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1. Introduction 
 

Engineers have widely applied the bridge-type 

structures, continuous beams and bridge frames, with no 

sway in the construction industry. There exist two 

approximate and exact methods for analyzing these 

structures. The moment distribution method (Cross 1932), 

having a special place in structural engineering, represents a 

manual solution to estimate member-end moments. In this 

technique, to achieve the equilibrium conditions of a joint, 

it is released while all other joints restrained from rotation. 

Then, a part of the distributed moments is transmitted from 

the free joint (balanced joint) to neighbor clamped ones, 

resulting in unbalanced moments at the clamped joints. 

Iteratively, the restraining and releasing process of nodes 

reduces the deranged moments to meet the desired 

accurateness. Taking a more accuracy involves more 

iteration of the process, which significantly increases the 

analysis time. Thus, researchers have paid attention to 

developing simple exact methods for analysis of the 

bridges. Zuraski (1991) used the compatibility of joint 

deformations and the conjugate beam relationships to 

calculate member-end moments of symmetrical continuous 

beams with just constant flexural stiffness (EI). Dowell 

(2009) developed closed-form equations giving exact 

member-end moments for bridge structures with small 

depth-to-span ratio members. However, it cannot directly 

determine all member-end-moments at a joint where a  
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column connected to, without taking into account static 

moment equilibrium equation. Rotation propagation’s 

closed-form equations proposed by Hosseini-Tabatabaei 

and Rezaiee-Pajand (2012) facilitate precisely calculation of 

any member-end rotation of the bridges; yet, the slope-

deflection method should be applied to obtain member-end 

moments. Mirfallah and Bozorgnasab (2015) proposed the 

slope distribution method, for the classical analysis of 

frames, in which only the nodal rotations (slopes) are 

distributed and no need to form and solve the system of 

algebraic equations. However, it is based on a Jacobi 

iterative procedure, thus the responses accuracy is depended 

on the number of iterations.  In addition, it is not able to 

determine member-end moments, directly. Lately, Hosseini-

Tabatabaei et al. (2017) used the concept of rotation 

propagation to derive moment closed-form equations, 

directly. Almayah (2018) presented an elastic analysis of 

continuous beams to determine the bending moment and 

deflection at various locations without the need to analyze 

the whole beam. He substituted three single span beams for 

each span of the continuous beam and determined the load 

on each of them by equations developed for this purpose. 

These equations are simple to apply to various loading and 

number of spans. Still, the spans’ lengths should be equal 

and the results are approximate. 

When a member of a bridge structure is thick relative to 

its length, shear effects noteworthy disturb deformations 

and moments. Gere (1963) took into account the shear 

effects. Moreover, Dowell and Johnson (2011) promoted 

Dowell’s moment closed-form equations to deal with shear 

flexibility; nevertheless, for the joint having a column, the 

moment equilibrium equation have to be used.  

In this research, a new set of formulation is derived for 

rotation and moment propagation to consider shear effects 

in addition to bending flexibility. Then, the formulation is 

set up into closed-form equations for calculation of 
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member-end rotation or moment; individually, call 

rotation/moment propagation (RMP) method. Afterward, 

the authors have written a code for Timoshenko beam 

theory united with finite element (TMB-FE) method 

according to (Karttunen et al. 2016; Kaya and Dowling 

2016; Romanoff et al. 2016). Finally, a comparison is 

performed between the exemplified results derived from the 

new scheme and TMB-FE analysis. 

 

 

2. RMP Method 
 

2.1 Rotation propagation concept 
 

Consider a multi-span bridge frame, as shown in Fig. 

1(a), subjected to an optional load transmitted by slabs 

and/or girders to it. The value of loads can be calculated by 

(such as) girder distribution factors (Tabsh and Mitchell 

2016). Then, the loads are replaced by equivalent joint 

moments, Fig. 1(b). For arbitrary joint i ,
i

M derived from

= -E F

i i i
M M M , where E

i
M  and F

i
M are the external 

joint moment and the sum of fixed-end moments at joint i , 

respectively. Now, assume all joints are free to rotate except 

fixed supports and the bridge is only subjected to 
i

M  (see 

Fig. 1(c)), making a rotation
i

i i iM K = , where
i

K is the 

rotational stiffness of joint i . The rotation propagates to the 

left and right side of i like a wave. Propagated rotation from

i to its left neighbor, -i 1 , is computed by applying the 

rotation propagation factor, i( i 1 )C

− , as  

i 1 i(i 1) i

i iC .− −

 =   (1) 

To how derive
θ

C and K , see section 2.2. 

 

2.2 RMP Formulation 
 

In this section, we derive the governing equations and 

the basic parameters for exerting the shear effects in the 

RMP method. 
 
2.2.1 Deriving of rotation propagation parameters 
The bridge frame of Fig. 1(c) is cut open as Fig. 2. The 

rotational stiffness of the node i is equal to the sum of the 

rotational stiffness of elements connected to i including the 

left and right-hand sub-bridge frames, i( i 1 )K − and i( i 1 )K + , 

respectively, and the column, iK  ,  

i(i 1) i(i 1) i

iK K K K− + = + +  (2) 

The span -i( i 1)  of the left sub-bridge frame is taken 

out (Fig. 3), and a spring having rotational stiffness L

i 1K −
  

is placed instead of the sub-bridge structure and the column 

connected to -i 1 , called beam-spring model, where L

i 1K −
is 

L (i 1)(i 2) (i 1)

(i 1)K K K− − −

−
= +  (3) 

For the model, the relationship between rotations and 

moments including shear effects is written using the 

stiffness method as 

ii(i 1) i(i 1) i(i 1)
i i

i(i 1) L i(i 1) i 1

i 1 i

k k M

0k (K k )

− − −

− − −

−

        
=     

 +           

 (4) 

in which lowercase k  and α  are the rotational stiffness of 

member -i( i 1) and its carry-over factor, respectively, 

derived by (Gere 1963). 

( 1) ( 1)
( 1)

( 1) ( 1)

4 2

2 4

i i i i
i i

i i i i

EI
k

L





− −
−

− −

 +
=  

+ 
 (5) 

i(i 1)
i(i 1)

i(i 1)

1

2

−
−

−

−
 =

+
 

(6) 

 

 
Fig. 1 A bridge frame (a) under an optional load and (b) 

subjected to contributed equivalent joint moments, and (c) 

the schematic illustration for the propagation of rotation 

(or moment). 
 

 

where   exerting the shear effects is calculated by 

i(i 1)

gi(i 1) i(i 1) 2

s i(i 1)

r
12c ( ) (1 )

L

−

− −

−
 = +   (7) 

Herein,
s g

c ,ν,r , and L are correspondingly the section 

shear constant, Poisson’s ratio, the radius of gyration, and 

the span length in the member. Solving Eq. (4) in terms of 

the rotations leads to the following relationships. 

Li(i 1)
(i 1)i i

i i(i 1) L i(i 1) 2

(i 1)

1M
( )

k 1 ( )

−
−

− −

−

  +
 =  

 + −   

 (8) 
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Fig. 2 Cut open the bridge frame at joint i.  

 
Fig. 3 Beam-spring simulation of the left sub-bridge 

structure of Fig. 2 

 

 

i(i 1) i(i 1)
i 1 i

i i(i 1) L i(i 1) 2

(i 1)

M
( )

k 1 ( )

− −
−

− −

−

 −
 =  

 + −   
 

(9) 

where 

L

(i 1)L

(i 1) i(i 1)

K

k

−

− −
 =  (10) 

and rotational stiffness of the beam-spring at i yields 

i(i 1) i(i 1) 2
i(i 1) i(i 1)i

i L

i (i 1)

M ( )
K k 1

1

− −
− −

−

 
= = − 

  +  

 (11) 

The ratio of rotations at -i 1  and i  represents the 

rotation propagation factor as 

i 1 i(i 1)
i(i 1) i

i L

i (i 1)

C
1

− −
−



−

 −
= =

  +
 (12) 

Note, substituting  by 0.5 C represents the rotation 

propagation factor for considering bending flexibility, only 

(Hosseini-Tabatabaei and Rezaiee-Pajand 2012). 

 
2.2.2 Deriving moment propagation formulation 
Recalling Figs. 1(c), 2 and 3, and distributing the 

equivalent moment 
i

M  among the near end of the beam 

members and the column coupled to i as 

i(i 1) i(i 1) i(i 1) i(i 1) i i

i i i i i iM D M , M D M ,  M D M− − + +  = = =  (13) 

where
i( i 1 ) i( i 1 )

i iM , M− +
and 

i

iM  represent the distributed 

moments and 

i(i 1) i(i 1)
i(i 1) i(i 1) i i

i i i

KK K
D ( ), D ( ), D ( )

K K K

− +
− +


= = =  (14) 

i( i 1 ) i( i 1 )D , D− +
 , and iD  are correspondingly their 

moment free-distribution factors. Pay attention that 

definition of these factors is identical to what used by 

moment distribution method. However, they are naturally 

different, because in contrast to the moment distribution 

method all joints are free to rotate, except the fixed 

supports. Then, the distributed moment,
i( i 1 )

iM −
, is 

propagated to the far end of the member -i( i 1)  using the 

moment propagation factor, i(i 1)

MC − , as 

(i 1)i i(i 1) i(i 1)

i M iM C . M− − −=  (15) 

where 

L i(i 1)

(i 1)i(i 1)

M L i(i 1) 2

(i 1)

C
1 ( )

−

−−

−

−

 
=
 + − 

 (16) 

Similarly, for the column at -i 1 , the propagated moment 

is obtained as 

(i 1) (i 1) i 1 i(i 1) i(i 1)

i M iM K . C . M− − − − −


 = −  =  (17) 

in which 

L i(i 1)

(i 1)i(i 1)

M L i(i 1) 2

(i 1)

C
1 ( )

−

−−

 −

−

− 
=
 + − 

 (18) 

where 
i( i 1 )

MC −

 is the moment propagation factor of the 

column connected to -i 1  and 

(i 1)
L

(i 1) i(i 1)

K

k

−

− −


 =  (19) 

Also, propagated moment to the near end of the next 

beam-spring model (see Fig. 3) is  

(i 1)(i 2) (i 1)(i 2) i 1 i(i 1) i(i 1)

i i M iM K . C . M− − − − − − −

= −  =  (20) 

where 

L L i(i 1)

(i 1) (i 1)i(i 1)

M L i(i 1) 2

(i 1)

( )
C

1 ( )

−

− −−

 −

−

 −  
=−

 + − 
 (21) 

Note that the sum of the moment propagation factors is 

equal to zero which leads to the relationship of 

i(i 1) i(i 1) i(i 1)

M M MC (C C )− − −

 = − +  (22) 

If there is no column, i( i 1 )

MC −

  is zero, and consequently

i( i 1 ) i( i 1 )

M MC C− −

= − . 
 

2.2.3 Closed-form equations of RMP method 
Referring to Fig. 1(c) and Eq. (1), for an arbitrary joint, 

m, at the left side of i , we can write 

m (m 1)m m 1

i i

i 1
(m 1)m (m 2)(m 1) i(i 1) i ( j 1) ji

i
j m

i

C .

M
C . C ... C . [ ] C

K

+ +



−
+ + + − +

   
=

 = 

= =       
 (23) 
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Capital Pi, Π, indicates the multiplication of all rotation 

propagation factors from the lower to upper limits specified. 

Similarly, for propagated rotation of a subjective joint, m, at 

the right side of i , we have 

m (m 1)m (m 1)

i i

m 1
(m 1)m (m 2)(m 1) i(i 1) i j( j 1)i

i
j i

i

C .

M
C . C ... C . [ ] C

K

− −



−
− − − + +

   
=

 = 

= =      
 (24) 

Here, for the general case of the bridge structure (Fig. 

1(a)) carrying an optional load, the total rotation of the joint 
m  is derived using the superposition principle as 

qm 1 i 1m
m i j( j 1) i ( j 1) j

i i
i 1 i m 1j i j m

[ C ] [ (C ]
− −

+ +

 
= = += =

 =  +     (25) 

in which, q is the number of joints of the structure. Eq. (25) 

represents the first closed-form equation of RMP Method. 

Remind Eqs. (15), (16), (18), and (21). The propagated 

moments of beam members at the left and right sides of an 

arbitrary joint m taken place at the left side of the joint i are 

m
mn mn i(i 1) j( j 1)

i L i M
j i

M .M C− −


=

=    (26) 

where 

nm

Mmn

L (m 1)(n 1)

M

C if n m 1

C if n m 1+ +



 = +
 = 

= −
 (27) 

and for the column connected to m , 

m
m (m 1)m i(i 1) j( j 1)

i M i M
j i

M C .M C+ − −

 
=

 =   (28) 

Now, consider Fig. 4 as a part of a bridge frame 

subjected to 6M that shows a schematic procedure of the 

moment propagation from the node 6 to 3. The moment
65

6M resulted due to the distribution of 6M among the near 

ends of members connected to joint 6, is propagated up to 

the node 3, using the moment propagation factors.  

We can write a similar equation for propagation of the 

moment iM to any joint m at the right side of the node i , as 

m
mn mn i(i 1) j( j 1)

i R i M
j i

M .M C+ +


=

=    (29) 

where 

nm

Mmn

R (m 1)(n 1)

M

C if n m 1

C if n m 1− −



 = −
 = 

= +
 (30) 

and for the column connected to m , we have 

m
m (m 1)m i(i 1) j( j 1)

i M i M
j i

M C .M C− + +

 
=

 =   (31) 

The use of the superposition principle, when a freewill 

load acting on the bridge frame, leads to obtaining the total 

moments of the beams and the column connected to the 

node, as 

m 2m 1
mn F mn mn i(i 1) j( j 1)

mn m R i M
i 1 j i

q i 1
mn i(i 1) ( j 1) j

L i M
i m 1 j m 1

M M M [ M ( C )]

           [ M ( C )]

−−
+ +


= =

−
− +


= + = +

= + +  

+  
 

(32) 

 

 

 

Fig. 4. A schematic diagram of moment propagation 
 

 
Fig. 5. Member-end moments, which can directly/indirectly be 

determined by Dowell’s equations 
 

 

m 2m 1
m F m (m 1)m i(i 1) j( j 1)

m m M i M
i 1 j i

q i 1
(m 1)m i(i 1) ( j 1) j

M i M
i m 1 j m 1

M M M C . M C

         C M C

−−
− + +

 
= =

−
+ − +

 
= + = +

  = + +  

+  

 

 

(33) 

where F

mM  is the fixed-end moment of the column jointed to

m . These moments, for an arbitrary member ij under a 

point load on, are (Gere 1963). 

( )

( )

2
F

ij 2

2
F

ji 2

L1Pbb b
M ,

1 2L

L1Pb b b
M

1 2L

 +   = −
 + 
  

 +   =
 + 
  

 (34) 

in which b is the distance from the left joint of the span to 

the point load, and b L b = − . 

In all closed-form equations,
n

j
i

C 1 if n i=  . The Eqs. 

(32) and (33) are the second and third closed-form 

equations of RMP method, respectively. 

Seeking in RMP closed-form equations show that the 

used parameters have exact-certain values and there is not 

required to restrain and release the joints, repetitively, thus 

the RMP method is efficient. Moreover, the RMP method 

can directly obtain any member-end moment, at each joint, 

while Dowell’s techniques (Dowell 2009; Dowell and 

Johnson 2011; Dowell and Johnson 2012) calculate some of 

them through closed-form equations, straightly and apply 

static moment equilibrium equations for others. For 

example, as shown in Fig. 5, Dowell’s equations can 
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calculate the moments of, 
56

5M and 
54

5M for joint 5, 

directly but the moment of 
' 5

5M , denoted by circle, should 

be derived from moment equilibrium equation at 5. 
 

2.3 Step-by-step process of RMP 
 

Now, to perform hand solution and to more realize the 

concepts of RMP method, a step-by-step procedure is 

suggested as 
 

 

1. Calculating fixed-end moment and rotational 

stiffness for all members, and equivalent joint 

moments for all joints. 

2. Gaining the stiffness of equivalent springs, LK and 
RK , from left to right and vice versa, as well as, 

propagation factors, C or MC and free-distribution 

factors, D. 

3. Selecting each joint i having equivalent node 

moment, iM , and calculating rotation of joint i for 

rotation propagation analysis, or distributed 

moments for the moment propagation. 

4. Computing the propagated rotations or moments 

from the joint i to other nodes.  

5. Performing steps 3 and 4 for all loaded joints.  

6. Summing the results of actions 3-5 to calculate 

member-end rotations or moments. Note that 

moment propagation procedure totalizes by adding 

fixed-end moments. 
 

2.4 Paths of propagation and modelling 
 

Consider a continuous beam carrying equivalent joint 

moments on nodes 4 and 6, shown in Fig. 6(a).  
The rotation or moment propagates from the joints (e.g., 

node 4) towards ends while the beam-spring simulation and 

parameters calculation including the propagation factors 

and the rotational stiffness coefficients start from both ends 

of the structure. 

The desirable parameters should only be derived one 

time in each direction.  For example, to propagate the 

moment M4 to point 1, it is necessary to compute 21K , 32K , 
43K , 21C , 32C , and 43C  (Fig. 6(b)). Then, for propagating 

the moment 6M to the node 1; 54K , 65K , 54C , and 65C  

should be obtained only (Fig. 6(c)), and one can adopt 21K , 
32K , 43K , 21C , 32C , and 43C  from previous calculations. 

 
 

 
Fig. 7. (a) Two-node and (b) three-node Timoshenko beam 

finite elements 
 

 
Fig. 8. The bridge frame used in examples 1 and 3 

 
Fig. 6. The propagating and modeling paths 
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3. Timoshenko beam finite element formulation 

 

Herein, we present the element-level formulation of 

TMB finite element in brief. Applying FE analysis, a 

bridge-type structure can be meshed by one dimensional 

(1D) element with n-node , a polynomial interpolates the 

desired quantity (such as deformation) over each, and 

adjacent segments share the degree of freedoms (DOFs) at 

connecting nodes (Eslami 2014). 

Figs. 7(a)-(b) represent the configuration of a two-node 

element (2-NE) and a three-node element (3-NE) (Regueiro 

and Duan 2015), respectively, in which each node has two 

degrees of freedom, including one displacement and one 

rotation. 

The stiffness matrix for both elements can be derived by 

(see Appendix) 

L
T

0
[S] [B] [M][B]dx=   (35) 

where 

S

EI 0

[M] GA0
c

 
 =
 
 

 (36) 

EI and GA are respectively the flexural and shear 

rigidity of cross-sections, and [B] is the strain matrix. By 

rewriting Eq. (35) for a nodal demonstration we have 

L
T

ij i j
0

[S] [B ] [M][B ]dx,

i, j 1,2 for 2 NE, and 1,2,3 for 3 NE

=

= − −

  (37) 

in which the nodal strain matrix for a specified node, m, is 

m

m

m m

0 dN dx
[B ] , m i and / or j

dN dx N

 
= = 

− 
 (38) 

In above equation, Nm is the nodal shape function. The 

arrays of the shape functions accompanied by the nodal 

deformation vector and strain matrix are 

2 node 1 2

x x
[N] [N N ] [1 , ]

L L− = = −  (39) 

3 node 1 2 3[N] [N N N ]

2x x x x x 2x[(1 )(1 ) , ( )(1 ) , ( )(1 )]
L L L L L L

− =

−= − + − −
 

(40) 

Illustrating the vector of the nodal load, {f} , and the 

equivalent one, Eq{f} , the elemental governing equation is 

 

Eq[S]{d} {f} {f}= +  (41) 

where 

T

m m m{d } {v , }=   (42) 

T

m Eq m x a{f } {N P , 0} ==  (43) 

where P is vertical point load on the elements (see Figs. 

7(a)-(b)). In this paper, the authors provided a convenient 

computer program corresponding to each of the elements to 

analyse any bridge-type structure. Completing the process 

of finite element analysis consequences a set of algebraic 

equations to be solved, simultaneously. The number of 

which and the convergence of the analysis are dependent 

upon mesh refinement. 

 

 
4. Examples 

 

4.1 Example 1 
 

Fig. 8 shows a bridge frame having deep members with 

ηAB=ηBF=ηDH=0.298616, ηBC=ηCD=ηDE=ηCG=0.191114, and 

EI=1 for all members. 

The step-by-step procedure of rotation propagation is 

applied to determine member-end rotations as 

Step 1) Fixed-end moments of the span BC are 

determined by Eq. (34), and then the equivalent joint 

moments are derived, MB=33576.424 and MC=-60923.576. 

Also, using Eqs. (5)-(6), k=0.0359781 and α=0.305133 are 

obtained for members AB, BF, and DH; and k=0.0317040 

and α=0.369167 for the others. 

   Step 2) For the columns of BF and DH due to 

constraining joints of F and H, γ=∞ resulted in equality of 

Eqs. (5) and (11), consequently K'B=K'D=kBF= 

kDH=0.0359781. For the column of CG pined at G, γ=0 thus, 

K'C=0.0273833. For determination of rotation propagation 

parameters, the bridge is just modeled from A to C and E to 

B because the joints B and C have the equivalent moments, 

only. To demonstrate how to calculate the required 

parameters, for example, the calculation of parameters from 

E to C is presented as   

a) Beam-spring model DE, Fig. 9(a) 
R R

E E

DE DE DE 2 R

E

K 0 0

K k [1 ( ) / ( 1)] 0.0273833

=   =

= −   + =
 

DE DE R

E

DH DH

H

 C / ( 1) 0.3691665

       C / ( 1) 0. (Note : )





 = −  + = −

= − + =  = 
 

  
(a) Sub-structures DC, DH, and DE. (b) Sub-structures CB, CG, and CD. 

Fig. 9. Modeling some parts of the bridge. 
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b) Beam-spring model CD, Fig. 9(b) 
R DE D

D

R R DE

D D

CD CD CD 2 R

D

CD CD R

D

CG CG R

D

K K K 0.0633615,

K / k 1.998526

K k [1 ( ) / ( 1)] 0.0302631

C / ( 1) 0.123116

C / ( 1) 0.369167





= + =

 = = 

= −   + =

= −  + = −

= −  + = −

   

Similarly, we compute the other parameters. Then, the 

rotational stiffness of joints is acquired. For instance 
BA B BC

BK K K K 0.098777,= + + =

 Step 3) The rotation at B produced by MB is obtained, 

typed in column 3-row 6 of Table 1, 
B

B B BM / K 339920.02 = =

 Step 4) The rotation 
B

B  propagates to the other joints 

 (columns 2 and 4-6 of row 7 in Table 1) as 
A B BA C B BC

B B B B

D C CD E D DE

B B B B

103720.9 44526.35

5481.906 2023.736

.C , .C

.C ,    .C

 

 





− −

−

=  =  =  =

 =  =  = =
 

Step 5) Similarly, the steps 3-4 are repeated for the other 

loaded joint C. 

Step 6) Total amount of rotation at any joint, produced 

by both (all) equivalent joint moments, are accessible in the 

tenth row of Table 1. For example 

A A

A B C

B B

B B C

128373.3

420711.96

 =  +  =



−

=  +  =
 

To directly determine a single member-end-rotation 

(such as D ), it is not necessary to calculate all rotation 

propagation parameters. Those values need to obtain D  

were bolded in Table 1. It is just sufficient to institute them 

in  

 
BC CD CD

D B B C C[M / K ][C C ] [ 8M 90731.34/ K ][C ]   = + =  

 
4.2 Example 2 
 
The bridge of example 1 is analyzed by moment 

propagation method for directly determining member-end 

moments. Thus, 

Step 1) The fixed-end moments, the equivalent joint 

moments, rotational stiffness of members and their carry-

over factors are as equal as example 1. 

 

Step 2) The values of  , all rotational stiffness of the 

beam-spring models from left to right and vice versa and 

the rotational stiffness of joints are the same as example 

1.The values of
 
  and moment propagation and free-

distribution factors should be determined. For example, we 

can write for 

a) beam-spring model DE 
DE R DE R DE 2

M E E

DE DE

M M

C ( . ) / [ 1 ( ) ] 0.,

C C 0. 

= −   + −  =

= =
, 

b) and for beam-spring model CD   
R R DE

D E

R D DE

D

K / k 1

1

.998526,

1K / 348k .1

 = =

  = =
 

R CD

CD D

M R CD 2

D

R R CD

CB D D

M R CD 2

D

0.257766

0.111400

C ,
1 ( )

( )
C

1 ( )


− 
= =
 + − 

−  − 
−


= =
 + − 

 

R CD

CB D

M R CD 2

D

C 6
)

0.146
(

36
1



− 
= =
 + 

−
−

 

In the same way, one can obtain the other moment 

propagation parameters, written in table 2. Now, the values 

of the free-distribution factors are derived. For instance 
CB CB

C

CD CD

C

D K / K ,

D K / K ,

0.34481

0.343958

= =

= =
 

CG C C

C 3D / 0.D K 3K 1123 = = = , 

BA BA

BD ,0.K 33/ K 032= =  

BC BC

B

BF C B

B

0.30544

0.36423

D K / K ,

D D K / K

= =

 = = =
 

Step 3) Distributing BM  among all members connected

 to joint B, 
BA BA

B B

BC BC

B B

BF B

B B

11091.024

10255.714

12229.686

DM M .D ,

DM M .D

DM M .D

= =

= =

= =  

Step 4) Propagating the distributed moments toward A 

and E. For example,  

 

Table 1 Step-by-step process of rotation propagation, example 1 

E  D  C  B  A  Nodes 

ED  DE DH DC  CD CG CB  BC BF BA  AB    ij  

-0.11961  -0.36917 0 -0.13088  -0.12312 
-

0.11961 
-0.11668  

-

0.13099 
0 

-

0.30513 
 -0.10750 

 
  Cθ 

0  0  -60923.576  33576.424  0    Mi 

0.030304  0.093534  0.087985  0.098777  0.034798    Ki 

-  -  -  339920.02  -    θB
B 

-2023.736  5481.906  -44526.35  -  -103720.9    θB
i≠B 

-  -  -692431.9  -  -    θC
C  

-31471.24  85249.442  -  80791.949  -24652.32    θC
i≠C 

-33494.98  90731.348  -736958.3  420711.96  -128373.3  ∑θi 
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AB BA BA

B B M

CB BC BC

B B M

CG BC BC

B B M

CD BC BC

B B M

PM DM .C 0.,

PM DM .C

PM DM .C ,

PM DM .C ,

2566.787

1219.280

1347.507





= =

= =

−

= =

=

−

=

 

Step 5) Reiterating the steps 3 to 4 for the joint C. The 

results are available in Table 2, 

Step 6) Adding the consequences of stages 3-5 and the 

fixed-end moments to achieve the final member-end 

moments, being accessible in the last row of Table 2. 

Lay emphasis on that the moment propagation method is 

capable to calculate a single member-end moment by the 

moment closed-form equation of (32), directly. For example,  
BC F BC BC CB

BC B L CM M M [M 6(1)] ,288 3.56−= + + =  

where BC CB

L MC =

 The required moment propagation parameters and 

resulted moments to gain MBC are available in Table 2 with 

bolded font. Note that for determination of MBC by Dowell’s 

equations, after calculating MBA and MBF, the moment 

equilibrium equation at joint B should be applied.  
 

4.3 Example 3 
 

Fig. 10 shows a continuous beam in which geometrical 

and mechanical properties of members are as the same as 

example 1. Herein, the member-end moments are directly 

determined using moment propagation process. The 

computed free-distribution and moment propagation factors 

are attainable in Table 3. Note that there is no column at all  

 

 

Fig. 10. A continuous beam for examples of 3-4. 

 

 

joints, so the rotational stiffness of spring for each beam-

spring model is equal to the rotational stiffness of its 

neighbor end of the previous beam-spring model (
R i( i 1 )

iK K += &
L i( i 1 )

iK K −= ), and   will be zero, thus 

M MC C = − . For example 

R EF

EF EFF

M MR EF 2

F

C 0.369 6 C
1 ( )

1 7 

 
= = = −
 + − 

 

Also, due to the fixed-support taking place at G, 
R

FK and 

R

E  will be infinite, so 

R FG

FG FGG

M R FG 2

G

C
1 ( )

 
= = 
 + − 

 

Pay attention, for computation of MCD, only the bolded 

values in Table 3 are necessary. In addition, one can derive 

this moment from the moment closed-form equation as 

CD F CD CD DC

CD C L DM M M [M (1)] 1179.21,= + + = −  

Table 3 Step-by-step process of moment propagation, example 3 

G  F  E  D  C  B  A 
 

Nodes 

GF  FG FE  EF ED  DE DC  CD CB  BC BA  AB 
 

  ij  

0  0.36917 0.15443  0.15038 0.19135  0.20501 0.19169  0.19184 0.20072  0.19136 0  0.14479 
 

  CM 

0  0.48076 0.51924  0.53581 0.46165  0.50133 0.498673  0.49912 0.50088  0.47453 0.52547  1 
 

  Di 

0  0 0  0 0  0 1539.551  -2060.449 0  0 0  0 
 

  MF 

-  - -  - -  - -  1028.405 1032.043  - -  - 
 

  DMC 

-2.245  -6.082 6.082  40.446 -40.446  -197.292 197.292  - -  207.147 -207.147  0 
 

  PMC 

-  - -  - -  -771.818 -767.733  - -  - -  - 
 

  DMD 

-8.784  -23.794 23.794  158.229 -158.229  - -  -147.163 147.163  29.538 -29.538  0 
 

  PMD 

-11.03  -29.88 29.88  198.67 -198.67  -969.11 969.11  -1179.21 1179.21  236.68 -236.68  0 

 

Mmn 

=∑M 

Table 2 Step-by-step process of moment propagation, example 2 

E  D  C  B  A  Nodes 

ED  DE DH DC  CD CG CB  BC BF BA  AB  ij  

0.26109  0  0.25038  0.25777  0.26385  0.25028  0  0.20434  CM 

-0.14200  0  -0.11878  -0.14637  -0.13837  -0.11889  0  -0.11114  CM' 

-0.11907  0  -0.13160  -0.11140  -0.12549  -0.13139  0  -0.093201  CM''
 

1  0.29276 0.38465 0.32258  0.343958 0.311233 0.34481  0.30544 0.36423 0.33032  1  DiorD'i 

0  0 0 0  0 0 60923.576  -33576.424 0 0  0  MF 

-  - - -  - - -  10255.714 12229.686 11091.024  -  DMB 

0  150.113 197.229 -347.342  -1347.507 -1219.280 2566.787  - - -  0  PMB 

-  - - -  -20955.156 -18961.093 -21007.327  - - -  -  DMC 

0  2334.414 3067.115 -5401.529  - - -  -5542.850 2906.743 2636.107  0  PMC 

0  2484.53 3264.34 -5748.87  -22302.66 -20180.37 42483.04  -28863.56 15136.43 13727.13  0  
Mmn 

=∑M 
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in which CD DC

L MC =  

   

4.4 Example 4 
 

A bridge-type structure is usually characterized by 

relatively concentrated convoy loads, and several load cases 

(Jansseune and Corte 2017). In this part, to investigate the 

effects of load change on volume of computations, the  

 

 

continuous beam of example 3 is subjected to a gravity 

point load of 180, located on span BC, at 1/3 from B. The 

solution involves only 1) computing the equivalent 

moments MB=2436.94 and MC=-3133.80, and 2) putting 

them in the moment closed-form equation or the step-by-

step procedure. Note that the required moment propagation 

parameters were previously calculated in example 3. For 

instance, 
CD CD BC BC

C M BM 9(M )D (C )[( ] 17) 85.M D 4197= + = −  

 

4.5 Comparing RMP and TMB-FE results 
 

In this stage, the bridge-type structures of the examples 

section are re-analyzed using a computer code written by 

the authors based on TMB-FE model. The structures were 

divided into a different number of elements, contributed to 

various degrees of freedoms (DOFs).  Fig. 11 portrays the 

error curves of a sequence of models that involve changing 

in DOFs of the structure.  
The error values convey the differences between the 

end-moments obtained by TMB-FE model and what 

derived by RMP method, in percent. One can observe that 

the moment estimation oscillatory converges to the 

response of the presented approach by rectifying the mesh, 

for instance, to reach to RMP accuracy by the 3-NE, the 

bridge frame should divide into at least 14 elements 

including 56 DOFs. Also, the convergence rate of the 2-NE 

is much less than 3-NE. Furthermore, using 3-NE, the errors 

are coming down from 31 and 17 percent to negligible 

amount for the bridge frame and the continuous beam, 

respectively, due to refining the mesh. Similarly, they are 

decreasing from 41 and 24 percent to insignificant values 

by applying 2-NE. 

 
 
5. Conclusions 

 

In this study, we derive a new formulation for 

calculation of exact member-end rotations or moments of 

bridge-type structures, individually, including both flexural 

and shear effects. A comparison is conducted to provide the 

superiority of RMP algorithm in respect to the algorithms of 

the methods available in the literature. The contributions 

show that contrary to RMP method; Dowell and Johnson's 

methodology needs help from the static moment 

equilibrium equations, moment distribution method 

involves successive moment balance, even for a single 

member-end rotation or moment and for each load case, and 

slope distribution method, which does not include shear 

effects, comprises an iterative algorithm resulting in 

inaccurate responses. Moreover, certifying numerical 

examples show that RMP is simple, exact and in contrast to 

TMB-FE scheme does not require a mesh of discrete 

elements leading to a set of equations, which should be 

solved, simultaneously. Moreover, the results computed by 

the TMB-FE method converge in the RMP responses, in a 

fluctuating manner, when the mesh includes 14 elements of 

3-node, comprising 56 DOFs. 

These superiorities make highlight the capability of 

RMP in general practical cases, where a bridge-type 

structure bears several load patterns and (or) has many 

indeterminacies. 
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Appendix 
 

2

1 4 3

2 node

2 1 2

1 4 3 1 4 3

3S S

3S 3S 10S Y
[S]

6S 3S 6S M

3S 3S 5S 3S 3S 10S

−

 
 

+ =
 − −
 

− + − +  

 
(A-1) 

2

1 5

2 1 2

3 node

1 6 8

2 1 2 1 2

1 7 1 6 1 5

7S

3S S S

8S 4S 16S Y
[S]

4S S 0 S M

S S 8S 4S 7S

S S 4S S 3S S

−

 
 
 
 − −

=  
 
 − −
 
− −  

 

 

 

(A-2) 

1 2 3

S S S

4 5 4 3 6 4 3

7 4 3 8 4 3

GA GA GALS , S , S ,
6c 6Lc 30c

EIS , S 7S 3S , S 8S 2S ,
3L

S S S , S 16(S S )

= = =

= = + = − +

= − = +

 

 

(A-3) 
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