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1. Introduction 
 

Welded stiffened plates and shells are widely used in 

various structures, e.g. bridges, ships, bunkers, tank roofs, 

vehicles, etc. They are subject to multiple loadings: 

compression, shear, bending or combined load (Bourada 

2019). The shape of the plates can be square, rectangular, 

circular, trapezoidal, etc. Plates and shells can be stiffened 

in one or two directions with stiffeners of many different 

shapes. 

Various types of loadings and stiffener shapes have been 

investigated Tran et al. (2014), Virág & Jármai (2003). 

They have investigated mostly the flat, the L-shape, the 

trapezoidal stiffeners. The optimization of stiffened plates 

and shells shows the necessity of mass and cost reductions 

(Jármai et al. 2006, Simoes et al. 2015, Jin et al. 2014, Yoo 

et al. 2014, Mittelstedt C. 2008) considered, but the free 

vibration can also have an impact on the structural 

behaviour (Nguyen-Thoi 2013). Stability issues can play 

also a considerable effect on the sizes of the structures: 

local, overall and torsional (Kim el al. 2018). Stiffeners can 

have a good effect on local buckling. Kim et al. dealt with 

web plate buckling with stiffeners (Kim et al. 2019). Using 

different materials is investigated by Fernandes and Neto 

(2015). In some cases, the shear deformation can play an 

important role (Klouche et al. 2017). The combination of 

steel and fiber reinforced composite is also a way to reduce 

the mass of the structure (Kovács and Farkas 2017, Remil et 

al. 2019) The static loads are uniaxial compression and 
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lateral pressure, and the dynamic load is for fatigue. The 

structural optimization of different stiffened plates and 

shells has been worked out by Farkas and Jármai (1997, 

2003), and applied to uniaxially compressed plates and 

shells with stiffeners of various shapes Farkas and Jármai 

(2000) and biaxially compressed plates Farkas et al. (2005). 

Cost calculation, using different optimization techniques is 

an important topic to make the structure more competitive 

(Hadidi and Rafiee 2014), (Žula et al. 2016), (Kaveh et al. 

2015). In these cases, mainly steel frame structures have 

been optimized. The cost calculations were different from 

the presented, because only those manufacturing costs have 

been considered in this paper, which have a direct effect on 

the sizes of the structure. Life cycle cost goes even further 

considering other essential cost elements (Kaveh et al. 

2014). The application of robots and design their workplace 

is another important issue (Hazim and Jármai 2019). 

The deflections due to lateral pressure, compression 

stress and the shrinkage of longitudinal welds are taken into 

account in the stress calculation and constraint. 

Furthermore, the local buckling constraint of the base plate 

strips is also formulated. 

The cost function as the objective function includes two 

kinds of steel and three kinds of welding technologies. The 

design variables are the thickness of the base plate and the 

dimensions and the number of stiffeners. 

The unique approach of this paper is that it considers 

both static and dynamic loadings with different load cycles, 

using different shape of stiffeners, different steel grades and 

employing optimization to determine the minimum mass 

and minimum cost structures. 
 

 

2. Geometric characteristics and loadings 
 

The geometric characteristics and loadings of stiffened 
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Fig. 1 Stiffened plate loaded by uniaxial compression 

 

 
Fig. 2 Stiffened plate loaded by uniaxial compression and 

lateral pressure 

 

 

 

Fig. 3 Dimensions of the flat rib, L rib and trapezoidal ribs 
 
 

plates are shown in Figs. 1 and 2. The figures show the 

direction of the N compression force and p0 lateral pressure 

with the geometry of the stiffened plate: B base plate width, 

L base plate length, b the distance between stiffeners 

(effective slab width) and  = n + 1 (n is the number of 

stiffeners). The stiffened plates are simply supported on all 

four edges. 

Geometrical parameters of stiffened plates with flat ribs, 

L-shaped ribs and trapezoidal ribs can be seen in Fig. 3. The 

figures show G centre of mass of the stiffener and the 

effective slab width, yG the distance between G and the 

centre line of the base plate and the geometry of stiffeners: 

ts thickness of the stiffener, hs height of the stiffener and 

special stiffener dimensions (b1, b2, a1, a2, a3) and tf 

thickness of the base plate. 

The calculations of different geometrical parameters of 

the flat stiffener are: 

stiffener cross-section 

𝐴𝑠 = ℎℎ𝑠𝑡𝑠 (1) 

stiffener height 

ℎℎ𝑠 = 14𝑡𝑠𝜀 (2) 

𝜀 = √235/𝑓𝑦 (3) 

where fy is the yield stress 

𝑦𝐺 =
ℎℎ𝑠 + 𝑡𝑓

2

𝛿𝑠

1 + 𝛿𝑠

 (4) 

where 

𝛿𝑠 =
𝐴𝑠

𝑏𝑡𝑓

 (5) 

section moment of inertia 

𝐼𝑥 =
𝑏𝑡𝑓

3

12
+ 𝑏𝑡𝑓𝑦𝐺

2 +
ℎℎ𝑠

3𝑡𝑠

12
+ ℎℎ𝑠𝑡𝑠 (

ℎℎ𝑠

2
− 𝑦𝐺)

2

 (6) 

stiffener moment of inertia 

𝐼𝑆 = ℎℎ𝑠
3

𝑡𝑠

3
 (7) 

torsional moment of inertia 

𝐼𝑡 =
ℎℎ𝑠𝑡𝑠

3

3
 (8) 

warping constant 

𝐼𝜔 = 0 (9) 

The calculations of different geometrical parameters of the 

L-stiffener are: 

stiffener cross section 

𝐴𝑠 = (𝑏1 + 𝑏2)𝑡𝑠 (10) 

L-stiffener dimensions 

𝑏1 = 30𝑡𝑠𝜀 (11) 

𝑏2 = 12.5𝑡𝑠𝜀 (12) 

𝑦𝐺 =
𝑏1𝑡𝑠

𝑏1 + 𝑡𝑓

2
+ 𝑏2𝑡𝑠 (𝑏1 +

𝑡𝑓

2
)

𝑏𝑡𝑓 + 𝐴𝑠

 
(13) 

section moment of inertia 

𝐼𝑥 =
𝑏𝑡𝑓

3

12
+ 𝑏𝑡𝑓𝑦𝐺

2 +
𝑏1

3𝑡𝑠

12
+ 

+𝑏1𝑡𝑠 (
𝑏1

2
− 𝑦𝐺)

2

+ 𝑏2𝑡𝑠(𝑏1 − 𝑦𝐺)2 

(14) 

stiffener moment of inertia 

𝐼𝑆 =
𝑏1

3𝑡𝑠

3
+ 𝑏1

2𝑏2𝑡𝑠 (15) 

torsional moment of inertia 

𝐼𝑡 =
𝑏1𝑡𝑠

3

3
+

𝑏2𝑡𝑠
3

3
 (16) 

warping constant 
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𝐼𝜔 =
𝑏1

2𝑏2
3𝑡𝑠

3
 (17) 

The calculations of different geometrical parameters of 

the trapezoidal stiffener are: 

stiffener cross-section 

𝐴𝑆 = (𝑎1 + 2𝑎2)𝑡𝑠 (18) 

where (see Fig. 3) 

𝑎2 = √(
𝑎3 − 𝑎1

2
)

2

+ ℎℎ𝑠
2 (19) 

There are minimum values for a1 = 90 and a3 = 300 mm, 

thus stiffener height 

ℎℎ𝑆 = (𝑎2
2 − 1052)1/2 (20) 

sin2 ∝ = 1 − (
105

𝑎2

)
2

 (21) 

𝑦𝐺 =
𝑎1𝑡𝑆(ℎℎ𝑆 + 𝑡𝑓/2) + 2𝑎2𝑡𝑆(ℎℎ𝑆 + 𝑡𝑓)/2

𝑏𝑡𝑓 + 𝐴𝑆

 (22) 

section moment of inertia 

𝐼𝑥 =
𝑏𝑡𝑓

3

12
+ 𝑏𝑡𝑓𝑦𝐺

2 + 𝑎1𝑡𝑠 (ℎ𝑠 +
𝑡𝑓

2
− 𝑦𝐺)

2

+ 

+
1

6
𝑎2

3𝑡𝑠𝑠𝑖𝑛2α + 2𝑎2𝑡𝑠 (
ℎ𝑠 + 𝑡𝑓

2
− 𝑦𝐺 )

2

 

(23) 

stiffener moment of inertia 

𝐼𝑆 = 𝑎1ℎℎ𝑆
3𝑡𝑆 +

2

3
𝑎2

3𝑡𝑆 𝑠𝑖𝑛2 𝛼 (24) 

torsional moment of inertia 

𝐼𝑡 =
4𝐴𝑃

2

∑ 𝑏𝑖/𝑡𝑖

 (25) 

where 

𝐴𝑃 = ℎℎ𝑆

𝑎1 + 𝑎3

2
= 195ℎℎ𝑆 (26) 

∑
𝑏𝑖

𝑡𝑖

=
𝑎1 + 2𝑎2

𝑡𝑆

+
𝑎3

𝑡𝑓

 (27) 

b is the distance between stiffeners,  = n + 1 (n is the 

number of stiffeners). 

 

 

3. Design constraints in case of uniaxial 
compression 

 

3.1 Global buckling calculation of stiffened plates 
 

According to the method of Mikami and Niwa (1996), 

the effect of residual welding and initial imperfections 

stresses is considered by defining the buckling curves for a 

reduced slenderness (Fig. 4). 

 
Fig. 4 Global buckling curve considering initial 

imperfections (𝑎0 ≠ 0)  and residual welding stresses 

(𝜎𝑅 ≠ 0) 

 

 

𝜆 = (𝑓𝑦 𝜎𝑐𝑟⁄ )
1/2

 (28) 

where fy is the yield stress. The classical critical buckling 

stress for a uniaxially compressed longitudinally stiffened 

plate is 

𝜎𝑐𝑟 =
𝜋2𝐷

ℎ𝐵2 (
1+𝛾𝑆

𝛼𝑅
2 + 2 + 𝛼𝑅

2) for 𝛼𝑅 = 𝐿/𝐵 < 𝛼𝑅0 =

(1 + 𝛾𝑆)1/4 

𝜎𝑐𝑟 =
2𝜋2𝐷

ℎℎ𝐵2 [1 + (1 + 𝛾𝑆)1/2] for 𝛼𝑅  ≥  𝛼𝑅0 

(29) 

where 

𝛾𝑠 =
𝐸𝐼𝑆

𝑏𝐷
 (30) 

𝐷 =
𝐸𝑡𝑓

3

10.92
 (31) 

where E is the Young modulus, 

     B is the base plate width.  

If the reduced slenderness is known, the actual global 

buckling stress ( 𝜎𝑈 ) can be calculated according to 

Mikami’s method as follows 

𝜎𝑈

𝑓𝑦
= 1 for 𝜆 ≤ 0.3 

𝜎𝑈

𝑓𝑦
= 1 − 0.63(𝜆 − 0.3) for 0.3 ≤ 𝜆 ≤ 1 

𝜎𝑈

𝑓𝑦
=

1

(0.8+𝜆2)
 for 𝜆 > 1 

(32) 

The global buckling constraint is calculated as 

𝑁

𝐴
≤ 𝜎𝑈

𝜌𝑃 + 𝛿𝑆

1 + 𝛿𝑆

 (33) 

where 

𝐴 = 𝐵𝑡𝑓 + (𝜙 − 1)𝐴𝑆 (34) 

𝛿𝑆 =
𝐴𝑆

𝑏𝑡𝑓

 (35) 

and 𝜌𝑃 factor depends on the stresses, and it is as follows 
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Fig. 5 Global buckling curve according to Mikami and API 

 

 

𝜌𝑃 = 1 if 𝜎𝑈𝑃 > 𝜎𝑈  

𝜌𝑃 = 𝜎𝑈𝑃/𝑓𝑓 if 𝜎𝑈𝑃 < 𝜎𝑈 
(36) 

where 𝜎𝑈𝑃 is according to Eq. (41).  

According to API (1987)  

𝜎𝑈

𝑓𝑦
= 1 if 𝜆 ≤ 0.5 

𝜎𝑈

𝑓𝑦
= 1.5 − 𝜆 if 0.5 ≤ 𝜆 ≤ 1 

𝜎𝑈

𝑓𝑦
=

0.5

𝜆
 if 𝜆 > 1 

(37) 

The global buckling constraint 

𝑁

𝐴
≤ 𝜎𝑈 (38) 

The differences in global buckling calculations between 

Mikami and API are visible in Fig. 5. 

 

3.2 Single panel buckling calculation 

 

This constraint eliminates local buckling of the base 

plate between the ribs. From the classical buckling formula, 

the critical stress (𝜎𝑐𝑟𝑃) is calculated for simply supported 

ends and compressed in one direction 

𝜎𝑐𝑟𝑃 =
4𝜋2𝐸

10.92
(

𝑡𝐹

𝑏
)

2

 (39) 

The reduced slenderness is 

𝜆𝑃 = (
4𝜋2𝐸

10.92𝑓𝑦
)

1/2
𝑏

𝑡𝐹
=

𝑏/𝑡𝐹

56.8𝜀
 ; 𝜀 = (

235

𝑓𝑦
)

1/2

 (40) 

and the actual local buckling stress considering residual 

welding stresses and initial imperfections is 

𝜎𝑈𝑃

𝑓𝑦
= 1 for 𝜆𝑃 ≤ 0.526 

𝜎𝑈𝑃

𝑓𝑦
= (

0.526

𝜆𝑃
)

0.7

 for 𝜆𝑃 > 0.526 

(41) 

The single panel buckling constraint is 

𝑁

𝐴
≤ 𝜎𝑈𝑃  (42) 

 

3.3 Local and torsional buckling calculation of 
stiffeners 

 

For open section stiffeners, the torsional buckling 

constraint is 

𝑁

𝐴
≤ 𝜎𝑈𝑇 (43) 

where 𝜎𝑈𝑇is according to Eq. (46). 

The classical torsional buckling stress is 

𝜎𝑐𝑟𝑇 =
𝐺𝐼𝑡

𝐼𝑆

+
𝐸𝐼𝜔

𝐿2𝐼𝑆

 (44) 

where G = E/2.6 is the shear modulus, IS is the polar 

moment of inertia, It is a torsional moment of inertia (Eqs. 

8,16,25) and 𝐼𝜔 is warping constant (Eqs. 9,17). The actual 

torsional buckling stress is calculated in the function of 

reduced slenderness 

𝜆𝑇 = (𝑓𝑦/𝜎𝑐𝑟𝑇)
1/2

 (45) 

𝜎𝑈𝑇

𝑓𝑦
= 1 for 𝜆𝑇 ≤ 0.45 

𝜎𝑈𝑇

𝑓𝑦
= 1 − 0.53(𝜆𝑇 − 0.45) for 0.45 ≤ 𝜆𝑇 ≤ 1.41 

𝜎𝑈𝑇

𝑓𝑦
=

1

𝜆𝑇
2  for 𝜆𝑇 ≥ 1.41 

(46) 

 
 
4. Design constraints for uniaxial compression and 
lateral pressure 

 
4.1 Calculation of the deflection due to compression 

and lateral pressure 
 

Paik et al. (2001) used differential equations of large 

deflection orthotropic plate theory and the Galerkin method 

to derive the following cubic equation for elastic deflection 

Am of stiffened plate loaded by lateral pressure and uniaxial 

compression. They have continued this line for initial 

deflection in Kim et al. (2018). 

𝐶1𝐴𝑚
3 + 𝐶2𝐴𝑚

2 + 𝐶3𝐴𝑚 + 𝐶4 = 0 (47) 

where 

𝐶1 =
𝜋2

16
(𝐸𝑥

𝑚4𝐵

𝐿3 + 𝐸
𝐿

𝐵3);𝐶2 =
3𝜋2𝐴𝑜𝑚

16
(𝐸𝑥

𝑚4𝐵

𝐿3 + 𝐸
𝐿

𝐵3) 

𝐶3 =
𝜋2𝐴𝑜𝑚

2

8
(𝐸𝑥

𝑚4𝐵

𝐿3
+ 𝐸

𝐿

𝐵3
) +

𝑚2𝐵

𝐿
𝜎𝑥𝑎𝑣

+
𝜋2

𝑡𝐹

(𝐷𝑥

𝑚4𝐵

𝐿3
+ 2𝐻

𝑚2

𝐿𝐵
+ 𝐷𝑦

𝐿

𝐵3
) 

𝐶4 = 𝐴𝑜𝑚

𝑚2𝐵

𝐿
𝜎𝑥𝑎𝑣 −

16𝐿𝐵

𝜋4𝑡𝐹

𝑝 

(48) 

𝐸𝑥 = 𝐸 (1 +
𝑛𝐴𝑆

𝐵𝑡𝐹
); 𝐸𝑦 = 𝐸 (49) 

where m is the number of half buckling length, n= -1. 
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𝜎𝑥𝑎𝑣 =
𝑁

𝐵𝑡𝑓 + (𝜙 − 1)𝐴𝑠

 (50) 

The self-weight is taken into account; consequently, the 

lateral pressure is modified as 

𝑝 = 𝑝0 +
𝜌𝑉𝑔

𝐵𝐿
 (51) 

where 𝜌 is the material density and V is the volume of the 

structure, p0 is the uniformly distributed load (Fig. 2), g is 

the gravitational constant, and Aom is according to Eq.(56). 

The torsional and flexural stiffnesses of the orthotropic 

plate are 

𝐷𝑥 =
𝐸𝑡𝐹

3

12(1 − 𝜈𝑥𝑦
2 )

+
𝐸𝑡𝐹𝑦𝐺

2

1 − 𝜈𝑥𝑦
2

+
𝐸𝐼𝑥

𝑏
 

𝐷𝑦 =
𝐸𝑡𝐹

3

12(1 − 𝜈𝑥𝑦
2 )

 

(52) 

𝜈𝑥 =
𝜈

0.86
√

𝐸
𝐸𝑥

(
𝐸𝑡𝐹

3

12
+ 𝐸𝑡𝐹𝑦𝐺

2 +
𝐸𝐼𝑥

𝑏
) −

𝐸𝑡𝐹
3

12

𝐸𝐼𝑥

𝑏
(

𝐸
𝐸𝑥

)
2  (53) 

𝜈𝑦 =
𝐸

𝐸𝑥
𝜈𝑥; 𝜈𝑥𝑦 = √𝜈𝑥𝜈𝑦 (54) 

𝐻 =
𝐺𝑥𝑦𝐼𝑡

𝑏
; 𝐺𝑥𝑦 =

𝐸

2(1+𝜈𝑥𝑦)
 (55) 

where 𝜈 is the Poisson coefficient. 

The deflection due to lateral pressure is calculated as 

𝐴`𝑜𝑚 =
5𝑞𝐿4

384𝐸𝐼𝑥
; 𝑞 = 𝑝𝑏; 𝑏 = 𝐵/𝜙 (56) 

The solution of Eq. (47) is 

𝐴𝑚 = −
𝐶2

3𝐶1

+ 𝑘1 + 𝑘2 (57) 

where 

𝑘1 = √−
𝑌

2
+ √

𝑌2

4
+

𝑋3

27

3

; 𝑘2 = √−
𝑌

2
− √

𝑌2

4
+

𝑋3

27

3

 (58) 

𝑋 =
𝐶3

𝐶1
−

𝐶2
2

3𝐶1
2; 𝑌 =

2𝐶2
3

27𝐶1
3 −

𝐶2𝐶3

3𝐶1
2 +

𝐶4

𝐶1
 (59) 

 
 
4.2 Deflection due to the shrinkage of longitudinal 

welds 
 

The deflection of the stiffened plate due to the 

longitudinal welds is as follows 

𝑓𝑚𝑎𝑥 = 𝐶𝐿2 8 ≤ 𝑤𝑚𝑎𝑥⁄ = 𝐿 1000⁄  (60) 

where the curvature for steel is 

𝐶 = 0.844 ∗ 10−3𝑄𝑇𝑦𝑇/𝐼𝑥 (61) 

where QT is the heat input and yT is the weld eccentricity 

𝑦𝑇 = 𝑦𝐺 − 𝑡𝐹/2 (62) 

and Ix is the moment of inertia of cross-section containing a 

stiffener and a base plate strip of width b. The heat input for 

stiffeners is 

𝑄𝑇 = 2 ∗ 59.5𝑎𝑤
2  (63) 

 
 

4.3 Calculation of stress constraint 
 

The calculation of the stress constraint can include 

several effects of loads. These can be the following: average 

compression stress and bending stress caused by deflections 

due to lateral pressure, compression and shrinkage of 

longitudinal welds. 

𝜎𝑚𝑎𝑥 = 𝜎𝑥𝑎𝑣 +
𝑀

𝐼𝑥

𝑦𝐺 ≤ 𝜎𝑈𝑃 (64) 

where M is the bending moment 

𝑀 = 𝑁(𝐴0𝑚 + 𝐴𝑚 + 𝑓𝑚𝑎𝑥) +
𝑞𝐿2

8
 (65) 

𝜎𝑥𝑎𝑣is according to Eq. (50). 

According to Mikami and Niwa (1996) the calculation 

of local buckling strength of a face plate strip of width 

𝑏1 = 𝑚𝑎𝑥(𝑎3, 𝑏 − 𝑎3) (66) 

This is calculated taking into account the effect of 

residual welding stresses and initial imperfections 

𝜎𝑈𝑃 = 𝑓𝑦 when 𝜆𝑃 ≤ 0.526 

𝜎𝑈𝑃 = (
0.526

𝜆𝑃
)

0.7

when 𝜆𝑃 ≥ 0.526 
(67) 

where 

𝜆𝑃 = (
4𝜋2𝐸

10.92𝑓𝑦

)

1/2
𝑏1

𝑡𝐹

=
𝑏1/𝑡𝐹

56.8𝜀
 (68) 

 

 

5. The objective function and the optimization 
technique 

 
5.1 Cost function 

 

The objective function to be minimized – the cost – is 

defined as the sum of material and fabrication costs 

𝐾 = 𝐾𝑚 + 𝐾𝑓 = 𝑘𝑚𝜌𝑉 + 𝑘𝑓 ∑ 𝑇𝑖 (69) 

and in another formula 

𝐾

𝑘𝑚

= 𝜌𝑉 +
𝑘𝑓

𝑘𝑚

(𝑇1 + 𝑇2 + 𝑇3) (70) 

where ρ is the material density and V is the volume of the 

structure. Km and Kf are material and fabrication costs in $, 

km and kf are the specific material and fabrication costs in 

$/kg, and $/min. Ti is the fabrication time, which can be 

calculated as follows: 
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Table 1 Welding times in the function of the weld size aw 

for longitudinal fillet welds in downhand position 

Welding technology 
aw 

mm 
103C2aw

n 

SAW Submerged Arc Welding 0-15 0.2349aw
2 

SMAW Gas Metal Arc Welding with CO2 0-15 0.3258aw
2 

GMAW Shielded Metal Arc Welding 0-15 0.7889aw
2 

 

 

- T1 is the time for preparation, assembly and 

tacking 

𝑇1 = 𝜃𝑑√𝜅𝜌𝑉 (71) 

where 𝜃𝑑  is a difficulty factor which expresses the 

complexity of the welded structure, κ is the number of 

assembled structural elements, 

- T2  is the time of welding 

𝑇2 = ∑ 𝐶2𝑖 𝑎𝑤𝑖
𝑛 𝐿𝑤𝑖  (72) 

where Lwi is the length of welds. The values of 𝐶2𝑖𝑎𝑤𝑖
𝑛  can 

be obtained from formulae or diagrams constructed using 

the COSTCOMP (1990) software, aw is the dimension of the 

weld. The value of aw should be the maximum of 0.5tf 

(rounded to mm) or 4 mm. The values for three major 

welding technologies are given in Table 1. 

- T3 is the time of additional work such as 

deslagging, changing electrodes and chipping.  
𝑇3 ≈ 0.3𝑇2 thus 

𝑇2 + 𝑇3 = 1.3 ∑ 𝐶2𝑖 𝑎𝑤𝑖
𝑛 𝐿𝑤𝑖  (73) 

The total time for welding is the sum of T1, T2, and T3 

(Farkas and Jármai 2013). 

The investment cost of the production equipment is not 

considered, because they can be used for other productions 

in their lifetime. The design, inspection and maintenance 

costs are usually proportional to the mass of the structure. 

That is why they are not included in the cost function. 

 

5.2 The Rosenbrock’s Hillclimb optimization method 

 

This mathematical programming method is used in this 

study to minimize the cost function (Rosenbrock 1960). It is 

a direct search numerical method without derivatives. The 

iterative algorithm of the method is based on the Hooke and 

Jeeves (1961) searching method. It starts with the given 

initial values. During the search, it takes small steps in the 

direction of orthogonal coordinates. In order to determine 

discrete values, the algorithm is modified so that a 

secondary search is carried out. The procedure stops the 

search for the optimum when the iteration number reaches 

its limit, or the convergence criterion is satisfied. In our 

calculations, in most cases the convergence criterion 

fulfilled. A strict convergence limit was given, the 10-8 

portion of the actual objective function. It generally 

prevents us from finding local minima. The technique is a 

continuous one, where the discretization is made after 

finding the continuous optimum. The discretization is 

described in Farkas and Jármai (1997). The deterministic 

algorithm solves constrained problems in our cases. Using 

the multiple starting point technique, one can be sure that 

the global optimum is found. 

During our calculations the iteration number varies 500-

2000, depending on the convergence criteria. The 

convergence criteria were 10-5-10-8. 
 

 

6. Numerical data and optimum results of static 
loads 

 

6.1 Longitudinally stiffened plate loaded by a uniaxial 
compression 
 

The given data are: base plate width B = 6000 mm, base 

plate length L = 3000 mm, compression force N = 

1.974x107 N, material density ρ = 7.85x10-6 kg/mm3, 

Young’s modulus E = 2.1x105 MPa, and yield stress fy = 

355 MPa, the Poisson coefficient is 0.3. The design 

variables, the thicknesses of the base plate and stiffeners 

and the number of ribs, are limited in range (Eq. 74). If the 

kF/km ratio is zero, we do not consider fabrication cost, and 

the optimum result is mass minimum. Thus, the mass 

minimum does not depend on welding technology. That is 

why mass minimum is the same, and so it is not shown in 

Tables 4–7. 

3 ≤ 𝑡𝑓 ≤ 40 mm 

3 ≤ 𝑡𝑠 ≤ 12 mm 

4 ≤ 𝜙 ≤ 10 

(74) 

Tables 2 and 3 show the optimum dimensions for SAW 

technology, Tables 4 and 5 for SMAW and Tables 6 and 7 

for GMAW. 

The results for cost function are, according to Eq. (69) 

and the considered constraints are according to Eqs. (38, 42, 

43). 
 

Table 2 Optimized dimensions with L-shaped stiffener 

(SAW) 

 kF/km 
tf 

mm 

ts 

mm 
φ 

K/km 

kg 

Mikami 0 18 7 9 2936 

 1 18 7 9 3658 

 2 19 7 8 4373 

API 0 17 7 10 2844 

 1 17 7 10 3614 

 2 19 7 8 4373 

 

Table 3 Optimized dimensions with trapezoidal stiffener 

(SAW) 

 kF/km 
tf 

mm 

ts 

mm 
φ 

K/km 

kg 

Mikami 0 18 6 6 2930 

 1 18 6 6 3474 

 2 18 6 6 4018 

API 0 15 6 8 2660 

 1 15 6 8 3303 

 2 15 6 8 3946 
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Table 4 Optimized dimensions with L-shaped stiffener 

(SMAW) 

 kF/km 
tf 

mm 

ts 

mm 
φ 

K/km 

kg 

Mikami 1 19 7 8 4184 

 2 19 7 8 5341 

API 1 19 7 8 4185 

 2 21 8 6 5115 

 

Table 5 Optimized dimensions with trapezoidal stiffener 

(SMAW) 

 kF/km 
tf 

mm 

ts 

mm 
φ 

K/km 

kg 

Mikami 1 18 6 6 3820 

 2 18 6 6 4710 

API 1 15 6 8 3787 

 2 15 6 8 4914 

 

Table 6 Optimized dimensions with L-shaped stiffener 

(GMAW) 

 kF/km 
tf 

mm 

ts 

mm 
φ 

K/km 

kg 

Mikami 1 18 7 9 3749 

 2 19 7 8 4532 

API 1 17 7 10 3716 

 2 19 7 8 4532 

 

Table 7 Optimized dimensions with trapezoidal stiffener 

(GMAW) 

 kF/km 
tf 

mm 

ts 

mm 
φ 

K/km 

kg 

Mikami 1 18 6 6 3531 

 2 18 6 6 4132 

API 1 15 6 8 3382 

 2 15 6 8 4104 

 
 

In all cases, trapezoidal stiffeners are better than L-

shaped stiffeners. The mass savings are between 5 and 10 

%. 
 

6.2 Longitudinally stiffened plate loaded by a uniaxial 
compression and lateral pressure  

 

In the following calculation, stiffened plates with L and 

trapezoidal ribs are compared. The given data are: base 

plate width B = 4000 mm, base plate length L = 6000 mm, 

compression force N = 1.974x107 N. The Young’s modulus 

is E = 2.1 x 105 MPa, material density is ρ = 7.85x10-6 

kg/mm3. In the calculation, there are values of lateral 

pressures p0 = 0.005, 0.01, 0.02 MPa and stresses fy = 255, 

355 MPa. The applied welding technology is GMAW. The 

design variables, the thicknesses of base plate and stiffener 

and the number of ribs, are limited in range (Eq. 75). The 

results are shown in Tables 8–11. The optimum results are 

marked by bold letters. 

3 ≤ 𝑡𝑓 ≤ 40 mm 

3 ≤ 𝑡𝑠 ≤ 12 mm 

4 ≤ 𝜙 ≤ 10 

(75) 

The results for cost function are, according to Eq. (69) 

and the considered constraints are according to Eqs. (38, 42, 

43, 60, 64). 
 

Table 8 Optimized dimensions with L-shaped stiffener 

kF/km=0, the material minima 

fy 

MPa 

p0 

MPa 

tf 

mm 

ts 

mm 
φ 

K/km 

kg 

kF/km=0 kF/km=1.5 

235 0.02 23 12 6 5774 7984 

235 0.01 21 12 6 5398 7580 

235 0.005 22 10 6 5146 6889 

355 0.02 22 12 6 5849 8025 

355 0.01 20 12 6 5435 7582 

355 0.005 19 10 8 5192 7400 
 

Table 9 Optimized dimensions with L-shaped stiffener 

kF/km=1.5, the material minima 

fy 

MPa 

p0 

MPa 

tf 

mm 

ts 

mm 
φ 

K/km 

kg 

kF/km=0 kF/km=1.5 

235 0.02 26 11 5 5867 7560 

235 0.01 29 9 4 5950 7107 

235 0.005 26 8 5 5411 6639 

355 0.02 27 11 4 6246 7616 

355 0.01 26 10 4 5926 7158 

355 0.005 24 8 5 5432 6627 
 

Table 10 Optimized dimensions with trapezoidal stiffener 

kF/km=0, the material minima 

fy 

MPa 

p0 

MPa 

tf 

mm 

ts 

mm 
φ 

K/km 

kg 

kF/km=0 kF/km=1.5 

235 0.02 17 11 5 5122 6764 

235 0.01 17 10 5 4804 6264 

235 0.005 18 9 5 4704 6011 

355 0.02 15 10 6 4944 6635 

355 0.01 15 9 6 4616 6102 

355 0.005 15 8 6 4320 5621 
 

Table 11 Optimized dimensions with trapezoidal stiffener 

kF/km=1.5, the material minima 

fy 

MPa 

p0 

MPa 

tf 

mm 

ts 

mm 
φ 

K/km 

kg 

kF/km=0 kF/km=1.5 

235 0.02 23 9 4 5317 6437 

235 0.01 23 8 4 5122 6132 

235 0.005 22 8 4 4934 5932 

355 0.02 17 10 5 4991 6431 

355 0.01 18 8 5 4700 5845 

355 0.005 15 8 6 4320 5621 
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Using the multiple starting point technique, one can be 

sure that the global optimum is found. The results of 

Sections 6.1 and 6.2 show that the trapezoidal stiffener is 

the most economic one. The cost saving can be around 20 

% comparing the optima with flat, or L-shaped ribs. In 

general, the method of Mikami gives thinner basic plates 

compared to that of the API. Materials with higher yield 

stress give cheaper results. The cost savings can reach 40%, 

although the higher strength steel is 8-10% more expensive. 

Generally, the material and cost minima are different, and 

the number of ribs is smaller at cost minima due to the 

welding cost effects. If we do not consider the investment 

cost, SAW is the cheapest welding process. 

For uniaxially and laterally loaded plates the ratio 

between material and welding cost is from 13% (flat 

stiffener, higher yield stress and minimum lateral pressure) 

to 64% (trapezoidal stiffener, lower yield stress and 

maximum lateral pressure). The number of stiffeners φ 

decreases if the lateral pressure is increased, but φ increases 

if the yield stress of the material is increased. 
 
 

7. Overview of various fatigue designs for 
compressed stiffened plates 

 
In recent decades, engineering knowledge has changed, 

which has heavily influenced the design of welded 

structures. Fatigue can play a significant effect on the 

behaviour of the structure (Georgioudakis et al. 2017). New 

materials and new welding technologies have come into 

use. Therefore, it is essential to optimize the cost of 

different structures for the various options (Virág 2006) 

carried out to approximate the behaviour of structures by 

various research institutes, universities and industrial 

laboratories. Fatigue test equipment has improved as well, 

allowing a higher number of cycles. 

 
7.1 Factors influencing the fatigue of welded joints 

 

It is essential to take several factors into account in weld 

design. The following items should be considered: the raw 

material used; welding technology; residual stresses; the 

type of bond; the weld geometry; welding failures; the 

voltage ranges; and the number of cycles. According to the 

current fatigue behaviour standards, the 𝛥𝜎 − 𝑁curve can 

be regarded as the fatigue value being unchanged after only 

N = 108 or 109 cycles. In most cases, the stress condition is 

a combination of normal stress and shear stress. The fatigue 

behaviour can vary significantly with the changes in these 

factors. 

 
7.2 Fatigue design according to Eurocode 3 

 

Welded joints are rated by Eurocode 3 (2005). The class 

number𝛥𝜎𝐶 , 𝛥𝜏𝐶  means the reference value of the fatigue 

strength in MPa at N = 2*106 cycles. In the case of N 

cycles, the values of fatigue stress range𝛥𝜎𝑁 , 𝛥𝜏𝑁 are given 

graphically (straight lines in a log-log coordinate system, 

Fig. 6). The different categories are represented by parallel 

lines from 36 MPa to 160 MPa in the corresponding figure 

of the standard. 

N

Nlog

Nlog

N

D

C

1085.1062.106

 

Fig. 6 EC3 recommendations: Fatigue resistance S-N curve  

 

 

In Fig. 6 there is only one line drawn, but the calculation 

is the same for any of the categories. Accordingly, the 

values𝛥𝜎𝑁 , 𝛥𝜏𝑁 can be determined by linear interpolation 

(Eqs. 76, 77, 78) if 𝛥𝜎𝐶, m, and N are known. The number 

of cycles N may vary between 105 and infinite. The fatigue 

boundary values of the normal stress are dependent on the 

cycles. 

If 𝑁 ≤ 5 ∗ 106 then 

𝑙𝑜𝑔 𝛥 𝜎𝑁 =
1

𝑚
𝑙𝑜𝑔

2 ∗ 106

𝑁
+ 𝑙𝑜𝑔 𝛥 𝜎𝐶  (76) 

where m is the slope of the fatigue strength curve, m = 3, 

𝛥𝜎𝐶  is the fatigue stress range at N=2*106 cycles. This 

stress corresponds to the value of the joint group (between 

36 and 160 MPa). 

If 5 ∗ 106 ≤ 𝑁 ≤ 108then 

𝑙𝑜𝑔 𝛥 𝜎𝑁 =
1

𝑚
𝑙𝑜𝑔

5 ∗ 106

𝑁
+ 𝑙𝑜𝑔 𝛥 𝜎𝐷 (77) 

where the slope is smaller, m = 5, 𝛥𝜎𝐷 is the fatigue stress 

range at N=5*106 cycles (this can be determined from the 

value of 𝛥𝜎𝐶).  

𝑙𝑜𝑔 𝛥 𝜏𝑁 =
1

𝑚
𝑙𝑜𝑔

2 ∗ 106

𝑁
+ 𝑙𝑜𝑔 𝛥 𝜏𝐶  (78) 

where m is the slope of the fatigue strength curve, m = 5, 

𝛥𝜏𝐶 is the fatigue stress range at N=2*106 cycles. 

The interaction formula of the EC3 standard in the case 

of combined stress (where 𝛥𝜎, 𝛥𝜏 are the normal and shear 

stress for designing, 𝛥𝜎𝑁 , 𝛥𝜏𝑁  are the fatigue stress 

amplitudes, 𝛾𝐹𝑓 and 𝛾𝑀𝑓 partial safety factors for fatigue 

loads and strengths) is 

(
𝛾𝐹𝑓𝛥𝜎

𝛥𝜎𝑁/𝛾𝑀𝑓

)

3

+ (
𝛾𝐹𝑓𝛥𝜏

𝛥𝜏𝑁/𝛾𝑀𝑓

)

5

≤ 1 (79) 

In the ENV 1991 Eurocode 1 the fatigue loads already 

contain the value of the 𝛾𝐹𝑓  safety factor. Usually, the 

value of 𝛾𝐹𝑓 is assumed to be 1. 

The recommended values for 𝛾𝑀𝑓  safety factors are 

given in Table 12 (Eurocode 3 2005). “Low consequence” 

means that a local failure will not result in failure of the 
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Table 12 Recommended values for partial factors γMf 

Assessment method 
Consequence of failure 

Low consequence High consequence 

Damage tolerant 1.00 1.15 

Safe life 1.15 1.35 

 

 

Fig. 7 IIW recommendations: Fatigue resistance S-N 

curves  
 
 

entire structure, while “high consequence” means that a 

local failure will result in failure of the whole structure. We 

calculate with a value of 1.15 in the numerical example. 
 

7.3 Fatigue design according to the International 
Institute of Welding 

 

The International Institute of Welding (IIW) has 

developed recommendations for the determination of 

fatigue of welded connections (Recommendations (2008). 

The advantage of the recommendation is the use of new 

research results, and it is valid up to 960 MPa yield stress, 

compared to the 690 MPa in Eurocode. It gives the fatigue 

strength, not only for steel but for aluminium. The fatigue 

strength is constant over 109 cycles (Fig. 7). 

If 𝑁 ≤ 107 then 

𝑙𝑜𝑔 𝛥 𝜎𝑁 =
1

𝑚
𝑙𝑜𝑔

2 ∗ 106

𝑁
+ 𝑙𝑜𝑔 𝛥 𝜎𝐶  (80) 

where m is the slope of the curve is constant, m = 3, 

𝛥𝜎𝐶  is the fatigue stress range at N=2*106 cycles. This 

stress corresponds to the value of the joint group (between 

36 and 160 MPa). 

If 107 ≤ 𝑁 then 

𝑙𝑜𝑔 𝛥 𝜎𝑁 =
1

𝑚
𝑙𝑜𝑔

107

𝑁
+ 𝑙𝑜𝑔 𝛥 𝜎𝐷 (81) 

where the slope is smaller, m = 5, 𝛥𝜎𝐷 is the fatigue 

stress range at N=107 cycles (this can be determined from 

the value of 𝛥𝜎𝐶). 

𝑙𝑜𝑔 𝛥 𝜏𝑁 =
1

𝑚
𝑙𝑜𝑔

2 ∗ 106

𝑁
+ 𝑙𝑜𝑔 𝛥 𝜏𝐶  (82) 

where m is the slope of the fatigue strength curve, m = 5, 

𝛥𝜏𝐶 is the fatigue stress range at N=2*106 cycles. 

Table 13 Classification of welding technologies 

Welding technology 

EC3 

𝛥𝜎𝐶 

MPa 

IIW 

𝛥𝜎𝐶 

MPa 

SMAW 100 90 

GMAW 112 100 

SAW 125 125 

 

7.4 Numerical example for fatigue design 
 

The fatigue constraint has been calculated based on EC 

standards and IIW recommendations. Three kinds of 

welding techniques are also investigated. Different welding 

technologies are classified in various weld fatigue ranges 

according to Table 13. Other design constraints are 

calculated according to the Mikami method (see Section 3): 

global buckling (Eq. 38), single panel buckling (Eq. 42), 

local and torsional buckling (Eq. 43) of stiffeners. 

Given data: B = 6000 mm, L = 4000 mm, N = 1.2x107 

N, fy = 235 MPa, E = 2.1*105 MPa, G = E/2.6, ρ = 7.85x106 

kg/mm3, Θd = 3. The considered numbers of cycles are 

<104, 105, 106, 107 and 108. If the number of cycles is less 

than 104 it is outside the range of validity in the fatigue 

design standard. The design variables – the thicknesses of 

the base plate and the stiffener and the number of the ribs - 

are limited in a range (Eq. 83). Results are shown in Tables 

14–16. 

3 ≤ 𝑡𝑓 ≤ 40 mm 

3 ≤ 𝑡𝑠 ≤ 30 mm 

4 ≤ 𝜙 ≤ 10 

(83) 

The objective function is the cost function to minimize. 

It is defined as the sum of material and fabrication costs. 

𝐾 = 𝐾𝑚 + 𝐾𝑓 = 𝑘𝑚𝜌𝑉 + 𝑘𝑓 ∑ 𝑇𝑖 (84) 

 
 

5. Conclusions 
 

As we stated at the beginning, the main requirements of 

modern welded metal structures are the load-carrying 

capacity (safety), fitness for production, and economy. 

These requirements can be met by structural optimization: 

the economy is achieved by minimizing the cost function. 

The safety and fitness for production are guaranteed by 

fulfilling the design and fabrication constraints. The cost 

function includes the material and the welding costs, using 

different steel grades and different welding technologies. 

The Hillclimb nonlinear optimization technique was useful 

finding the optimum sizes of the stiffened plates. 

At the static uniaxially loaded plates calculations, the 

cost saving can be around 20 % comparing the optima with 

flat, or L-shaped ribs. In general, the method of Mikami 

gives thinner basic plates compared to that of the API (~4 

%). Materials with higher yield stress give cheaper results. 

The cost savings can be up to 40 %, even though the higher 

strength steel is 5-10 % more expensive. Generally, the 

material and cost minima are different, and the number of 
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Table 14 Results for SMAW technology 

SMAW kf/km 
tf 

mm 

ts 

mm 
 

K/km 

kg 

N cycles 0 5 10 29 2172 

<104 1 17 14 5 5555 

 2 17 14 5 7562 

 0 5 10 29 2172 

EC3 1 17 14 5 5555 

105 2 17 14 5 7562 

 0 11 16 24 4660 

EC3 1 24 14 4 6400 

106 2 24 14 4 8021 

 0 26 15 26 7371 

EC3 1 39 11 4 8771 

107 2 39 11 4 10036 

 0 31 23 26 11654 

EC3 1 40 28 13 32137 

108 2 40 28 13 52603 

 0 5 10 29 2172 

IIW 1 18 14 4 5218 

105 2 18 14 4 6787 

 0 10 19 16 4264 

IIW 1 21 14 4 5810 

106 2 21 14 4 7406 

 0 10 24 29 8973 

IIW 1 40 29 5 16551 

107 2 40 29 5 24088 

 0 40 29 19 14190 

IIW 1 40 29 19 46798 

108 2 40 30 18 80066 

 

 

ribs is smaller at cost minima due to the welding cost 

effects. If we do not consider the investment cost, 

submerged arc welding is the cheapest welding process. 

For uniaxially and laterally loaded plates the ratio 

between material and welding cost is from 13 % (flat 

stiffener, higher yield stress and minimum lateral pressure) 

to 64 % (trapezoidal stiffener, lower yield stress and 

maximum lateral pressure). The number of stiffeners (n=φ-

1) decreases if the lateral pressure is increased, but φ 

increases if the yield stress of the material is increased. 

There is a limit for the maximum number of stiffeners to be 

able to make the welding to the baseplate. This limit is 300 

mm and all solutions fulfil this requirement. 

At dynamic loading, the results show the high influence 

of the number of cycles on fatigue and the optimal sizes of 

the stiffened plates. The dimensions and the number of ribs 

increase with the number of cycles, of course. The fatigue 

constraint is activated at around 106 cycles. Material cost 

optimization results in a higher number of ribs. In total cost 

optimization, the dimensions increase first, then the number 

of ribs. Comparisons show that it is worth considering both 

the technology and the costs of the structure and optimizing 

them in the design phase.  

In the case of 105 cycles and at lower ranges, the fatigue 

constraints are not activated; therefore, Eurocode and IIW 

calculations give the same results. At 106 cycles, the 

Table 15 Results for GMAW technology 

GMAW kf/km 
tf 

mm 

ts 

mm 
 

K/km 

kg 

N cycles 0 5 10 29 2172 

<104 1 11 12 10 4227 

 2 15 13 6 5460 

 0 5 10 29 2172 

EC3 1 11 12 10 4227 

105 2 15 13 6 5460 

 0 16 16 11 4139 

EC3 1 21 14 4 5102 

106 2 21 14 4 5990 

 0 6 21 29 6558 

EC3 1 34 12 4 7449 

107 2 34 12 4 8301 

 0 40 21 16 10443 

EC3 1 40 29 9 17114 

108 2 40 29 9 23735 

 0 5 10 29 2172 

IIW 1 11 12 10 4227 

105 2 15 13 6 5460 

 0 18 13 6 3762 

IIW 1 19 14 4 4707 

106 2 19 14 4 5577 

 0 7 23 30 8063 

IIW 1 40 20 4 9618 

107 2 40 20 4 11174 

 0 17 28 29 12852 

IIW 1 40 24 22 24694 

108 2 39 30 15 36870 
 

 

Eurocode solution is more expensive, but in the case of 107 
and 108 it becomes cheaper compared to the IIW results due 
to the thickness limitations. 

If the number of cycles increases 10, 100, 1000 times, 
this increases the cost of the stiffened plate by 100, 200, 
400%, respectively. 

Comparisons show that the application of optimization 
is beneficial since it is possible to reduce the cost of the 
structure by 15-25%. If we compare non-optimized 
versions, in that case the cost saving can be even higher.  

The main conclusion is that the optimum sizes depend 
on the welding technology, the material yield stress, the 
profile of the stiffeners, the load cycles and the place of the 
production (labour costs). 
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Table 16 Results for SAW technology 

SAW kf/km 
tf 

mm 

ts 

mm 
 

K/km 

kg 

N cycles 0 5 10 29 2172 

<104 1 11 12 10 3921 

 2 15 13 6 5060 

 0 5 10 29 2172 

EC3 1 11 12 10 3921 

105 2 15 13 6 5060 

 0 15 9 28 3787 

EC3 1 19 14 4 4568 

106 2 19 14 4 5299 

 0 30 13 4 5874 

EC3 1 30 13 4 6644 

107 2 30 13 4 7413 

 0 40 17 15 9314 

EC3 1 40 26 7 12562 

108 2 40 26 7 15805 

 0 5 10 29 2172 

IIW 1 11 12 10 3921 

105 2 15 13 6 5060 

 0 8 11 29 2996 

IIW 1 15 13 6 4129 

106 2 15 13 6 5060 

 0 6 22 26 6449 

IIW 1 34 12 4 7346 

107 2 34 12 4 8097 

 0 39 27 10 10231 

IIW 1 40 30 8 15014 

108 2 40 30 8 19723 
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