eq. (15) to give 
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− + +
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6. Particular cases and special cases of thermo-
elastic theory  
 

i. A magneto-fiber-reinforced generalized thermoelastic 

medium under effect of gravity and hydrostatic initial 

stress without temperature-dependent thermal 

conductivity from above equations with K1=0. 

ii. A fiber-reinforced generalized thermoelastic medium 

under effect of gravity and hydrostatic initial stress 

with temperature-dependent thermal conductivity from 

above equations with H1=0. 

iii. A magneto-fiber-reinforced generalized thermoelastic 

medium under the effect of hydrostatic initial stress 

with temperature-dependent thermal conductivity from 

the above equations with g=0. 

iv. A magneto-fiber-reinforced generalized thermoelastic 

medium under the effect of gravity with temperature-

dependent thermal conductivity from above equations 

with Rp=0. 

v. Equations of the 3PHL model when n0=n4=1

0 4 1,n n= =
 1 2 3 0 0,n n n = = = =

 
, , , 0T qK    

 and 

the solutions are always (exponentially) stable if 

* *2 T
q

q

K
K


 


 

as in Quintanilla and Racke (2008).  

vi. Equations of the G-N II theory when,  

0 4 1 2 3 01, 0, 0.T qn n n n n K    = = = = = = = = = =
   

vii.   Equations of the G-N III theory when,    

0 4 1 2 3 01, 0, 0.T qn n n n n    = = = = = = = = =
   

viii.Equations of the L-S theory when, 

4 0 0 1 2 30, , 0, 1, 0.T qn n n n n K    =  = = = = = = =
   

ix.  Equations of the CD theory when,    

4 0 3 1 2 00, 1, 0.T qn n n n n K    = = = = = = = = = =
   

 

 

7.  Numerical calculation and discussion 
 

In order to illustrate the theoretical results obtained in 

the preceding section, and to compare these in the context 

of the above theories, we now present some numerical 

results for the physical constants as Othman and Said 

(2014): 

9 2 10 2
01 76x10 N.m , 3 78x10 N.m , 1.7,λ .  μ .  − −= = =

 

3 1 1
07800 kg.m , 383. 3 J.kg .K , 0.3,Eρ C . − − −= = =

 

9 2 9 2
01 89x10 N.m , 2.45x10 N.m , 180,T Lμ .  μ  H− −= = =

 

4 1 20.9s, 0.6s, 1 78 x10 K , 9.8 m.s ,q tα . g  − − −= = = =
 

1 1 9 2 9 2200w.m .K , 1.28x10 N.m , 0.32x10 N.m ,K    − − − −= = − =  

0 0, 0.3, 0.6, 0.4,c i b   = + = = − = 0.7s,T =
 

5 2 2
01.45 x10 N.m , 1.9N.m , 293K,PP R T− −= = =

 

1
2 10.9, 0.3, 10 T .*f p K −= = = −  

The computations carried out for a value of time t= 

0.05s. The horizontal displacement component u, the 

thermal temperature θ, and the stress components ,zz xzσ σ  

with distance z for the value of x, namely 0.5m,x =  

substituted in performing the computations. The results are 

shown in figs. 1–16. The graphs show six curves predicted 

by three different theories of thermoelasticity. In these 

figures, the solid lines represent the solution in the 3PHL 

model, the dashed lines represent the solution derived using 

the G-N III theory and the dotted line represents the 

solution derived using the CD theory.  

Figs. 1-4 show comparisons between the horizontal 

displacement components u, the thermal temperature θ, and 

the stress components ,zz xzσ σ with temperature-dependent 

and temperature-independent thermal conductivity. Fig. 1 

depicts that the distribution of the horizontal displacement 
u begins from negative values. In the context of the three 

theories with temperature-dependent thermal conductivity, 

u starts with increasing to the maximum value, then 

decreases, and again increases. However, in the context of 

the three theories with temperature-independent thermal 

conductivity u starts with decreasing, and again increases. 

The values of u increase with temperature-dependent 

thermal conductivity in the first, then decrease and last 

become constant. It is clear from fig. 2 that the thermal 

temperature θ  begins from negative values with 

temperature-dependent thermal conductivity, but it begins 

from positive values with temperature-independent thermal 

conductivity and satisfies the boundary condition at z=0, In 

the context of the three theories with temperature-dependent 

thermal conductivity, θ increases to maximum values, then 

decreases, and last become constant. However, in the 

context of the three theories with temperature-independent 

thermal conductivity, θ decreases, then increases and last 

becomes constant. The values of θ start decrease, then 

increasing with temperature-dependent thermal conductivity 

and last become constant. Fig. 3 displays that the 

distribution of the stress component σzz begins from  
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Fig. 1 Horizontal displacement distribution u with and 

without temperature thermal conductivity 
 

 
Fig. 2 Thermal temperature distribution θ with and 

without temperature thermal conductivity 
 

 
Fig. 3 Distribution of stress component σzz with and 

without temperature thermal conductivity 
 

 
Fig. 4 Distribution of stress component σxz with and 

without temperature thermal conductivity 

 
Fig. 5 Horizontal displacement distribution u in the 

absence and presence of magnetic field 

 

 
Fig. 6 Thermal temperature distribution θ in the absence 

and presence of magnetic field 
 
 

negative values and satisfies the boundary condition at z=0. 

In the context of the three theories with temperature-

dependent thermal conductivity, σzz starts with increasing to 

maximum values, then decreases, and moves in wave 

propagation. However, the context of the three theories with 

temperature-independent thermal conductivity, σzz starts 

with increasing, then decreases, and becomes constant. The 

temperature-dependent thermal conductivity increases the 

values of σzz and then decreases theirs. Fig. 4 shows the 

distribution of the stress component σxz and demonstrates 

that it reaches a zero value and satisfies the boundary 

condition at z=0. In the context of the three theories, σxz 

starts with increasing, and then decreases and moves in 

wave propagation. The values of σxz increase, then decrease 

and again increases with temperature-dependent thermal 

conductivity. Figs. 1-4 demonstrate that temperature-

dependent thermal conductivity has a significant role in all 

the physical quantities. 

Figs. 5–8 show comparisons between the horizontal 

displacement component u, the thermal temperature θ, and 

the stress components σzz, σxz with and without the magnetic 
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Fig. 7 Distribution of stress component σzz in the absence 

and presence of magnetic field 

 

 

Fig. 8 Distribution of stress component xz  in the 

absence and presence of magnetic field 

 

 

field. Fig. 5 depicts the distribution of the horizontal 

displacement u. In the context of the three theories without 

the effect of the magnetic field, u starts with increasing to 

the maximum value, then decreases, and moves in wave 

propagation. The values of u decrease with the effect of 

the magnetic field in the first, then increase, again decrease, 

and last increase. It is clear from fig. 6 that the thermal 

temperature  begins from negative values and satisfies the 

boundary condition at z=0 In the context of the three 

theories without the effect of the magnetic field, θ increases 

to maximum values, then decreases, again increases, and 

last decreases. The values of θ decrease, then increase, 

again decrease, and last increase with the effect of the 

magnetic field. Fig. 7 displays that the distribution of the 

stress component σzz begins from negative values and 

satisfies the boundary condition at z=0. In the context of the 

three theories without the effect of the magnetic field, σzz 

starts with increasing to maximum values, then decreases, 

and moves in wave propagation. The magnetic field 

decreases the values of σzz then increase, again decrease,  

 
Fig. 9 Horizontal displacement distribution u in the 

absence and presence of hydrostatic initial stress 

 

 
Fig. 10 Thermal temperature distribution θ in the absence 

and presence of hydrostatic initial stress 

 

 

and last increase. Fig. 8 shows the distribution of the stress 

component σxz and demonstrates that it reaches a zero value 

and satisfies the boundary condition at z=0. In the context 

of the three theories, σxz starts with increasing to maximum 

values, then decreases and moves in wave propagation. The 

values of σxz decrease then increase, then decrease and again 

increases with the effect of the magnetic field. Figs. 5-8 

demonstrate that the magnetic field has a significant role in 

all the physical quantities. 

Figs. 9-12 show comparisons between the horizontal 

displacement component u, the thermal temperature θ, and 

the stress components σzz, σxz with and without the effect of 

hydrostatic initial stress. Fig. 9 depicts the distribution of 

the horizontal displacement u. In the context of the three 

theories without the effect of hydrostatic initial stress, u 

starts with increasing to the maximum value, then decreases. 

The values of u decrease with the effect of hydrostatic 

initial stress in the first, then increase and again decrease.  

It is clear from fig. 10 that the thermal temperature θ begins 

from negative values and satisfies the boundary condition at  
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Fig. 11 Distribution of stress component σzz in the absence 

and presence of hydrostatic initial stress 

 

 
Fig. 12 Distribution of stress component σzz in the absence 

and presence of hydrostatic initial stress 

 

 

z=0. In the context of the three theories without the effect of 

hydrostatic initial stress, θ increases to maximum values, 

then decreases, and last becomes constant. The values of θ 

increase, then decrease and again increase with the effect of 

hydrostatic initial stress. Fig. 11 displays that the 

distribution of the stress component σzz begins from 

negative values and satisfies the boundary condition at z=0. 

In the context of the three theories without the effect of 

hydrostatic initial stress, σzz starts with increasing to 

maximum values, then decreases, and moves in wave 

propagation. The hydrostatic initial stress decrease values of 

σzz, then increase.  Fig. 12 shows the distribution of the 

stress component σxz and demonstrates that it reaches a zero 

value and satisfies the boundary condition at z=0. In the 

context of the three theories, σxz starts with increasing to the 

maximum values, then decreases and moves in wave 

propagation. The values of σxz increase, then decrease and 

then increase with the effect of hydrostatic initial stress.  

Figs. 9-12 demonstrate that the hydrostatic initial stress has 

a significant role in all the physical quantities. 

Figs. 13–16 show comparisons between the horizontal 

displacement component u, the thermal temperature θ, and 

the stress components σzz, σxz with and without the effect of  

 
Fig. 13 Horizontal displacement distribution u in the 

absence and presence of gravity 

 

 
Fig. 14 Thermal temperature distribution θ in the absence 

and presence of gravity 

 

 

the gravity field. Fig. 13 depicts the distribution of the 

horizontal displacement u, In the context of the three 

theories without the effect of the gravity field, u starts with 

increasing to the maximum value, then decreases and again 

increases.  The values of u decrease with the effect of the 

gravity in the first, then increase, again decrease and last 

increase. It is clear from fig. 14 that the thermal temperature 

θ begins from negative values and satisfies the boundary 

condition at z=0. In the context of the three theories without 

the effect of the gravity, θ decreases and then increases. The 

values of   increase then decrease with the effect of the 

gravity field. Fig. 15 displays that the distribution of the 

stress component σzz begins from negative values and 

satisfies the boundary condition at z=0 In the context of the 

three theories without the effect of the gravity field, σzz 

starts with increasing to maximum values, then decreases, 

and moves in wave propagation. The gravity decreases the 

values of σzz and then increase. Fig. 16 shows the 

distribution of the stress component σxz and demonstrates 

that it reaches a zero value and satisfies the boundary 

condition at z=0. In the context of the three theories without  
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Fig. 15 Distribution of stress component σzz in the absence 

and presence of gravity 

 

 
Fig. 16 Distribution of stress component σzz in the absence 

and presence of gravity 

 

 

the effect of gravity, σxz starts with increasing to the 

maximum values, then decreases to minimum value and 

moves in wave propagation. The values of σxz increase, then 

decreasing, again increase and last decrease with the effect 

of the gravity. Figs. 13-16 demonstrate that the gravity field 

has a significant role in all the physical quantities. 
 

 

8. Conclusion 
 

In the present study, the state-space approach is used to 

study the effect of the hydrostatic initial stress, temperature-

dependent thermal conductivity, magnetic field and gravity 

field on the fiber-reinforced generalized thermoelastic 

medium based on the 3PHL theory, CD theory and the G-N 

III theory. We obtain the following conclusions based on 

the above analysis: 

1) It is clear that the hydrostatic initial stress, the 

temperature-dependent of thermal conductivity, the 

magnetic field and gravity play significant roles in all the 

physical quantities. 

2) The phases lag τq and τθ have a great influence on the 

distribution of all physical quantities. 

3) The curves in the context of the 3PHL theory, CD, 

theory and the G-N III theory, decrease exponentially with 

increasing z; this indicates that the thermoelastic waves are 

unattenuated and non-dispersive, while purely thermoelastic 

waves undergo both attenuation and dispersion. 

4) The deformation of a generalized thermoelastic 

medium depends on the nature of the applied force as well 

as the type of boundary conditions.  

5) Analytical solutions based upon the state-space 

approach analysis of the thermoelastic problem in solids 

have been developed and utilized. 

6) There are significant differences in the field 

quantities under the G-N III theory, 3PHL model and CD 

theory due to the phase-lag of temperature gradient and the 

phase-lag of heat flux. 
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