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1. Introduction 
 

It is well known that the elementary theory of bending 

the beam based on Euler-Bernoulli hypothesis disregards 

the effects of shear deformation and stress concentration. 

This theory is suitable for slender beams rather than thick or 

deep beams since it is based on the assumption that the 

sections normal to neutral axis before bending remain so 

during bending and after bending, implying that the 

transverse shear strain is zero. Since this theory neglects the 

transverse shear deformation, it underestimates deflections 

in the case of thick beams where the effects of shear 

deformation are significant. The discrepancies in the 

elementary theory of beam bending and first-order shear 

deformation theory require the improvement of higher-order 

or equivalent refined shear deformation theories. Euler-

Bernoulli elementary theory of bending (ETB) of beam 

(2011) disregards the effect of shear deformation. The first-

order shear deformation theory (FSDT) of Timoshenko 

(1921) includes refined effects such as the rotatory inertia 

and shear deformation in the beam theory. Cowper (1966) 

gave a refined expression for the shear correction factor for 

different cross-sections of the beam. Levinson (1981), 

Bickford (1982), Rehfield and Murthy (1982), Krishna 

Murty (1984), Baluch et al. (1984), and Bhimaraddi and 
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Chandrashekhara (1993) presented parabolic shear 

deformation theories, assuming a higher variation of axial 

displacement in terms of thickness coordinate. Kant and 

Gupta (1988) and Heyliger and Reddy (1988) presented 

higher-order shear deformation theories for the static and 

free vibration analyses of shear-deformable uniform 

rectangular beams. There is an alternative class of refined 

theories, which consists of trigonometric functions to 

characterize the shear deformation effects through the 

thickness of the beam. Vlasov and Leont’ev (1966) and 

Stein (1989) developed refined shear deformation theories 

for thick beams, including sinusoidal function in terms of 

thickness coordinate in the displacement field. However, by 

applying these theories, shear stress-free boundary 

conditions are not satisfied on the top and bottom surfaces 

of the beam. Abdelaziz et al. (2017) developed a hyperbolic 

shear deformation theory and applied for the bending, 

vibration and buckling of PGM sandwich plate with various 

boundary conditions. Meziane et al. (2014) presented a 

shear deformation theory for the vibration and buckling of 

exponentially graded material sandwich plate resting on 

elastic foundations under various boundary conditions. The 

displacement field of the present theory was chosen based 

on nonlinear variations in the in-plane displacements 

through the thickness of the plate. Ghugal and Sharma 

(2009) developed the variationally consistent, hyperbolic 

shear deformation theory for flexural analysis of thick 

beams and obtained the displacements, stresses, and 

fundamental frequencies of flexural mode and thickness 

shear modes from free vibration of simply supported beams. 
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Abstract.  The theories having been developed thus far account for higher-order variation of transverse shear strain through the 

depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. A shear correction 

factor, therefore, is not required. In this paper, the effect of surface on the axial buckling and free vibration of nanobeams is studied 

using various refined higher-order shear deformation beam theories. Furthermore, these theories have strong similarities with Euler–

Bernoulli beam theory in aspects such as equations of motion, boundary conditions, and expressions of the resultant stress. The 

equations of motion and boundary conditions were derived from Hamilton’s principle. The resultant system of ordinary differential 

equations was solved analytically. The effects of the nanobeam length-to-thickness ratio, thickness, and modes on the buckling and 

free vibration of the nanobeams were also investigated. Finally, it was found that the buckling and free vibration behavior of a 

nanobeam is size-dependent and that surface effects and surface energy produce significant effects by increasing the ratio of surface 

area to bulk at nano-scale. The results indicated that surface effects influence the buckling and free vibration performance of 

nanobeams and that increasing the length-to-thickness increases the buckling and free vibration in various higher-order shear 

deformation beam theories. This study can assist in measuring the mechanical properties of nanobeams accurately and designing 

nanobeam-based devices and systems. 
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Challamel and Wang (2011) studied the lateral-torsional 

buckling problem of Eringen’s study based on the static and 

dynamic deformation of thick, functionally graded, elastic 

plates by using higher-order shear and normal deformable 

plate theories and meshless local Petrov–Galerkin method. 

Rao and Ganesan (1995) investigated the harmonic 

response of tapered composite beams by employing finite 

element model based on a higher-order shear deformation 

theory. Khdeir and Reddy (1997) presented an exact 

solution to the governing equations for bending the 

laminated beams. They employed the classical, the first-

order, the second-order, and the third-order beam theories in 

their analysis. They studied the effect of shear deformation, 

the number of layers, and the orthotropic ratio on the static 

response of composite beams. They found big differences 

between the deflections predicted by the classical beam 

theory and those predicted by the higher-order beam 

theories, especially when the ratio of beam length to its 

height was low due to the shear deformation effects. 

Eisenberger (2003) proposed exact stiffness coefficients, 

including the cubic variations of the axial displacements 

over the cross-section of the beam, for isotropic beam by 

employing a simple higher-order theory. Subramanian 

(2006) proposed the free vibration analysis of composite 

beams using finite elements based on two higher-order 

shear deformation theories. Wang et al. (2010) studied these 

small-scale structures and presented some scale effects that 

can be captured using nonlocal mechanics. Bouafia et al. 

(2017) investigated size dependent bending and free 

flexural vibration behaviors of FG nanobeams using a 

nonlocal quasi-3D theory in which both shear deformation 

and thickness stretching effects were introduced. Zemri et 

al. (2015) presented a nonlocal shear deformation beam 

theory for bending, buckling, and vibration of FG 

nanobeams using the nonlocal differential constitutive 

relations of Eringen. Bounouara et al. (2016) presented a 

zeroth-order shear deformation theory for free vibration 

analysis of FG nanoscale plates resting on elastic 

foundation. Ahouel et al. (2016) developed a nonlocal 

trigonometric shear deformation beam theory based on 

neutral surface position for bending, buckling, and vibration 

of FG nanobeams using the nonlocal differential 

constitutive relations of Eringen. Chaht et al. (2015) studied 

the bending and buckling behaviors of size- dependent 

nanobeams made of FGMs including the thickness 

stretching effect. Al-Basyouni et al. (2015) proposed an 

unified beam formulation and a modified couple stress 

theory that considered a variable length scale parameter in 

conjunction with the neutral axis concept to study bending 

and dynamic behaviors of FG micro beam. Matsunaga 

(1996-1999) analyzed the natural frequencies and buckling 

of deep isotropic beams subjected to axial stress by using 

the approximate one-dimensional higher-order theories.  

Nguyen et al. (2014) present an analytical solution for the 

size-dependent static analysis of the functionally graded 

(FG) nanobeams with various boundary conditions based on 

the nonlocal continuum model. Thai et al. (2017) presented 

a numerical model for the bending, buckling and free 

vibration analyses of FG microplates. The size-dependent 

effect was captured by using the modified strain gradient 

elasticity theory with three length scale parameters, whilst 

the shear deformation effect was accounted by using the 

third-order shear deformation theory. Thai et al. (2017) 

used the isogeometric analysis to investigate the post-

buckling behavior of FG microplates subjected to 

mechanical and thermal loads. The modified a strain 

gradient theory with three length scale parameters was used 

to capture the size effect. Nguyen et al. (2015) proposed an 

efficient computational approach based on refined plate 

theory including the thickness stretching effect in 

conjunction with isogeometric formulation for the size-

dependent bending, free vibration and buckling analysis of 

FG nanoplate structures. Trinh (2016) investigated the 

mechanical behaviours of FG microbeams based on the 

modified couple stress theory. The material properties of 

these beams were varied through beam's depth and 

calculated by using classical rule of mixture and Mori–

Tanaka scheme. Trinh (2017) presented the static bending, 

free vibration and buckling behaviours of FG sandwich 

microplates under mechanical and thermal loads. Governing 

equations of both higher-order shear deformation and quasi-

3D theories were derived based on the variational principle 

and modified couple stress theory. Trinh (2018) studied the 

free vibration behaviour of bi-dimensional FG microbeams 

under arbitrary boundary conditions. Based on the frame 

work of the modified couple stress theory and Hamilton's 

principle, governing equations of motion were developed 

for the bi-dimensional FG microbeams using a quasi-3D 

theory. A new nonlocal hyperbolic refined plate model for 

free vibration properties of functionally graded (FG) plates 

was presented by (Belkorissat et al. 2015a, b). This 

nonlocal nano-plate model incorporates the length scale 

parameter, which can capture the small-scale effect. 

(Tebboune et al. 2015a, b) presented a trigonometric shear 

deformation theory for thermal buckling analysis of 

functionally graded plates. The theory accounts for 

sinusoidal distribution of transverse shear stress, and 

satisfies the free transverse shear stress conditions on the 

top and bottom surfaces of the plate without using shear 

correction factor. Bourada et al. (2015) developed a refined 

trigonometric higher-order beam theory for bending and 

vibration of functionally graded beams. In this theory, in 

addition to modeling the displacement field, the thickness 

stretching effect is also included.  Hebali et al. (2014) 

developed a quasi-three-dimensional (3D) hyperbolic shear 

deformation theory for the bending and free vibration 

analysis of functionally graded plates. Unlike any other 

theory, the number of unknown functions involved in 

displacement field is only five, as against six or more in the 

case of other shear and normal deformation theories. 

Bennoun et al. (2016) developed a new five-variable 

refined plate theory for the free vibration analysis of 

functionally graded sandwich plates. Bousahla et al. (2016) 

presented a four-variable refined plate theory for buckling 

analysis of functionally graded plates subjected to uniform, 

linear and non-linear temperature rises across the thickness 

direction. Belabed et al. (2014) presented an efficient and 

simple higher order shear and normal deformation theory 

for functionally graded material (FGM) plates. By dividing 

the transverse displacement into bending, shear and 
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thickness stretching parts, the number of unknowns and 

governing equations for the present theory is reduced. 

Surface stress and surface elasticity have been accepted as 

important factors that may clarify the experimentally 

measured size dependent elastic modulus of nanobeams. 

Some analytical methods have been suggested to integrate 

these surface effects into the Euler-Bernoulli law for 

elementary beam theory to examine the elastic behavior of 

nanobeams. According to the performed researches and 

corresponding results, a gap exists in open literature that is, 

study the surface effect via high order theory. This paper 

aims to fill the gap. In the present paper the buckling and 

transverse vibration of nanobeams under uniaxial load were 

studied based on various refined higher-order shear 

deformation beam theories. The aim is to investigate 

accurately the effect of geometrical properties such as 

thickness and length-to-thickness ratio of the nanobeams 

when compared to the solutions published in the literature. 
 

 

2. Governing equations 
 

Consider a beam with length L and rectangular cross-

section b×h, where b is the width and h is the height, as Fig. 

1 shows. In this figure, (x, y, z) coordinates represent the 

length, width, and height of the beam. The formulation is 

limited to linear elastic material behavior. The displacement 

fields of various shear deformation beam theories are 

selected based on the following assumptions: (1) the axial 

and transverse displacements are partitioned into bending 

and shear components, respectively; (2) the bending 

component of the axial displacement is similar to that given 

by the classical beam theory (CBT); and (3) the shear 

component of the axial displacement gives rise to the 

higher-order variation of shear strain and, hence, to shear 

stress through the depth of the beam in such a way that 

shear stress vanishes on the top and bottom surfaces. Based 

on these assumptions, the displacement fields of various 

higher-order shear deformation beam theories are given in a 

general form as follows: 

(x, z) (x) ( )
x

b sw w
u u z

x x
f z

 
= −

 
−

 

(x, z) 0
y

u =
 

(x, z) (x) (x)
z b su w w= +

 

(1) 

where  (𝑢𝑥, 𝑢𝑧) are the axial displacement and the 

transverse displacement of points of the beam, 𝑤𝑏  and 

𝑤𝑠 are the bending and shear components of transverse 

displacement of a point on the mid-plane of the beam, 

respectively, and f(z) is a shape function determining the 

distribution of the transverse shear strain and shear stress 

through the depth of the beam. The shape function f(z) is 

selected to satisfy the stress-free boundary conditions on the 

top and bottom surfaces of the beam; thus a shear correction 

factor is not required. Boukhari et al. (2016) developed a 

shear deformation theory for wave propagation analysis of 

an infinite FG plate in the presence of thermal 

environments.  

 
Fig. 1 Geometry and coordinate of a nanobeam with 

rectangular cross-section under axial load 
 

 

By dividing the transverse displacement into bending 

and shear parts, the number of unknowns and governing 

equations of the present theory was reduced. Ait Yahia et 

al. (2015) developed various higher-order shear 

deformation plate theories for wave propagation in FG 

plates having porosities. Bouderba et al. (2016) developed a 

first-order shear deformation theory to analysis the thermal 

buckling response of FG sandwich plates. Bousahla et al. 

(2016) presented a four-variable refined plate theory for 

buckling analysis of FG plates subjected to uniform, linear 

and non-linear temperature rises across the thickness 

direction. Beldjelili et al. (2016) discussed the hygro-

thermo-mechanical bending behavior of sigmoid FG plate 

resting on variable two-parameter elastic foundations using 

a four-variable refined plate theory. Tounsi et al. (2013) 

presented a refined trigonometric shear deformation theory 

taking into account transverse shear deformation effects for 

the thermoelastic bending analysis of FG sandwich plates. 

Saidi (2016) proposed an hyperbolic shear deformation 

theory for vibration analysis of thick FG rectangular plates 

resting on elastic foundations. The displacement fields of 

the third-order beam theory (TBT) based on Reddy (1984), 

sinusoidal beam theory (SBT) based on Touratier (1991), 

hyperbolic beam theory (HBT) based on Soldatos (1992), 

and exponential beam theory (EBT) based on Karama et al. 

(2003) can be obtained from Eq. (1) by using different 

shape functions f(z) given in Table 1. It is noted that the 

displacement fields of the proposed theories are different 

from those of the existing higher-order theories such as 

TBT (1984), SBT (1991), HBT (1992), and EBT (2003). In 

the proposed theories, the transverse displacement 𝑢𝑧 is 

partitioned into the bending and shear parts components 

(see Eq. (1)), whereas the transverse displacement of the 

above-mentioned theories is not partitioned into the bending 

and shear parts. The partition of the transverse displacement 

into the bending and shear parts helps identify the 

contributions of shear parts and bending to the total 

transverse displacement. The non-zero strains read: 

2 2

2 2

b s
xx

w wu
z f

x x x


 
= − −
    

(2) 

1 s s
xz

w wf
g

z x x


  
= −  

     
(3) 

where g(z)= ( )1 /f z−  are the shape functions of 

the transverse shear strains given in Table 1, for various 

beam models. These shape functions represent the 

distribution of the transverse shear strains and, hence, the 

transverse shear stresses through the depth of the beam. 

177



 

Omid Rahmani and S. Samane Asemani 

Table 1 Shape functions 

Model f(z) g(z)=1-df/dz 

TBT based on 

Reddy 

3

2

4

3

z

h  1-

2

2

4z

h  

SBT Touratier sin( )
h z

z
h




−

 
cos( )

z

h



 
HBT based on 

Soldates 

1
sinh( ) zcosh( )

2

z
z h

h
− +

 

1
cosh( ) cosh( )

2

z

h
−

 

EBT based on 

Karama et al 
22(z/h)z ze −−  

2
2

2(z/h)

2

4
1

z
e

h

− 
− 

   
Classic Beam 

Theory (CBT) z  0 

 

 

3. Surface elasticity and its influence on beam 
deformation 

 

The increasing contribution of surface properties is 

believed to be the main reason for the effect of size on 

materials. In fact, the effect of size on the mechanical 

properties of materials is analyzed primarily within the 

framework of surface effects. The surface atoms have a 

lower co-ordination number compared to the bulk atoms, 

i.e. they have fewer neighbors (Sun et al. 2002a, b). As a 

result, the charge density in the vicinity of the surface is 

redistributed.  Correspondingly, the nature of the chemical 

bond and the equilibrium interatomic distances on the 

surface are different from those inside the bulk (Haiss 

2001). Researchers have studied the effects of surface on 

nanoscale materials such as nanoplates, nanowires, and 

nanorods (Miller and Shenoy 2000, Dingreville and 

Cherkaoui 2005, He et al. 2004, Shenoy 2002, Shenoy 

2005, Sharma et al. 2003). The effects of surface on the 

mechanical behavior of nanomaterials can be examined by 

considering surface energy and/or surface stresses. 

According to Gibbs (1906) and Cammarata (1994), the 

surface stress tensor 𝜎𝛼𝛽
𝑠  is related to the surface energy 

density γ through the surface strain tensor 𝜀𝛼𝛽
𝑠  by: 

s

s 




 




= +


 

(4) 

The one-dimensional and linear relationships of the 

stress-strain of equation (4) are used as follows: 

0s sE  = +  (5) 

where τ0 is the residual surface tension under unstrained 

condition, and Es is the surface elastic modulus, which can 

be determined by atomistic simulations or experiments 

(Jing et al. 2006a, b, Miller and Shenoy 2000). 

 

 

4. Equations of motion 
 

The governing equations and the boundary conditions 

will be obtained by using the principle of the minimum total 

potential energy. The first variation of the strain energy is 

indicated as follows: 

( )
0

2 2

2 20

L

x x xz xz
A

l
b s s

b s

U dAdx

d w d w d wd u
N M M Q dx

dx dx dx dx

    

  

= +

 
= − − + 

 

 


 

(6) 

where U is the virtual variation of the strain energy, 

and N, M, and Q are the stress resultants that are defined for 

use in the next sections as: 

,
xx

A
N dA= 

 
,

xx
A

sM f dA=   

,
xx

A
bM z dA=   

xz
A

Q g dA= 
 

(7) 

The variation of the potential energy by the transverse 

load q applied and the axial compressive load p can be 

written as:                                                                     

( )

( ) ( )
0

0

L

b s

L
b s b s

V q w w d x

d w w d w w
p d x

dx dx

 



= − + −

+ +




 

(8) 

El-Haina et al. (2017) presented an analytical approach 
to investigate the thermal buckling behavior of thick FG 
sandwich by employing both the sinusoidal shear 
deformation theory and stress function. Menasria et al. 
(2017) suggested an higher shear deformation theory to 
analyze the thermal buckling response of FG sandwich 
plates. Abualnour et al. (2018) presented a shear 
deformation theory including the stretching effect for free 
vibration of the simply supported FG plates. Houari et al. 
(2016) developed a higher-order shear deformation theory 
for bending and free vibration analysis of functionally 
graded (FG) plates. The variation of the kinetic energy can 
be expressed as: 

. . . .

1 1 3 3
0

. . . . . .

0
0

. . . .

1 1

( )
L

A

L

b s b s

b b s s

K z u u u u dAdx

I u u w w w w

d w d w d w d w
I K dx

dx dx dx dx

   

 

 

 
= − + 

 

     
= − + + +     

    




+ + 


 



 

(9) 

where dot-superscript convent illustrates the 
differentiation with regard to the time variable t, ρ(z) is the 
mass density, and (I0, I1, K1) are the mass inertias 
determined as 

0

2

1

2

1

( ) ,

( ) ,

( )

A

A

A

I z dA

I z z dA

K f z dA







=

=

=





  

(10) 

Hamilton’s principle is used herein to derive the 
equations of motion. The principle can be stated in an 
analytical form as (Reddy 2002): 

( )
0

0
T

U V K dt  + − =  
(11) 
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where substituting the expressions for δU, δV and δK 
from Eqs. (6)-(8) and Eq. (9) into Eq. (11) leads to: 

( )

( ) ( )

2 2

2 20 0

0

0

. . . . . .

0
0

. . . .

1 1 0

T l
b s s

b s

L

b s

L
b s b s

L

b s b s

b b s s

d w d w d wd u
N M M Q dx

dx dx dx dx

q w w dx

d w w d w w
p dx

dx dx

I u u w w w w

d w d w d w d w
I K dx dt

dx dx dx dx

  





 

 

  
− − +  

  

− +

+ +
−

     
+ + + +     

    


 

+ + = 
  

 







 

(12) 

After integrating by parts versus both space and time 
variables and collecting the coefficients of δu, δwb, and δws, 
the following equations of motion of the beam are achieved: 

..

0:
N

I
x

u u


=
  

(13) 

( )

..

22

2 2

2.. ..

0 1 2

:
b sb

b

b
b s

x

w
I

x

d w wM
w q p

dx

w w I







=



+
+ −

 
+ − 

   

(14) 

( )

..

22

2 2

2.. ..

0 1 2

:
b ss

s

s
b s

Q

x x

w
I

x

d w wM
w q p

dx

w w K


 

 


=



+
+ + −

 
+ − 

   

(15) 

The boundary conditions are of the form:  

0N =  or 0u =  (16a) 

( )
..

1

bb sb
b

d w wdM d w
Q p I

dx dx dx

+
 − +

 or 
0bw =

 

(16b) 

( )
..

1

sb ss
s

d w wdM d w
Q Q p K

dx dx dx

+
 + − +

 or 
0sw =

 
(16c) 

0bM =
 or 

0bdw

dx
=

 
(16d) 

0sM =
 or   

0sdw

dx
=

 
(16e) 

The equations of motion and boundary conditions of the 
CBT can be achieved from Eqs. (14)-(15) by setting the 
shear component of transverse displacement ws equal to 
zero. The linear constitutive relations of a beam are given as 
(Thai and Vo 2012): 

( )
55 55

11 11

,
2 1

,

xz xz

x x

E
Q Q

Q Q E

 


 

= =
+

= =
 

(17) 

After substituting Eqs. (4)-(5) into Eq. (17) and the 

subsequent results into Eq. (7), the constitutive equations 

for the stress resultants are obtained as follows: 

2

2

2

2

, ?

,

b
b

s s
S s S

d wdu
N EA M ED

dx dx

d w dw
M EH Q A

dx dx

= = −

= − =
 

(18) 

2

2 2

55

, , , ,

, ,

s
A A A A

s s s
A A A

A dA B zdA B f dA D z dA

D zf dA H f dA A g Q dA

= = = =

= = =

   

    

(19) 

 

 

5. Equations of motion in terms of displacement 
 

The governing equations of motion in terms of 

displacements u, 𝑤𝑏  and 𝑤𝑠can be obtained by substituting 

the stress resultants in Eq. (18) into Eqs. (13) to (15), 

leading to: 

2 ..

02
I

d u
EA u

dx
=

 

(20) 

( )
..

4 4

4 4

2 2.. ..

0 12 2

b s
s

b s b
b s

w
I

x

d w d w
ED ED q

dx dx

d w w
p w w I

dx


=



− − +

+  
− + − 

   

(21) 

( )

..

4 4 2

4 4 2

2

2

2.. ..

0 1 2

b s s
s s s

b s

s
b s

w
I

x

d w d w d w
ED EH A

dx dx dx

d w w
q p

dx

w w K


=


− − +

+
+ −

 
+ − 

   

(22) 

The residual surface tension will create a distributed 

loading q(x) along the transverse direction as follows:  

( )
( )2

2

b s
q x

w

x
H

d w

d

+
=

 

(23) 

where the parameter H is a constant determined by the 

remaining surface tension and the shape of cross-section. 

For rectangular cross-section, H is given, separately, by: 

02H b=
 

(24) 

where τ0 is the residual surface tension (Wang and Feng 

2009). Therefore, substituting Eq. (23) in Eq. (21) into (22) 

leads to the following equilibrium equation 

( )

( )
..

24 4

4 4 2

2 2.. ..

0 12 2

b sb s
s

b s b
b s

w
I

x

d w wd w d w
ED ED

dx dx dx

d w w
p w w I

d

H

x


=



+
− − +

+  
− + − 

   

(25) 
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4 4 2

4 4 2

b s s
s s s

d w d w d w
ED EH A

dx dx dx
− − +

 

( ) ( )2

2 2

b s b sd w w d w w
p

dx dx
H

+ +
+ −

 
..

2.. ..

0 1 2

s
b s

w
I

x
w w K


=



 
+ − 

   

(26) 

In conclusion, the critical buckling load and free 

vibration of nanobeam for various higher-order shear 

deformation beam theories are obtained by the following 

equation: 

( )

( )

11 12

..

24 4

4 4 2

2 2.. ..

0 12 2

b sb s

b s b
b s

w
I

x

d w wd w d w
D D

dx dx dx

d w w
p w w I

d

H

x


= −



+
+ −

+  
+ + + 

   

(27) 

( )

( )

12 22

..

24 4 2

4 4 2 2

2 2.. ..

0 12 2

b sb s s
s

b s s
b s

w
I

x

d w wd w d w d w
D D A H

dx dx dx dx

d w w
p w w K
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A nanobeam with rectangular cross-section D is 

obtained as follows: 
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In the case of a rectangular cross-section nanobeam, EI 

is presented as (Wang and Feng 2009): 

3

12

wh
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(32) 

where E is the Young’s modulus. Moreover, w and h are 

the width and height of a rectangle cross-section of a 

nanobeam, respectively. The influence of surface elasticity 

can be exerted on the buckling and free vibration of a 

nanobeam by changing the traditional flexural rigidity EI 

for the bulk material by 
*EI  where is the effective 

flexural rigidity, which consists of the surface bending 

elasticity on the nanobeam with rectangular cross-section, 

which is given by (Wang and Feng 2009): 
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Consequently, substituting Eqs. (34) to (36) into Eqs. 

(27) to (28) leads to the following equilibrium equations for 

a nanobeam with surface effect 
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5. Analytical solutions of buckling and free 
vibration of nanobeams  

 

In this part, the governing equations are analytically 

solved for the buckling and free vibration of a nanobeam. 

The Navier solution method is employed to obtain the 

analytical solutions for the simply supported boundary 

conditions. In the future, the researchers can also extend 

this model for nanobeams with other boundary conditions. 

Furthermore, the following natural boundary conditions at 

0,Lx =
 are achieved: 

0 0,b s b sw w M M at x L= = = = =
 

(39) 

The following expansions of the displacements w(x) 

yield the boundary conditions in Eq. (39) for the free 

vibration: 
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When t= 0, the solution is assumed for any n for the 

buckling: 
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Consequently, the explicit buckling load and free 

vibration of the nanobeams can be easily obtained by 

( ) ( )
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This leads to: 
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To conclude, the critical buckling load is obtained from 

Eq. (48) by following the same procedure as solution of Eq. 

(48) as: 
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To conclude, in what follows, the free vibration is 

obtained from Eq. (48) by following the same procedure as 

the solution of Eq. (48): 
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The buckling of nanobeams by Euler beam theory with 
surface effects is derived as (Wang and Feng 2009): 
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Additionally, the vibration of nanobeams by Euler beam 
theory with surface effects is derived as (Wang and Feng 
2009): 

*

0 2

*

EI EI
1 1

EI
EI

cr

H

n

l




 
 

 − = + +     
  

    

(52) 

 
 

7. Numerical results and discussion 
 

In this section, several numerical examples are 
presented and discussed to validate the accuracy of the 
present nanobeam models in predicting the nanobeam 
stability. As an example, in what follows, we consider a 
nanobeam with rectangular cross-section:  

The material constants are considered to be E=76 GPa, 
τ0=0.89 N/m, and Es=1.22 GPa on the surface of a 
nanobeam made of silver.  

Tables 2 to 4 show the change in the critical buckling 
load (Pcr / Pcr0). Tables 5 to 7 show the change in the 
normalized critical frequency (ωcr /ωcr0) for different length-
to-thickness ratios and mode numbers (n = 1, 2, 3). For 
higher-order theory of the third degree, the sinusoidal and 
exponential higher-order theories with a simply supported 
nanobeam are calculated to ensure the accuracy of the 
calculations by comparing the results with those in Ref. 
(Wang and Feng 2009). The results are in a good agreement 
with those in the reference resources. It is also necessary to 
mention that many of these analyses are taken into account 
based on the theory of beams without surface effects. The 
tables show that the critical buckling load and the 
normalized critical frequency for very small length-to-
thickness ratio here (l<5h) are less than high length-to-
thickness ratio. This also accounts for the fact that size has 
an important effect on the critical buckling load and the 
normalized critical frequency when the beam is very small 
and is at the nanometer scale. As observed here, in these 
theories, the critical buckling load and the normalized 
critical frequency decrease by increasing the thickness. 
Additionally, it can be concluded that the critical buckling 
load and the normalized critical frequency for higher-order 
theory of the third degree are greater than those in 
sinusoidal and exponential higher-order theories.       

Fig. 2 shows the critical buckling under axial 
compressive load by considering surface effect on the 
length-to-thickness ratio for different theories. The results 
presented in this figure reveal that the critical buckling load 
for higher-order theory of the third degree is greater than 
that of the sinusoidal and exponential higher-order theories. 
In addition, as the thickness increases, the critical buckling 
load for higher-order theory is reduced. In lower thickness, 
the critical buckling load for exponential higher-order 
theory has the highest decrease.  
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Table 2 Critical compressive load of a nanobeam as a function of (L/h) for various modes (h= 10nm, E=76 Gpa) 

100L
h
=

 
20L

h
=

 
10L

h
=

 
5L

h
=

 
Method n 

29.4862 2.14869 1.29440 1.08082 Wang et al (2009) 

 

1 
 

29.4935 2.15592 1.30126 1.08481 TBT 

29.4935 2.15590 1.30122 1.08442 SBT 

29.4935 2.15587 1.30115 1.08400 EBT 

8.12878 1.29440 1.08082 1.02743 Wang et al (2009) 

 

2 

 

8.13607 1.30126 1.08481 1.00537 TBT 

8.13606 1.30122 1.08442 1.00156 SBT 

8.13603 1.30115 1.08400 0.99768 EBT 

4.17370 1.13619 1.04127 1.01754 Wang et al (2009) 

 

3 

 

4.18098 1.14212 1.03656 0.93316 TBT 

4.18096 1.14198 1.03502 0.92224 SBT 

4.18093 1.14181 1.03342 0.91149 EBT 

Table 3 Critical compressive load of a nanobeam as a function of (L/h) for various modes (h= 20nm, E=76 Gpa) 

100L
h
=

 
20L

h
=

 
10L

h
=

 
5L

h
=

 
Method n 

15.2431 1.57435 1.14720 1.04041 Wang et al (2009) 

 

1 
 

15.2468 1.57795 1.15056 1.04130 TBT 

15.2468 1.57795 1.15052 1.04093 SBT 

15.2467 1.57793 1.15048 1.04054 EBT 

4.56439 1.14720 1.04041 1.013710 Wang et al (2009) 

 

2 

 

4.56804 1.15056 1.04130 0.989830 TBT 

4.56803 1.15052 1.04093 0.986089 SBT 

4.56801 1.15048 1.04054 0.982288 EBT 

2.58685 1.06810 1.20640 1.008770 Wang et al (2009) 

 

3 

 

2.59049 1.07069 1.01342 0.923927 TBT 

2.59048 1.07056 1.01191 0.913125 SBT 

2.59046 1.07042 1.01036 0.902492 EBT 

 

Table 4 Critical compressive load of a nanobeam as a function of (L/h) for various modes (h= 10nm, E=76 Gpa) 

100L
h
=

 
20L

h
=

 
10L

h
=

 
5L

h
=

 
Method n 

6.69724 1.22974 1.05888 1.01616 Wang et al (2009) 

 

1 
 

6.69870 1.23118 1.06013 1.01519 TBT 

6.69870 1.23117 1.06010 1.01484 SBT 

6.69870 1.23116 1.06007 1.01447 EBT 

2.42576 1.05888 1.01616 1.00549 Wang et al (2009) 

 

2 

 

2.42721 1.06013 1.01519 0.98050 TBT 

2.42721 1.06010 1.01484 0.97680 SBT 

2.42721 1.06007 1.01447 0.97304 EBT 

1.63474 1.02724 1.00825 1.00351 Wang et al (2009 

 

3 

 

1.63619 1.02783 0.99953 0.91838 TBT 

1.63619 1.02771 0.99805 0.90764 SBT 

1.63618 1.02758 0.99653 0.89708 EBT 
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Table 5 The normalized critical frequency of a nanobeam as a function of (L/h) for various modes (h= 20nm, E=76 Gpa) 

100L
h
=

 
20L

h
=

 
10L

h
=

 
5L

h
=

 
Method n 

5.43012 1.46584 1.13772 1.03963 Wang et al (2009) 

 

1 
 

5.43079 1.46830 1.14073 1.04164 TBT 

5.43079 1.43830 1.14071 1.04147 SBT 

5.43079 1.46829 1.14069 1.04128 EBT 

5.43012 1.46584 1.13772 1.03963 Wang et al (2009) 

 

2 

 

5.43079 1.46830 1.14073 1.04164 TBT 

5.43079 1.43830 1.14071 1.04147 SBT 

5.43079 1.46829 1.14069 1.04128 EBT 

5.43012 1.46584 1.13772 1.03963 Wang et al (2009) 

 

3 

 

5.43079 1.46830 1.14073 1.04164 TBT 

5.43079 1.43830 1.14071 1.04147 SBT 

5.43079 1.46829 1.14069 1.04128 EBT 

Table 6 The normalized critical frequency of a nanobeam as a function of (L/h) for various modes (h= 20nm, E=76 Gpa) 

100L
h
=

 
20L

h
=

 
10L

h
=

 
5L

h
=

 
Method n 

3.90424 1.25473 1.07107 1.02001 Wang et al (2009) 

 

1 
 

3.90471 1.25617 1.07264 1.02052 TBT 

3.90471 1.25616 1.07263 1.02036 SBT 

3.90471 1.25616 1.07261 1.02018 EBT 

3.90424 1.25473 1.07107 1.02001 Wang et al (2009) 

 

2 

 

3.90471 1.25617 1.07264 1.02052 TBT 

3.90471 1.25616 1.07263 1.02036 SBT 

3.90471 1.25616 1.07261 1.02018 EBT 

3.90424 1.25473 1.07107 1.02001 Wang et al (2009) 

 

3 

 

3.90471 1.25617 1.07264 1.02052 TBT 

3.90471 1.25616 1.07263 1.02036 SBT 

3.90471 1.25616 1.07261 1.02018 EBT 

Table 7 The normalized critical frequency of a nanobeam as a function of (L/h) for various modes (h= 50nm, E=76 Gpa) 

100L
h
=

 
20L

h
=

 
10L

h
=

 
5L

h
=

 
Method n 

2.58790 1.10894 1.02902 1.00805 Wang et al (2009) 

 

1 
 

2.58819 1.10958 1.02963 1.00764 TBT 

2.58819 1.10958 1.02962 1.00748 SBT 

2.58818 1.10958 1.02960 1.00731 EBT 

2.58790 1.10894 1.02902 1.00805 Wang et al (2009) 

 

2 

 

2.58819 1.10958 1.02963 1.00764 TBT 

2.58819 1.10958 1.02962 1.00748 SBT 

2.58818 1.10958 1.07260 1.00731 EBT 

2.58790 1.10894 1.02902 1.00805 Wang et al. (2009) 

 

3 

 

2.58819 1.10958 1.02963 1.00764 TBT 

2.58819 1.10958 1.02962 1.00748 SBT 

2.58818 1.10958 1.07260 1.00731 EBT 
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Fig. 2 Critical compressive load of a nanobeam as a 

function of the thickness (n=1)            

 

 
Fig. 3 Critical compressive load of a nanobeam as a 

function of length-to-thickness ratio (h=20 nm, n=1) 

 

 
Fig. 4 Normalized critical frequency of a nanobeam as a 

function of the thickness (n=1) 
 

 

Fig. 3 shows the critical buckling under axial 

compressive load by considering the surface effect on the 

length-to-thickness ratio for different theories. The results 

presented in this figure indicate that by increasing the 

length-to-thickness ratio, the critical buckling load 

increases. The increase in the very small ratio (L/h) is 

 
Fig. 5 Normalized critical frequency of a nanobeam as a 

function of length-to-thickness ratio (h=20 nm, n=1) 

 

 

insignificant. Furthermore, as the ratio (L/h) increases, 

surface effect becomes more significant; for example, for 

the ratio (L/h=10), the critical buckling load is 

approximately 1.2 times greater. Moreover, it can be 

observed that the influence of the surface effect is more 

considerable as the length decreases in the range of 

nanometers. 

Fig. 4 depicts the normalized critical frequency by 

considering surface effect on the length-to-thickness ratio 

for different theories. As this figure shows, the critical 

buckling load for higher-order theory of the third degree is 

greater than that of the sinusoidal and exponential higher-

order theories. Additionally, by increasing the thickness, the 

normalized critical frequency for higher-order theory is 

reduced. In other words, in lower thickness, the normalized 

critical frequency for exponential higher-order theory has 

the highest decrease. 

Fig. 5 shows the normalized critical frequency by 

considering surface effect on the length-to-thickness ratio  

for different theories. The results presented in this figure 

demonstrate that by increasing the length-to-thickness ratio, 

the normalized critical frequency increases. The increase in 

the very small ratio (L/h) is insignificant. As the ratio (L/h) 

increases, surface effect becomes more considerable; for 

example, for the ratio (L/h=10), the normalized critical 

frequency is approximately 1.09 times greater. Furthermore, 

it can be observed that surface has more substantial effects 

as the length decreases in the range of nanometers. 

 

 

5. Conclusions 
 

In this paper, the effect of surface on the buckling and 

transverse vibration of nanobeams under uniaxial load was 

studied based on various refined higher-order shear 

deformation beam theories. The equations of motion were 

derived using Hamilton’s principle, and the buckling and 

the transverse vibration were obtained by an exact method. 
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The numerical results showed that surface effect leads to 

increasing the length-to-thickness ratio, thus increasing the 

critical buckling load and the normalized critical frequency. 

Therefore, surface effects play an important role in the 

buckling and normalized critical frequency responses of the 

nanobeams. In addition, the results revealed that by 

increasing the nanobeam thickness, surface exerts greater 

effects on the critical buckling load and the normalized 

critical frequency increase for higher-order theory of the 

third degree compared to the sinusoidal and exponential 

higher-order theories. The validity of the results obtained 

was investigated in Tables 1 to 6. According to the 

increasing ratio of surface area to bulk at nano-scale, 

surface energy is significantly influential in stubby 

nanobeams and should be taken into consideration. 

Accordingly, surface effects should be considered carefully 

in the analysis of the mechanical behavior of 

nanostructures. 
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