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1. Introduction 
 

The composite materials are more recognized for their 

attractive mechanical properties and their many advantages, 

such as very high strength and stiffness coupled with a very 

low density, good resistance to corrosion, better noise 

insulation and have good impact toughness than those 

composed of most conventional metallic materials. Due to 

these major desirable features, the commercial use of 

laminated composites has been expanding rapidly over the 

past three decades, becoming the preferred material system 

in various specific applications, especially the aerospace 

and submarine structures, mechanical engineering, 

biomedical products and also in the civil engineering sector 

for structural strengthening techniques in the restoration of 

buildings affected by natural hazards and other destructive 

forces. The nature of these inhomogeneous materials makes 

them very adaptable to each area and it is possible to choose 

for each structure the best compromise 

cost/weight/mechanical strength. Their increased use has 

underlined the need for understanding correctly their static 

and dynamic responses for the continual enhancement of 

their performance.  
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However, one important point must be noticed that the 

stiffness of laminate varies from point to another depending 

on the properties of its constituents and different fiber 

orientations, making their analysis more complicated than 

the analysis of homogeneous isotropic ones. For this reason, 

several theories have been developed in this field to study 

and investigate the laminated composite plates in many 

cases to exploit their strength in all industrial sectors.  

The equivalent single-layer (ESL) laminate theories are 

those in which a heterogeneous laminated plate is treated as 

a statically equivalent, single layer having an anisotropic 

constitutive behaviour, reducing the 3-D continuum 

problem to a 2-D problem (Carlos et al. 1999) by setting 

suitable assumptions about the kinematics of deformation or 

the stress state through the thickness of the laminate. The 

simplest model of these theories is the classical laminated 

plate theory (CLPT), which is an extension to Kirchhoff's 

(1850) isotropic plate theory. The most important 

assumption of this theory is that the normal to the mid-plane 

before deformation remains straight and normal at mid-

surface after deformation. However it is not valid for the 

analysis of thick plate due to neglect of the effects of 

transverse shear deformation and rotary inertia. The 

different applications of this theory are presented by Love 

(1944), Timoshenko and Krieger (1959), Timoshenko and 

Gere (1961), Szilard (1974), Ugural (1981) and many others. 

The next accurate theory in the hierarchy of ESL laminated 

plate theories is the first-order shear deformation theory 
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cross-ply laminated plates are obtained applying Navier’s solution technique, and the numerical case studies are compared with the 
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and useful than some higher-order shear deformation theories developed previously to study the static flexure of laminated 
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(FSDT) developed to overcome this serious limitation of 

CLPT by applying Reissner (1945) and Mindlin (1951) 

formulations to thick laminated plates. The FSDT extends 

the kinematics of the CLPT by considering a gross 

transverse shear deformation in its kinematical assumption, 

involves that the normal to the mid-plane remains straight 

but not normal at mid-surface after deformation due to the 

shear effect. According to this theory, the transverse shear 

strain is assumed to be constant in thickness direction, 

which requires the introduction of a shear correction factor 

in order to account for the difference between the constant 

shear stress and the parabolic variation of shear stress 

across the thickness. The Mindlin’s theory has been 

extended to laminated anisotropic plates by Yang, et al. 

(1966), Whitney (1969), Whitney and Pagano (1970), Wang 

(1997), Civalek (2008), Ferreira et al. (2009), Avcar (2015, 

2016 and 2019), Baltac (2018), Alimirzaei et al. (2019), 

Draoui et al. (2019) and several authors.  

Therefore, many higher-order shear deformation 

theories (HSDTs) have been developed over the last years 

to avoid the use of shear correction factors and are based on 

the hypothesis of nonlinear stress variation through 

thickness. For instance Reddy (1984) has developed a 

higher-order shear deformation theory by considering a 

parabolic variation of the transverse shear strains through 

thickness for the analysis of laminated composite plates 

under sinusoidal and uniform loads. The theory contains the 

same number of dependent variables as in the first-order 

shear deformation theory, but satisfies the zero tangential 

traction boundary conditions on the top and bottom surfaces 

of the plate without using the shear correction factor. An 

efficient standard plate theory with only five variational 

unknowns suitable for the bending, buckling and free 

vibration analysis of sandwich and symmetric cross-ply 

laminated composite plates with simply supported edges 

conditions, is investigated by Touratier (1991) based on the 

kinematical approach in which the shear is represented by a 

certain sinusoïdal function. Soldatos and Timarci (1993) 

proposed a transverse shear deformation theory rest on a 

unified formulation of laminated composite by introducing 

into the shell displacement approximation certain general 

functions of the transverse coordinate for the static and 

dynamic analysis of cross-ply laminated cylindrical shells. 

A similar method was used later by Aydogdu (2006) for the 

bending, free vibration and buckling analysis of simply 

supported symmetric cross-ply rectangular plates. Various 

shear deformation theories were compared in this study and 

the obtained results shows that the parabolic and the 

hyperbolic shear deformation theories yield more accurate 

predictions for the natural frequencies and the critical 

buckling loads. A global higher-order theory and several 

sets of the governing equations of truncated approximate 

theories have been applied by Matsunaga (2000) for the 

vibration and buckling analysis of a simply supported 

multilayered elastic plate subjected to in-plane stresses. 

Zenkour (2004) investigated the bending response of 

symmetric and antisymmetric cross-ply laminated plates 

subjected to sinusoidal non-uniform thermal or thermo-

mechanical loads by using a unified shear deformation plate 

theory. In fact, the analytical solutions for buckling and free 

vibration analysis of simply supported symmetric and 

antisymmetric cross-ply thick composite plates resting on 

elastic foundation and subjected to in-plane loads are 

presented by Akavci (2007) using a new hyperbolic 

displacement model and the Navier technique. Kim et al. 

(2009) developed a two variable refined plate theory for the 

static bending and buckling behaviours of antisymmetric 

cross-ply and angle-ply laminated composite plates, in 

which a parabolic distribution of the transverse shear strains 

is considered to satisfy the zero traction boundary 

conditions on the surfaces of the plate without using shear 

correction factors. Mantari et al. (2012) developed a finite 

element model based on the new trigonometric layerwise 

shear deformation theory for the flexure analysis of thick 

laminated composite and sandwich plates subjected to a 

transverse uniform load. Moreover, the discrete element 

selected is a four-nodded quadrilateral with seven degrees 

of freedom per node. Sayyad and Ghugal (2013) applied an 

equivalent single layer trigonometric shear deformation 

theory to investigate the effect of transverse shear 

deformation, transverse normal strain and local stress 

concentration on inplane normal and transverse shear 

stresses through the thickness of orthotropic and laminated 

plates. A refined hyperbolic shear deformation theory of 

plates has been developed by Nedri et al. (2014) to 

investigate the free vibration of simply supported laminated 

plates resting on elastic foundations. A major advantage of 

this theory is a considerably smaller number of unknown 

variables, as against five or more in other higher order shear 

deformation theories. A new trigonometric zigzag theory 

with a particularly secant function has been proposed by 

Sahoo and Singh (2014) to analyze the static structural 

behaviour of laminated composite and sandwich plates. 

This theory considers shear strain shape function assuming 

the non-linear distribution of in-plane displacement across 

the thickness. Mahi et al. (2015) proposed a new hyperbolic 

shear deformation theory with five degrees of freedom for 

bending and free vibration analysis of isotropic, 

functionally graded, sandwich and laminated composite 

plates. The in-plane displacements of this theory use a 

combination of hyperbolic tangent function and polynomial 

ones. In the same year, Kar et al. (2015) investigated the 

bending behaviour of laminated composite flat panel 

subjected to hygro-thermo-mechanical loading by using a 

higher-order shear deformation theory, in which the 

nonlinear geometric term is introduced into the Green-

Lagrange formulation. Sayyad et al. (2016) have proposed 

an exponential shear deformation theory (ESDT) to study 

the thermal stress response of cross-ply laminated 

composite plates under thermal load varying linearly across 

the thickness of plate.  

Recently, Behera and Kumari (2018) investigated the 

free vibration of Levy-type rectangular laminated plates 

using an efficient zig-zag theory. Belbachir et al. (2019) 

analyzed the bending behavior of anti-symmetric cross-ply 

laminated plates under nonlinear thermal and mechanical 

loadings. However, the results demonstrate that the 

proposed plate theory is able to produce more accurate 

results than the FSDT and other HSDTs with higher number 

of unknowns. More recently, many studies and  
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Fig. 1 Coordinate system and geometry of 

antisymmetric cross-ply laminated plate 

 

 

investigations related to the static and dynamic analysis of 

laminated composite plates and beams by using the higher-

order shear deformation theories (HSDTs) have been 

carried out and available in literature (Cetkovic and 

Vuksanovic 2011, Rezaiee-Pajand et al. 2012, Sherafat et al. 

2013, Ahmed 2014, Sahoo et al. 2016, Chikh et al. 2017, 

Bouazza et al. 2017, Vo et al. 2017, Sayyad and Ghugal 

2017, Sehoul et al. 2017, Zamani et al. 2017, Singh et al. 

2017, Zine et al. 2018, Katariya et al. 2018, Belkacem et al. 

2018, Hirwani et al. 2018ab, Salami and Dariushi 2018, 

Nor Hafizah et al. 2018, Avcar and Mohammed 2018, 

Joshan et al. 2018, Hirwani and Panda 2018, Katariya and 

Panda 2019abc, Abualnour et al. 2019, Addou et al. 2019, 

Berghouti et al. 2019, Bouanati et al. 2019, Boukhlif et al. 

2019, Boulefrakh et al. 2019, Mahmoud and Tounsi 2019, 

Bourada et al. 2019, Boutaleb et al. 2019, Chaabane et al. 

2019, Hirwani and Panda 2019, Mehar and Panda 2019, 

Hellal et al. 2019, Batou et al. 2019, Sahoo et al. 2019, 

Hadji et al. 2019, Sahla et al. 2019, Boussoula et al. 2020). 
The present paper is devoted to the development of an 

accurate numerical approach using a novel higher-order 
shear deformation plate theory with stretching effect based 
on a new kinematic model for static bending behaviour of 
cross-ply laminated composite plates subjected to two 
different types of loading, namely transverse parabolic load 
and line load. In general, the proposed theory contains only 
five-unknown variables and satisfies the zero traction 
boundary conditions on the top and bottom surfaces of the 
plate without the need for special treatment of shear 
correction factors. A Navier-type analytical method was 
used to solve the governing differential equations. To prove 
the efficiency of the present theory, the numerical results of 
displacements and stresses of simply supported cross-ply 
laminated composite plates are calculated and compared 
with the available published results. 

 

 

2. Theoretical formulation 
 

2.1. Plate under consideration 
 

In this analysis, a cross-ply laminated composite plate is 

assumed of uniform thickness h, length a, and width b as 

depicted in Fig. 1. It is composed of N number of 

orthotropic layers, which are perfectly bonded together. The 

plate occupies the region 0 ≤ x ≤ a, 0 ≤ y ≤ b, −h/2 ≤ z ≤ h/2 

in Cartesian coordinate system. Let the plate be subjected to 

a mechanical load q(x, y) acting strictly at the upper surface 

(z =−h/2). 

The present model is developed based on some 

assumptions and features of the proposed trigonometric 

shear deformation theory with stretching effect, the 

displacement components at any point on the plate can be 

expressed in a simpler form as 

0
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In which 
0 ( , ),u x y 0 ( , ),v x y 0 ( , ),w x y ( , )x y and

( , )z x y  signify the displacement functions of the middle 

surface of the plate. The constants 1k  and 2k  depends on 

the geometry. Also f(z) is the representative shape function 

that denotes the distribution of transverse shear stress or 

strain along the plate thickness. In this study, we take into 

consideration that 

 ( )
( ) sin ,     ( )

h z df z
f z g z

h dz





   
= =   
   

 (2) 

Based on the relationship from linear theory of elasticity, 

the infinitesimal normal and transverse shear strains 

associated with the displacement field in Eq. (1) are 

commonly expressed in the following form 
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The integrals adopted in the previous relations shall be 

resolved by a Navier solution and can be determined by 

2 2
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where 'A and B′ are determined according to the type of 

solution employed, in this case via Navier procedure. Thus, 

the coefficients 
1,',' kBA  and 
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2.2 Constitutive equations 
 
The constitutive equations relate the stress components 

to strain components. For the linear elastic range, these 

equations represent the generalized Hooke’s law. In the case 

of a three-dimensional orthotropic laminate it can be noted 

that the fiber orientations do not coincide with the global 

coordinates of the plate, the stress-strain relationships for 

each layer are given by 
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in which,  , , , ,x y xy yz xz     and  , , , ,x y xy yz xz     are 

the stresses and the strains vectors with respect to the 

laminate coordinate system (x, y, z). Whereas 𝑄𝑖𝑗
̅̅ ̅̅  are the 

transformed elastic constants of the kth orthotropic layer 

expressed as 
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where θk is the angle of material axes with the reference 

coordinate axes of each layer and Qij are the reduced 

stiffness coefficients that can be defined in the case of 

transverse normal strain is different to zero )0( z by the 

following expressions 
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where Ei, Gij and vij are the Young’s moduli, shear moduli 

and Poisson’s ratio, respectively. 
 

2.3. Governing equations 
 

The governing equations and associated boundary 

conditions of the present trigonometric shear deformation 

plate theory with stretching effect are derived using static 

version of principle of virtual work. The principle of virtual 

work is applied in the following analytical form 
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where δ is a variational operator, A and q(x,y) are the top 

surface of the plate and the transverse distributed load, 

respectively. By substituting the expressions for virtual 

strains given in Eq. (3) into Eq. (11), the principle of virtual 

work can be expressed in terms of the stress resultants as 
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where N, Mb, Ms and Ss are the stress resultants that 

generally vary from point to point in a loaded plate. These 

variations are governed by the static conditions of 

equilibrium. These stress resultants are defined by the 

following integrations over the thickness of the plate 
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Substituting Eq. (3) into constitutive equations given in 
Eq. (8) and subsequent results into Eqs. (13), the stress 
resultants of the proposed theory can be represented in 
terms of virtual strains according to the following 
constitutive equations 

0 0 1 1 2 2 0
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where ,...,, ijijij DBA etc. used in Eq. (14) are the plate 

stiffness coefficients can be defined as 

( )
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(15a) 

 

 
(15b) 

 

(15c) 

 

(15d) 

By substituting strains and stresses expressions from 

Eqs. (4) and (8) into Eq. (12) and integrating by parts and 

setting the coefficients of  ,,, 000 wvu and z to 

zero separately, the governing differential equations are 

obtained 
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(16) 

Next, by substituting Eqs. (4) and (14) into Eq. (16), the 

governing differential equations of the present theory can be 

rewritten in terms of displacement variables

),,,,( 000 z wvu  as follows 

( ) ( )

( ) ( )
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3. Illustrative examples  

 
In order to prove the efficiency of the present theory, a 

simply supported square laminated composite plate is 

considered for the detailed numerical study. The plate is 

subjected to two different types of mechanical loadings 

q(x,y) acting at the top surface (i.e., 2/hz −= ) of the plate. 

According to Navier solution technique, the transverse load 

is most commonly represented in double trigonometric 

series as 

1,3,5 1,3,5

( , ) sin(  )sin(  )mn

m n

q x y q x y 
 

= =

=    (18) 

In which the parameters α and β are already defined in 

Eq. (7) and qmn is the coefficient of Fourier expansion of 

load. The values of this coefficient for different loading 

cases are obtained by using the following equation 

0 0

4
( , )sin(  )sin(  )

a b

mnq q x y x y dxdy
ab

 =    (19) 

369



 

Soufiane Abbas, Soumia Benguediab, Kada Draiche, Ahmed Bakora and Mohamed Benguediab 

 
Fig. 2 Simply supported laminated plates subjected to 

transverse parabolic load 

 

 

Example 1: In this example a square laminated 

composite plate is simply supported on all edges and 

subjected to transverse parabolic load
2

0 )/(),( axqyxq = , 

as presented in Fig. 2. In this case the coefficient qmn from 

Eq. (19) can be rewritten in the form 

20 0

3 2

0 0

4 4
sin(  ) sin(  ) ,   

  , 1,3,5...

a b

mn

q q
q x x dx y dy I

a b mn

m n

 


= =

=

   (20a) 

Where 

( )2 2 2 2

2 2 2
sin cos cos 1 cosI m m m m

m m m
   

  

 
= + − − − 
 

 (20b) 

Example 2: In this example a square laminated 

composite plate is simply supported on all edges and 

subjected to transverse line load at the centre (x = a/2), as 

given in Fig. 3. In this case the magnitude of the coefficient 

qmn is expressed as shown below 

02
sinmn

q m
q

b a

 
=  

 
 (21) 

where ξ and q0 are the distance of line load from y-axis and 

the intensity of transverse load, respectively.  

According to the present model, the bending stress 

analysis of a simply supported cross-ply laminated 

composite plate is achieved by utilizing Navier solution 

technique. The following simply supported boundary 

conditions are assumed at the side edges of the laminated 

composite plate. 

at edges :),0( a  x =
 

 0 0 0b s

x x xv w N M M = = = = = =  
(22a) 

at edges :),0( b  y =
 

 0 0 0b s

y y yu w N M M = = = = = =  
(22b) 

 
Fig. 3 Simply supported laminated plates subjected to 

transverse line load 
 

 

The solution of the unknown displacement variables 

satisfying the boundary conditions given by Eq. (22), and 

can be expressed in the double-Fourier sine series as 

0

0

0

1 1

cos(  )sin(  )

sin(  ) cos(  ) 

sin(  )sin(  )
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   

      

  (23) 

where mnmnmnmn  W V U ,,,  and mn  are unknown 

coefficients. Substituting Eqs. (20) or (21) (depending on 

the load case) and (23) into the governing Eq. (17) yields an 

algebraic equations which can be written in compact matrix 

form as follows 

    FK =  (24) 

where   F,  and [K] are the vector of unknowns, the 

force vector and the stiffness matrix, respectively. These 

terms can be defined as follows  

   

   Tr

mn

Tr

mnmnmnmnmn

 q  F         

 W V U

0,0,,0,0

,,,,

=

=
 

(25a) 

(25b) 

And the components of the symmetric stiffness matrix 

[K] are given as follows 
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4. Numerical results and discussions 
 

In this section, some illustrative examples are 

investigated for verification the accuracy and validity of the 

present formulations based on the proposed trigonometric 

shear deformation plate theory with stretching effect for the 

bending stress analysis of simply supported cross-ply 

laminated plates subjected to transverse parabolic load and 

line load. The transverse displacement uses a cosine 

function in thickness coordinate to introduce the influence 

of transverse normal strain. The results obtained for 

different values of side-to-thickness ratio a/h of composite 

plate are listed and compared in Tables 1–8 with their 

counterparts based on the classical plate theory (CPT) of 

Kirchhoff (1850), FSDT of Mindlin (1951), HSDT of 

Reddy (1984) and quasi-3D trigonometric shear 

deformation plate theory (TSDT) developed by Ghugal and 

Sayyad (2013), which included both transverse shear and 

normal deformations. For the simplicity, the results 

obtained for displacements, stresses are presented in the 

following non-dimensional forms 

2 3
2 2

3 4
0 0

2 2

2 2
0 0

2

2
00

0
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0, , ,    , ,0 ,    

2 2 2 2
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0,0, ,  0, ,0 ,   
2 2

,0,0
2

x yx y

xy xzxy xz

yz yz

h E h Eb h a b
u u w w

q a q a

a b h h a b h h

q a q a

h h b h

q aq a

a h

q a

   
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 

   
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   

   
− = − =   

   

   
− = =   

   

 
= 

 

 (27) 

The following properties of graphite-epoxy for 

laminated composite plates in the above examples are used. 

1 2 3 2 12 2 13 2

23 2 12 13 23

/ 25,   / 1,   / / 0.5,   

/ 0.2, 0.25

E E E E G E G E

G E   

= = = =

= = = =
 (28) 

Example 1: The first example is carried out for simply 

supported two-layered antisymmetric (0°/90°) square 

laminated composite plate subjected to the transverse 

parabolic load. Both layers are the same thickness and the 

material properties given previously. Table 1 shows the in-

plane and transverse displacements 𝑢̅, w̅ and stresses 

(𝜎𝑥, 𝜎𝑦 , 𝜏𝑥̅𝑦) for various values of side-to-thickness ratio a/h. 

The obtained results are compared with those predicted by 

CPT, FSDT, HSDT and quasi-3D TSDT. From the 

examination of Table 1, it can be observed that the 

numerical results of transverse displacements obtained by 

using the present quasi-3D shear deformation plate theory 

are exactly matching with the results of quasi-3D TSDT 

solution given by Ghugal and Sayyad (2013), but a 

marginal difference is observed as compared to Reddy’s 

theory due to the neglect of the thickness stretching effect 

(z=0); Moreover, it should be noted that the results for the 

non-dimensional in-plane normal stresses  𝜎𝑥, 𝜎𝑦 and in-

plane shear stress 𝜏𝑥̅𝑦 decrease with increasing value of 

side-to-thickness ratio a/h, as well as the CPT and FSDT 

underestimate these stresses compared to those obtained by 

the present theory, quasi-3D TSDT and HSDT of Reddy for 

all ratios. It is also observed that, for thin square laminated 

plate (a/h = 100) all theories predict the same results for the 

in-plane and transverse displacements and in-plane normal 

stress; this is due to neglect of transverse shear and normal 

deformations.  

The variations of in-plane normal and transverse shear 

stresses 𝜎𝑥, 𝜏𝑥̅𝑧
𝐶𝑅  (computed using constitutive equations) 

through the thickness of (0°/90°) square laminated plate 

subjected to parabolic load for thickness ratio 4 are plotted 

in Figs. 4 and 5, respectively.It can be seen that the 

variation of in-plane normal and transverse shear stresses 

obtained by present theory for thick laminated square plate 

subjected to parabolic load is in good agreement with quasi-

3D TSDT of Ghugal and Sayyad (2013).The comparison of 

the non-dimensional transverse shear stressesfor simply 

supported square laminated plate subjected to parabolic 

load is reported in Table 2 for three values of the thickness 

ratio (a/h = 4, 10, 100). It is pointed out that the numerical 

results obtained by using the present theory are much closer 

to the quasi-3D TSDT and HSDT solutions. Moreover, the 

transverse shear stress predicted by constitutive relations 
CR

yz

CR

xz  , of shear deformation theories is less than obtained 

using equations of equilibrium of the theory of elasticity
EE

yz

EE

xz  ,  (computed using equilibrium equations).  

Example 2: In the second example, a simply supported 

two-layered antisymmetric cross-ply square laminated 

composite plate subjected to the line load is considered. 

Tables 3 and 4 show the comparison of in-plane and 

transverse displacements and stresses for various thickness 

ratio a/h. From the examination of Table 3, it is remarked 

that the present theory is in excellent agreement while 

predicting the in-plane displacements 𝑢̅ and in-plane 

normal stress 𝜎𝑥 as compared to those presented by Reddy 

(1984) and Ghugal and Sayyad (2013), whereas CPT and 

FSDT underestimate the same, especially for the cases of 

simply supported thick and moderately thick square 

laminated plates. However, the variation of in-plane normal 

stress 𝜎𝑥  and transverse shear stress 𝜏𝑦̅𝑧
𝐶𝑅  through the 

thickness, obtained using constitutive relations of two-layer 
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Table 1 Comparison of inplane displacement 𝑢̅, transverse displacement 𝑤̅, in-plane normal stresses ̅𝑥 , ̅𝑦 and in-

plane shear stress 𝜏𝑥̅𝑦  for simply supported two-layered (0°/90°) square laminated plate subjected to parabolic load 

a/h
 

Theory Model 
u  w  

x  y  
xy  

)2( h−  )0(  )2( h−
 

)2( h−
 

)2( h−
 

4 Present TSDT 0.0059 0.8799 0.3475 0.0410 0.0340 

 Ref (a) TSDT 0.0059 0.8790 0.3454 0.0406 0.0354 

 Reddy (1984)  HSDT 0.0059 0.8991 0.3491 0.0385 0.0328 

 Mindlin (1951) FSDT 0.0044 0.8794 0.3043 0.0370 0.0313 

 Kirchhoff (1850)   CPT 0.0044 0.5018 0.3071 0.0376 0.0288 

10 Present TSDT 0.0047 0.5630 0.3143 0.0387 0.0300 

 Ref (a) TSDT 0.0047 0.5627 0.3134 0.0385 0.0306 

 Reddy (1984)  HSDT 0.0047 0.5656 0.3131 0.0376 0.0304 

 Mindlin (1951) FSDT 0.0044 0.5620 0.3061 0.0373 0.0299 

 Kirchhoff (1850)   CPT 0.0044 0.5018 0.3071 0.0376 0.0288 

100 Present TSDT 0.0044 0.5021 0.3081 0.0383 0.0288 

 Ref (a) TSDT 0.0044 0.5021 0.3081 0.0383 0.0288 

 Reddy (1984)  HSDT 0.0044 0.5024 0.3072 0.0376 0.0298 

 Mindlin (1951) FSDT 0.0044 0.5023 0.3071 0.0376 0.0288 

 Kirchhoff (1850)   CPT 0.0044 0.5018 0.3071 0.0376 0.0288 

(a) Results taken from reference Ghugal and Sayyad (2013)  

Table 2 Comparison of transverse shear stresses 
yzxz  ,  for simply supported two-layered (0°/90°) square laminated 

plate subjected to parabolic load 

a/h
 

Theory Model 

CR
xz

 

EE
xz  

CR
yz

 

EE
yz

 

)0(
 

)0(
 

)0(
 

)0(
 

4 Present TSDT 0.1931 0.3491 0.1677 0.2505 

 Ref (a) TSDT 0.1956 0.3466 0.1707 0.2444 

 Reddy (1984) HSDT 0.2008 0.3292 0.1721 0.2402 

 Mindlin (1951) FSDT 0.1656 0.2540 0.1347 0.2540 

 Kirchhoff (1850) CPT — 0.2594 — 0.2115 

10 Present TSDT 0.2207 0.2716 0.1827 0.2154 

 Ref (a) TSDT 0.2269 0.2703 0.1903 0.2141 

 Reddy (1984) HSDT 0.2253 0.2681 0.1878 0.2138 

 Mindlin (1951) FSDT 0.1681 0.2578 0.1378 0.2578 

 Kirchhoff (1850) CPT — 0.2594 — 0.2115 

100 Present TSDT 0.2398 0.2590 0.1925 0.2113 

 Ref (a) TSDT 0.2421 0.2589 0.1993 0.2113 

 Reddy (1984) HSDT 0.2368 0.2593 0.1948 0.2114 

 Mindlin (1951) FSDT 0.1691 0.2594 0.1390 0.2594 

 Kirchhoff (1850) CPT — 0.2594 — 0.2115 

(a) Results taken from reference Ghugal and Sayyad (2013)  
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Fig. 4 Variation of in-plane normal stress 𝜎𝑥 through the 

thickness of (0°/90°) square laminated plate subjected to 

parabolic load for thickness ratio 4 at (x = a/2, y = b/2, z) 
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Fig. 5 Variation of transverse shear stress 𝜏𝑥̅𝑧

𝐶𝑅 through the 

thickness of (0°/90°) square laminated plate subjected to 

parabolic load for thickness ratio 4 at (x = 0, y = b/2, z) 
 

 

cross-ply square laminated plate subjected to line load for 

thickness ratio 4 are shown in Figs. 6 and 7, respectively. It 

is evident from the obtained results that the present 

computations are in an excellent agreement with the quasi-

3D solutions provided by Ghugal and Sayyad (2013). 

Therefore, the results of Reddy deviate considerably, 

compared to the models of both quasi-3D theories due to 

neglect of transverse normal deformation (see Fig. 7). In 

fact, the present theory predicts excellent values of 

transverse shear stress as the obtained equilibrium equations 

are used. 

Example 3: This example is extended from previous 

one, the analytical method of the present theory is checked 

for the bending stress analysis of simply supported three-

layered symmetric (0°/90°/0°) square laminated composite 

plate subjected to the transverse parabolic load. Numerical 

values of non-dimensional displacements and stresses are 

presented in Tables 5 and 6 for various values of thickness 

ratio a/h. It is clear that the in-plane displacement u and 

in-plane normal stress 𝜎𝑥 obtained by present theory again 

agree well with previous solutions (Reddy 1984, Ghugal 

and Sayyad 2013) for all thickness ratios. However, it can 

be noticed that the present theory underestimates the values 

of transverse displacement 𝑤̅, in-plane normal stress 𝜎𝑦 

and in-plane shear stress 𝜏𝑥̅𝑦  for thick and moderately 
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Fig. 6 Variation of in-plane normal stress 𝜎𝑥 through the 

thickness of (0°/90°) square laminated plate subjected to 

line load for thickness ratio 4 at (x = a/2, y = b/2, z) 
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Fig. 7 Variation of transverse shear stress 𝜏𝑦̅𝑧
𝐶𝑅 through the 

thickness of (0°/90°) square laminated plate subjected to 

line load for thickness ratio 4 at (x = a/2, y = 0, z) 
 

 

thick cross-ply (0°/90°/0°) square laminated plates 

compared to other shear deformation theories but it is in 

good agreement for the same lamination scheme of thin 

plates. This is explained by the kinematic model used in the 

present theory with only five unknowns. Besides, it can be 

found that this model is not suitable for the bending analysis 

of symmetric laminated composite plates and yield a 

significant difference in the numerical results compared to 

those of other higher-order theories, in which the 

displacement field involve more than five unknowns. On 

the other hand, it may be noted that the CPT shows more 

error in the results due to the neglect of transverse shear and 

normal deformations.  

Table 6 shows that the values transverse shear stresses 

𝜏𝑥̅𝑦, increase with the increase of the thickness ratio as the 

derived constitutive relations and equations of equilibrium 

are used. 

Example 4: The last example is devoted to the analysis 

of three-layer symmetric (0°/90°/0°) square laminated 

composite plate with simply supported boundary conditions 

and subjected to the line load. Tables 7 and 8 display the 

comparison of displacements and stresses for various 

thickness ratio a/h. It can be observed that the non-

dimensional inplane displacement 𝑢̅ and in-plane normal 

stress 𝜎𝑥 obtained by present theory and quasi-3D TSDT 

developed by Ghugal and Sayyad (2013) and HSDT given 

by Reddy are in good agreement with each other for all 
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Table 3 Comparison of inplane displacement u , transverse displacement w , in-plane normal stresses 𝜎𝑥 , 𝜎𝑦and in-plane 

shear stress xy for simply supported two-layered (0°/90°) square laminated plate subjected to line load 

a/h
 

Theory Model 
u  w  

x  y  
xy  

)2( h−  )0(  )2( h−
 

)2( h−
 

)2( h−
 

4 Present TSDT 0.0191 3.8587 3.7158 0.1937 0.1063 

 Ref (a) TSDT 0.0187 3.8590 3.6899 0.1975 0.1062 

 Reddy (1984)  HSDT 0.0190 4.0287 3.5476 0.1655 0.1123 

 Mindlin (1951) FSDT 0.0157 4.1089 1.7611 0.1451 0.1005 

 Kirchhoff (1850)   CPT 0.0164 2.1186 1.8153 0.1402 0.0984 

10 Present TSDT 0.0168 2.4219 2.4489 0.1631 0.1015 

 Ref (a) TSDT 0.0167 2.4221 2.4453 0.1636 0.1024 

 Reddy (1984)  HSDT 0.0167 2.4430 2.3719 0.1487 0.0968 

 Mindlin (1951) FSDT 0.0162 2.4372 1.8077 0.1408 0.1002 

 Kirchhoff (1850)   CPT 0.0164 2.1186 1.8153 0.1402 0.0984 

100 Present TSDT 0.0164 2.1204 1.8253 0.1427 0.0982 

 Ref (a) TSDT 0.0164 2.1204 1.8262 0.1427 0.0983 

 Reddy (1984)  HSDT 0.0164 2.1219 1.8255 0.1403 0.0930 

 Mindlin (1951) FSDT 0.0164 2.1218 1.8168 0.1401 0.0985 

 Kirchhoff (1850)   CPT 0.0164 2.1186 1.8153 0.1402 0.0984 

(a) Results taken from reference Ghugal and Sayyad (2013)  

Table 4 Comparison of transverse shear stresses 
yzxz  ,  for simply supported two-layered (0°/90°) square laminated plate 

subjected to line load 

a/h
 

Theory Model 

CR
xz

 

EE
xz  

CR
yz

 

EE
yz

 

)0(
 

)0(
 

)0(
 

)0(
 

4 Present TSDT 0.4085 0.4647 1.9714 31.4078 

 Ref (a) TSDT 0.4207 0.4514 1.9572 31.5259 

 Reddy (1984)  HSDT 0.4113 0.4502 3.2237 29.5337 

 Mindlin (1951) FSDT 0.2953 0.4343 6.6067 9.8324 

 Kirchhoff (1850)   CPT — 0.4535 — 9.5442 

10 Present TSDT 0.3994 0.4645 4.8608 21.9233 

 Ref (a) TSDT 0.4303 0.4572 4.7606 21.9704 

 Reddy (1984)  HSDT 0.4246 0.4531 6.0254 18.7668 

 Mindlin (1951) FSDT 0.3076 0.4452 6.5471 9.7839 

 Kirchhoff (1850)   CPT — 0.4535 — 9.5442 

100 Present TSDT 0.4143 0.4547 8.6607 9.5217 

 Ref (a) TSDT 0.4576 0.4528 8.9480 9.5414 

 Reddy (1984)  HSDT 0.4468 0.4534 8.7615 9.5805 

 Mindlin (1951) FSDT 0.3163 0.4534 6.2980 9.5734 

 Kirchhoff (1850)   CPT — 0.4535 — 9.5442 

(a) Results taken from reference Ghugal and Sayyad (2013)  
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thickness ratios. It must be noted again that the present 

method underestimates the values of transverse maximum 

displacement 𝑤̅, in-plane normal stress 𝜎𝑦  and in-plane 

shear stress 𝜏𝑥̅𝑦 compared to other shear deformation 

theories. Comparison of transverse shear stresses for the 

(0°/90°/0°) square laminated plate subjected to line load is 

shown in Table 8. The examination of results reveals that 

the present theory overestimates the value of maximum 

transverse shear stress 𝜏𝑥̅𝑧
𝐶𝑅  as the obtained constitutive 

relations are used in comparison with previously published 

results. 

 
 
5. Conclusions 
 

In this paper, the analysis of the bending stress analysis 

of simply supported cross-ply laminated plates subjected to 

transverse parabolic load and line load is presented using a 

novel higher-order shear deformation plate theory 

considering the stretching effect, in which the axial 

displacements involve an undetermined integral component. 

The present theory satisfies the zero shear stress boundary 

conditions on the top and bottom surfaces of the plate 

without using any shear correction factors. A Navier-type 

analytical method was used to solve the governing 

differential equations. Several examples of simply 

supported antisymmetric and symmetric cross-ply 

laminated composite plates for different values of thickness 

ratio have been presented to validate the proposed theory, 

and it is found that the proposed theory with five unknowns 

is more accurate for thick and moderately thick 

 

 

antisymmetric cross-ply laminated composite plates and is 

characterized by less computational cost as compared to 

other shear deformation theories with six or more 

unknowns. Finally, it is interesting to consider other types 

of materials in future to improve this study (Daouadji 2017, 

Ayat et al. 2018, Chemi et al. 2018, Belmahi et al. 2018, 

Hussain et al. 2019ab, Karami et al. 2019a,b,c,d,e, Khiloun 

et al. 2019, Mahmoudi et al. 2019, Medani et al. 2019, 

Meksi et al. 2019, Salah et al. 2019, Sahouane et al. 2019, 

Semmah et al. 2019, Zarga et al. 2019, Zaoui et al. 2019, 

Balubaid et al. 2019, Tounsi et al. 2020). 
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Table 6 Comparison of transverse shear stresses 
yzxz  ,  for simply supported three-layered (0°/90°/0°) square laminated 

plate subjected to parabolic load 

a/h
 

Theory Model 

CR
xz

 

EE
xz  

CR
yz

 

EE
yz

 

)0(
    

4 Present TSDT 0.0780 0.1391 0.1897 0.0254 

 Ref (a) TSDT 0.1125 0.1007 0.1234 0.0900 

 Reddy (1984)  HSDT 0.1124 0.1122 0.1245 0.1153 
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(a) Results taken from reference Ghugal and Sayyad (2013)  

Table 7 Comparison of inplane displacement , transverse displacement , in-plane normal stresses 𝜎𝑥 , 𝜎𝑦 and in-plane 

shear stress for simply supported three-layered (0°/90°/0°) square laminated plate subjected to line load 

a/h
 

Theory Model 
  x  y  

xy  

)2( h−  )0(  )2( h−
 

)2( h−
 

)2( h−
 

4 Present TSDT 0.0148 2.7021 2.6878 0.0919 0.0763 
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