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1. Introduction 
 

Thin films have many applications in new technologies 

like energetic films (Clark et al. 2015), drug delivery (Karki 

et al. 2016), ion batteries (Jia and Li 2016), solar cells 

(Zhang et al. 2018, Aberle 2009), high temperature thin 

film devices (Veronese et al. 2015) and gel structures (Hu 

et al. 2014). In nature, living tissues including skins, brain, 

lungs and pulmonary airway can be modeled as a soft 

substrate covered by a stiff thin surface layer (Amar and 

Bordner 2017, Li et al. 2011, Cerda 2005). Mimicking the 

pattern formation of fruits during their growing process and 

leaves during drying process is considered in thin film 

literature (Chen et al. 2014). However, the wrinkling (local 

instability) of the film may have both negative and positive 

effects on the functionality of the system (Genzer and 

Groenewold 2006). As an example of the destructive 

influence of the wrinkles, Karki and his coworkers (2016) 

considered drug delivery using thin films where the 

homogeneity and smoothness of the film is too important. 

The wrinkles prevent the uniform distribution of drug 

throughout the polymeric mixture. To avoid wrinkling of 

the film, they used a liquid wetting agent to ensure that the 

surface of the substrate is not wrinkled. Jia and Li (2016) 

investigated the evolution of the wrinkling morphology of a 

substrate‒thin film anode and its effect on the failure of the 

anode under cyclic charging/discharging. As another 

example of the destructive effect of the wrinkles, one may 

refer to the wrinkling of solar sails and membrane antenna 

in spacecrafts and aerospace structures (Xu et al. 2015a).  
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Vonach and Rammerstorfer (2001) studied the sudden 

failure of the light weight structures made of heterogeneous 

sandwich plates under wrinkling. Also one may refer to 

delamination of thin polymer films from compliant 

substrates due to wrinkling process as noted by Nolte et al. 

(2017). 

Besides the destructive effects, wrinkles may have 

positive influences on the applicability and functionality of 

the system. For example, Zhang and his coworkers (2018) 

introduced a silicon‒wafer solar cell with wrinkled coating 

in which the efficiency of the system is increased compared 

with the unwrinkled surface. In design process of roof and 

wall cladding in buildings using sandwich panels, 

Mahendran and Jeevaharan (1999) improved the 

sustainability of the structure against overall buckling by 

using wrinkled thin plate‒polystyrene core framework. As 

the result, researchers focused on the developing novel 

approaches to generate surface wrinkles via different 

methods to obtain various wrinkling morphologies 

including wavy shaped, ring‒like, checkerboard, stripe, 

herringbone and hybrid patterns (Fu et al. 2018, Song 2010, 

Chen and Hutchinson 2004). 

Wrinkles develop on the film due to its tiny thickness 

under the context of mechanical instability (i.e. local 

buckling). Because the bending rigidity of the slender film 

is very small, it is easily bent under compressive stresses. 

Different parameters get involved in the wrinkling 

evolution on the film such as the distribution of the loading 

(Wang et al. 2016, Kudrolli and Chopin 2018, Cerda et al. 

2002), the boundary conditions of the system, the material 

properties of the film‒substrate (Noroozi and Jiang 2012) 

and the geometrical uniformity or the inhomogeneity of the 

system. 

The spatial variation in the microstructure or 
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composition of the film/substrate, for example in the 

deposition process of the film on the substrate, may alter the 

mechanical properties of the system along the thickness 

direction represented by functionally graded (FG) models. 

Many practical systems in industry and technology have 

used functionally graded foundations; and the materials are 

modeled through the variations of Young's modulus of the 

foundation along the thickness direction as softening‒

stiffening behavior of the FG‒substrate (Xu et al. 2015b, 

Cao et al. 2012, Howarter and Stafford 2010, Lee et al. 

2008). Cao et al. (2012) considered the wrinkling of a hard 

layer resting on an elastic graded soft substrate subjected to 

an in‒plane compression; while the Young’s modulus of the 

elastic substrate is assumed to vary along its depth direction 

by power and exponential functions. The critical 

compressive load at the onset of wrinkling and the 

wrinkling wavelength are derived analytically and verified 

by using finite element simulation. A similar research was 

carried out by Chen et al. (2017) in which the wrinkling of 

the stiff thin film on the semi‒infinite elastic graded 

compliant substrate with variable stiffness along its depth 

was considered under in‒plane compression. The wrinkles 

were sought analytically in a sinusoidal form for the case 

with the substrate modulus exponentially decaying along 

the depth and the critical load and wavelength of the 

wrinkling were studied. In 2017, Zheng et al. investigated 

the wrinkling of a stiff film resting on a fiber‒filled soft 

substrate, in which the substrate properties changes along 

the film span and the effects of the cross section dimension, 

spacing, and positions of the fibers on the wrinkling pattern 

were investigated. They showed that under compressive 

loading, different patterns may occur on the film due to the 

inhomogeneity of the substrate. Yu et al. (2016) also 

considered an elasticity gradient PDMS substrates with 

nonuniform longitudinal stiffness along the film span 

experimentally. However, despite its importance, the 

variation of the substrate properties along the length span of 

the film is less paid attention by the researchers. 
For the film substrate‒system, different mechanical 

models have been presented to consider the mechanical 
instability of the system. The film is usually modeled by 
using a membrane, strip or plate with small thickness under 
compressive loading (Chen and Hutchinson 2004). The 
film–substrate interaction is modeled with normal and shear 
reactions on the film. Different models such as Filonenko–
Borodich, Pasternak, Hetenyi and Vlasov describing two–
parameter foundations have been used to represent the 
interaction of the beam/film and its foundation reviewed by 
Wang et al. (2005). Amongst different models, Winkler 
foundation is a common type in which by using a spring 
system, the interaction of the substrate and the film is 
corresponding with the deflection of the film and stiffness 
of the substrate (Allen 1969, Niu and Talreja 1999). On the 
other hand, the substrate stiffness effectively influences the 
wrinkling load and wrinkling pattern, such that for stiffer 
substrates, the wrinkling load is higher and the wrinkling 
wavelength is slighter (Cerda and Mahadevan 2003). Due to 
the importance of the substrate stiffness on the wrinkling 
parameters, great attention must be directed regarding the 
substrate. Compared with the experimental results and 
numerical simulations in the literature (Kim et al. 2012, Hu 

et al. 2014, Li et al. 2011, Lecieux and Bouzidi 2010), 
deriving the instability parameters of the FG–substrate 
bounded film analytically through mathematical functions 
provides more insight into the physics of wrinkling 
phenomena which is focused in this paper. 

In this work, the effect of the substrate nonhomogeinty 

on the wrinkling parameters is studied. The substrate is 

assumed as a functionally graded material (FGM) in which 

its stiffness (i.e. Young’s modulus) is non–uniform and 

changes exponentially along the length span of the film. 

The uniaxial wrinkling of the film along the length span is 

considered through the analytical solution of the governing 

equation of the film–substrate system. It is shown that the 

non–uniformity of the substrate stiffness has a significant 

effect on the wrinkling of the film, such that the wrinkling 

pattern of the film on the FG–substrate is completely 

different with that of a film–homogeneous substrate. In the 

latter case, the wrinkles propagate uniformly by a sinusoidal 

pattern all over the system, while in the former one the 

wrinkles accumulate around the softest locations of the 

substrate and a localized wrinkled region develops on the 

film. Therefore, the effects of the substrate non–uniformity 

on the wrinkling localization, wrinkling load and wrinkling 

pattern are investigated. 

 

 

2. Formulation 
 

Winkler foundation has been widely used to model the 

interaction of the foundation and the resting beam/plate. By 

using the Hooke’s law of springs, the interaction is modeled 

as a distributed loading corresponding with the deflection of 

the beam/film and the stiffness of the foundation. The 

substrate stiffness of the Winkler model is defined as the 

elastic modulus (i.e. E) per characteristic depth h of the 

foundation (Maugis 2013) as K=E/h. Therefore, when the 

elastic modulus E of the foundation is variable, the substrate 

stiffness K also changes along the domain. This issue can be 

fostered by using the concept of functionally graded 

materials (FGM) to introduce a FG‒substrate with non‒

uniform stiffness bounded to the beam/film. According to 

the literature behind the FG‒systems, the gradual change in 

the composition of the material due to variation of the 

volume fraction leads to the non–uniform material 

properties of the system. These non‒homogeneity affect on 

the behavior of the system compared with a homogeneous 

system with uniform properties all over the domain. 

A strip (long slender film) with thickness t, width b and 

length L deposited on a substrate is shown in Fig. 1. By 

introducing parameters including D = Et3/12(1-v2) as the 

bending stiffness of the film, x = �̅�/L (0≤ x ≤1) as the 

dimensionless length variable and w(x) as the normalized 

deflection of the strip under a uniform in–plane stress 

resultant along the film span denoted by 𝑁𝑥 deposited on a 

Winkler foundation with modulus K̅ , the dimensionless 

governing equation of the thin homogeneous film on the 

Winkler substrate with uniaxial deformation (strip–like) is 

represented by Eq. (1) (Reddy 2006) 
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Fig. 1 FG–substrate bounded film under compressive in–

plane loading 

 

 
in which 𝑁 =  𝑁𝑥𝐿2/𝐷  and 𝐾 = 𝐾𝑏𝐿4/𝐷  are 

dimensionless loading and foundation parameters.  

In order to make the problem mathematically tractable, 

the substrate modulus K is assumed as an exponential 

decaying function as 
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where K0 is the substrate modulus far from the edge x=0, 

and ε is the amplitude of the stiffness variation with 

gradient parameter σ. For a homogeneous substrate, the 

material properties are constant along the entire span 

corresponding with ε = 0.  

Substituting K from Eq. (2) into Eq. (1) leads to a forth 

order ordinary differential equation with variable 

coefficients. By using a change of variable as w(x) = exp(αx) 

u(x) and x = ‒𝜎 ln(v), while α satisfies the relation 

α4+Nα2+K0=0, one may show that the ordinary differential 

equation is represented by Eq. (3) as 
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corresponding with the hypergeometric differential 

equation; while hyper–Bessel functions 0F3 are the general 

solution of the equation (Kiryakova 1993) as follow 
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and the hypergeometric 0F3 or hyper–Bessel function is 

defined by a series solution in Eq. (5) as  
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where (a)m is the rising factorial or Pochhammer symbol 

which is defined by the expression  (a)m= a (a+1) (a+2)… 

(a+m–1). 

The general solution of the governing equation of the 

system in Eq. (1) is represented versus four functions Φk(x) 

(k=1,2,3,4) by Eq. (6) as 
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and parameters  and 𝜇 in Eq. (8) are represented by 
++ =  ,

−− =   and )/exp(44  x−= for 

the sake of simplicity. In addition, other parameters are 

defined as
4

0K=
, 04/ KNn =

, 

12 −+−=+ nn and 12 −−−=− nn .  

It is shown that η+ and η– are complex conjugate such 

that η+η– =1. Introducing parameters η+ = p + Iq and η‒ = p ‒ 

Iq, where 1−=I is the unit imaginary number, leads to 

represent 
2/)1( np −=

 and 
2/)1( nq +=

. On the 

other hand, from the definition of the hyper–Bessel function 

in Eq. (5), it is straight forward to show that the functions in 

Eq. (8) are complex conjugate as presented in Eq. (9) 
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Fig. 2 Dimensionless wrinkling load versus ε for K0=109 

and σ=0.05 for a semi–infinite film with different 

boundary conditions 
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Imposing Eq. (9) into (7) with some mathematical 

treatments leads to the solution of the differential equation 

(1) in the new format of real parameters Ψk(x) (k=1,2,3,4) as 
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and ck’s (k=1,2,3,4) are constant parameters determined by 

imposing the boundary conditions of the film. Among 

different classical boundary conditions including pinned, 

sliding, free and clamped conditions, in this work, the 

clamped boundary conditions of the film at its edges is 

studied as w= 0 and 0/ =dxdw  for x0=0 and 1. Imposing 

the boundary conditions leads to an algebraic system of 

equations as 
0}]{[ = iij c

 (i,j=1,2,3,4). The eigenvalues 

and eigenfunctions are corresponding with the instability 

loads and mode shapes of the wrinkling. 

On the other hand, for a homogeneous substrate with 
uniform stiffness K(x) = K0 along the length span (i.e. ε=0), 
it is shown that the solution of the governing equation is 
derived versus trigonometric functions as represented in the 
literature. In the next section, the results of the wrinkling of 
the FG‒substrate are compared with the results of the 
homogeneous substrate for semi–infinite, infinite and finite 
length systems. 

 

 

3. Numerical results and discussion 
 

3.1 Infinite and semi‒infinite films 
 

According to the literature of wrinkling of thin films, for 
a uniform film on a homogeneous substrate with infinite 
length, a sinusoidal pattern develops along the length span 
with wavenumber β0

W under the wrinkling load N0
W as 

4
00 KW =

 
(12a) 

00 2 KNW =
 

(12b) 

corresponding with dimensionless wrinkling load n= N/N0
W 

=1 (Birman and Bert 2004, Cerda and Mahadevan 2003, 

Pocivavsek et al. 2008). 

On the other hand, for a FG‒substrate bounded film 

with semi–infinite length (i.e. x≥0), the coefficients c1 and 

c2 in Eq. (10) are zero for a mathematical bounded finite 

solution. Imposing the boundary conditions at x=0 results in 

different types of symmetric and antisymmentric modes. By 

solving the characteristic equation numerically, the 

wrinkling loads and wrinkling pattern are determined. The 

boundary conditions at x=0 for clamped edge are given by 

w=dw/dx=0, for hinged edge are imposed as w=d2w/dx2=0, 

and for sliding edge are dw/dx =d3w/dx3=0. 

The dimensionless wrinkling load (i.e. n= N/N0
W) versus 

parameter ε for a sample case of σ=0.05 and K0 = 109 is 

shown in Fig. 2 for different boundary conditions. The 

curves start from n=1 corresponding to the homogeneous 

substrate (i.e. ε = 0) as expected. A regression analysis 

shows that the curves follow a quadratic relation versus 

parameter ε as, 

2

0 ),(1  KHn −=
 

(13) 

Also the wrinkling pattern of the film is shown in Fig. 3 

for different boundary conditions and structural parameters 

(i.e. σ=0.05 and K0= 109 and ε = 0.1, 0.4). According to the 

results, the semi–infinite film with clamped edge undergoes 

bigger number of wrinkles, as its wrinkling load is higher 

than other boundary conditions (i.e. pinned and sliding). So, 

one may conclude that for a semi-infinite film, the mode 

corresponding with the clamped edge is not appeared on the 

film. 

On the other hand, for the infinite film deposited on the 

FG‒substrate, the symmetric and anti–symmetric solutions 

are corresponding with the sliding and hinged boundary 

conditions as shown in Fig. 3. For both the symmetric and 

anti–symmetric modes, the wrinkling loads and the patterns 

are almost same as each other. 
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3.2 Film‒substrate with finite length 
 

For a film with finite length deposited on a 

homogeneous substrate with clamped–clamped boundary 

conditions, Ratzersdorfer (1936) showed that when the 

substrate is soft enough, the wavelength of the flexures on 

the film–substrate is not tiny and the critical compressive 

load of the instability is represented as the summation of the 

Euler buckling load of the film and the substrate effect. 

Obviously, when the thickness of the film is too small and 

the substrate is not too flabby, the substrate effect is several 

orders of magnitude larger than the Euler buckling load so 

that the wrinkling is the dominant phenomenon on the film. 

Therefore, the wrinkling load N0
W and wavenumber β0

W are 

represented in terms of the dimensionless substrate stiffness 

K with Eq. (12) corresponding with dimensionless 

wrinkling load n=1. 

For a film on FG‒substrate with non–uniform stiffness, 

the eigenvalue problem of the system for clamped– clamped 

 

 
boundary conditions is solved for different values of 

parameters K0, σ and ε. The first critical wrinkling load 

versus parameter ε is shown in Fig. 4 for different values of 

σ=0.05, 0.1, 0.15 and K0 = 108, 109, 1010. The graphs follow 

the descending quadratic relation in Eq. (13) with a high 

accuracy R2=0.95. On the other hand, Figs. 5 and 6 show 

the variation of the parameter n versus σ and K0. All the 

curves are descending functions such that by increasing the 

independent variables (ε, σ and K0), the dimensionless 

wrinkling load n decreases. 

Finally, a finite difference code is developed to verify 

the results of the analytical solution using MATLAB 

software. The wrinkling loads from the finite difference 

method is completely in match with the results of the 

analytical solution as plotted in Fig. 7 for a sample case. 

Furthermore, The wrinkling pattern is considered for the 

clamped–clamped film on the FG‒substrate and the effect 

of the parameter ε is clarified (Fig. 8). The figures show that 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Fig. 3 Wrinkling pattern of a semi–infinite film–substrate for σ = 0.05, K0=109, ε = 0.1 (a,b,c) and ε = 0.4 (d,e,f), with 

clamped (a,d), pinned (b,e) and sliding (c,f) edge 
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Fig. 4 Critical wrinkling load versus parameter ε for K0={108,109, 1010}and σ={0.05, 0.1, 0.15} 

 
Fig. 5 Dimensionless wrinkling load n versus σ for K0=109 

 

 

Fig. 6 Dimensionless wrinkling load n versus K0 
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Fig. 7 Normalized wrinkling load versus ε from Finite Difference method (F.D) compared with the analytical solution for σ 

=0.05 and K0=109 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Fig. 8 Wrinkling pattern of a film with clamped edges for σ =0.05 and K0=109 
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for a homogeneous substrate with ε=0, the pattern is 

un i form a long  the  span ;  wh i l e  in creas ing  th e 

nonhomogeneity of the substrate (i.e. increasing ε) disturbs 

the uniformity of the wrinkles (Zhao et al. 2017). The 

wavenumber of the wrinkles are discussed as well. 

According to Eqs. (10) and (11), the wrinkles are periodic. 

However, the decaying behavior of the wrinkles along the 

length span leads to define an apparent wavenumber, the 

number of the wrinkles which appear on the film. The 

apparent wavenumber is  normalized versus the 

wavenumber in Eq. (12), and is shown with a descending  

 

 

 

curve like a Gaussian function versus parameters K0, σ and 

ε as illustrated in Figs. 9 and 10. 

In order to characterize the wrinkling pattern on the film, 

besides the apparent wavenumber of the wrinkles, another 

parameter is introduced as footprint of the wrinkles on the 

film, which represents the apparent length of the film 

influenced by the wrinkles. As illustrated in Fig. 8, the 

number of the wrinkles and the footprint of the wrinkling 

decrease by growing the parameter ε. In other word, smaller 

section of the film is affected by the wrinkles when the 

gradient of the FGM substrate increases. A regression 

 

Fig. 9 Normalized apparent wavenumber for K0=109 

 

Fig. 10 Normalized wavenumber versus K0 for different parameters ε and σ 
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analysis shows that the footprint of the wrinkling is directly 

proportional with the apparent wavenumber as shown in Fig. 

11 with a high accuracy (R2=0.998) for 60 datapoints as 

sample cases. 

According to the current analysis, in a FG‒substrate 

bounded film, the gradient of the substrate stiffness has 

significant effect on the wrinkling pattern such that the 

wrinkles accumulate densely at the softest location of the 

substrate with bigger amplitudes similar to Zhao et al. 

(2017). Therefore, the wrinkling pattern is completely 

different from the uniform wrinkling pattern of a 

homogeneous substrate–film system reported in the 

literature. This accumulative effect of the wrinkling opens 

new windows in physics of wrinkling in thin film structures. 
 

 

4. Conclusions 
 

The uniaxial wrinkling problem of a homogeneous thin 

film deposited on a FGM substrate is studied and the 

wrinkling parameters (i.e. load and pattern) are determined 

analytically. The FGM substrate is modeled by using a 

Winkler foundation in which the stiffness of the foundation 

is non–uniform along the span with a variable stiffness. For 

an exponential stiffness profile of the FGM substrate, the 

governing equation is solved analytically in terms of hyper–

Bessel functions. The problem is investigated for infinite, 

semi–infinite and finite length of the film–substrate system. 

In contrast with a homogeneous substrate–bounded film 

with uniform stiffness in which the wrinkles propagate 

along the length span uniformly, the results of this work 

show that the non–uniformity of the FGM substrate disturbs 

the wrinkling pattern so that the wrinkles accumulate 

around the location of the substrate with less stiffness and 

the amplitude of the wrinkles in this region grows. 

Increasing the gradient of the FGM substrate intensifies this 

accumulative effect by decreasing the wrinkling load and 

the effective length of the film influenced by the wrinkles 

 

 

(i.e. Footprint of the wrinkles on the film). Besides the 

possible applications in thin‒film metrology and surface 

patterning in different fields including experimental works, 

science and industry; the results of this work may find 

useful to provide insight into the wrinkling phenomena of 

various living tissues. 
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Wrinkling of a homogeneous thin solid film deposited on a functionally graded substrate 

 

Nomenclature 

 

Symbol Description 

b Width of the system 

D Bending stiffness of the film 

E Young’s Modulus 

K Substrate stiffness modulus 

h Substrate depth 

L Length 

N,n Inplane force 

t Thickness 

x length span coordinate 

w Deflection 

β Wavenumber of wrinkles 

ε,σ Substrate gradient parameters 

F Hypergeometric function 

ΓΦΨθφνpqHu Mathematical dummy variables 
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