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1. Introduction 
 

Due to the desired performance in dynamic behavior 

and stability, thin and thick shells and panels have been 

extensively used in many different engineering applications 

such as aerospace structures and civil constructions. 

Meanwhile, owing to specific geometric shapes, the 

spherical shells and panels are used in various engineering 

applications.  On the other hand, functionally graded (FG) 

materials are introduced as the novel composites in which 

the material properties change in a smooth way from one 

surface to another in a specific direction. By increasing the 

employment of FG spherical shells, the complete 

understanding of mechanical characteristics of these 

structures has a significant effect on engineers for proper 

design. 

In last two decades, a wide range of research works have 

been performed on the vibration and buckling analysis of 

FG (Loy et al. 1999, Kar and Panda 2015, Patel et al. 2005, 

Tornabene 2009, Karroubi and Irani-Rahaghi 2019, 

Ghannad et al. 2012, Su et al. 2014, Alijani et al. 2011, 

Foroutan et al. 2018, Sofiyev et al. 2016, Bich et al. 2013) 

and functionally graded carbon nanotube reinforced 

composite (FG-CNTRC) (Heydarpour et al. 2014, Ansari 

and Torabi 2016, Shen and Xiang 2012, Torabi and Ansari 

2018, Thomas and Roy 2016) shell structures. For instance, 

vibration analysis of FG elliptical cylindrical shells was 
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presented by Patel et al. (2005) based on higher-order shell 

theory. Tornabene (2009) and Su et al. (2014) investigated 

the free vibration of FG conical/cylindrical shells based on 

first-order shear deformation theory (FSDT). The nonlinear 

vibration analysis of FG doubly-curved shallow shells was 

presented by Alijani et al. (2011) on the basis of Donnell’s 

shell theory. Galerkin method along with multiple scales 

method was employed to find the nonlinear frequency 

responses. Ansari and Torabi (2016) highlighted the 

buckling and vibration analysis of FG-CNTRC conical 

shells using the numerical approach. 

On the other hand, different numerical approaches such 

as generalized/harmonic differential quadrature method 

(Striz et al. 1997, Civalek and Ülker 2004, Hasrati et al. 18, 

Wu et al. 2018, ), discrete convolution method (Civalek 

2006, Civalek and Akar 2007, Civalek 2007, Civalek 2008, 

Akgoz and Civalek 2011, Mercan et al. 2016), finite 

element method (Song et al. 2006, Jung et al. 2016, 

Darilmaz 2017, Torabi and Ansari 2018) and finite strip 

method (Foroughi and Azhari 2014, Naghsh et al. 2015, 

Khayat et al 2016) have been employed to study the 

vibration and buckling of solid structures. For instance, the 

harmonic differential quadrature method was employed by 

Civalek and Ülker (2004) to analyze the axisymmetric 

bending analysis of thin isotropic circular plates. Civalek 

(2006, 2007, 2008) performed various studies on the 

vibration analysis of cylindrical and conical shells using the 

discrete convolution method. Naghsh et al. (2015) also used 

the finite strip method to study the free vibration of stringer 

stiffened general shells of revolution. 

In comparison to other types of shell structures, fewer 

studies have been focused on the structural analysis of FG 

spherical shells and panels. Ganapati (2007) analyzed the 

dynamic stability behavior of FG shallow spheres subjected 
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to external pressure. Newmark’s integration scheme along 

with the modified Newton–Raphson technique was 

employed to solve the nonlinear governing equations. 

Shahsiah et al. (2006) investigated the thermal buckling FG 

shallow spherical shells. The analytical large-amplitude 

axisymmetric analysis (2011) and buckling analysis (2013) 

of FG shallow spheres subjected to pressure was 

highlighted by Bich and his co-authors. The temperature 

dependency of the material properties was taken into 

account. By considering initial imperfection and geometric 

non-linearity, the governing equations were derived using 

the classical shell theory. The nonlinear dynamics of FG 

spherical shells under low-velocity impact was reported by 

Mao et al. 2011. The thermal environment with steady-state 

heat conditions was also considered. Xie et al. (2015) 

studied the vibration of four-parameter FG spherical and 

parabolic circular shells with different boundary supports. 

The governing equations were derived in accordance with 

FSDT and the Haar Wavelet Discretization technique was 

employed to solve the problem. Wang et al. (2018) and 

Ansari et al. (2016) presented different studies on the 

vibration analysis of FG-CNTRC spherical shells An FSDT. 

In addition, by the use of a modified Fourier series-based 

Rayleigh-Ritz method, the 3D vibration of laminated FG 

spheres with general supports was investigated by Ye et al. 

(2014). Furthermore, the unified analytical solution 

procedure was introduced by Su et al. (2014 b,c) for free 

vibration analysis of FG panels. 

Although, various investigations have been carried out 

on the vibration analysis of FG spherical shells, however, 

the effects of thermo-mechanical loadings on the vibrational 

characteristics were less considered. In this regard, the 

dynamic and stability analysis of FG spherical panels 

resting on elastic medium under external pressure is 

presented in this study. In other words, Studying the effects 

of the elastic foundation and external pressure on the 

vibration and buckling analyses of FG spherical panels is 

the main novel aspect of this research study. The continuous 

variation of the material properties along the thickness 

direction is considered for FG materials. In order to model 

the elastic medium, the Winkler and Pasternak models are 

considered. The basic equations of the structure are given 

on the basis of the FSDT. The Ritz formation based on the 

two-dimensional beam functions is employed for different 

sets of boundary conditions to obtain the governing 

equations. In addition to different comparative studies, a 

wide range of numerical results are expressed to examine 

the effects of involved factors on the vibration and buckling 

of FG spherical panels. 

 

 

2. Governing equations 
 

FG spherical panel with radius R and thickness h is 

considered. The geometry of the panel is defined in 

accordance with the spherical coordinate system of φ, θ and 

z along the meridional, circumferential and radial 

directions, as shown in Fig. 1. The overall material 

properties of FG panel smoothly vary through the thickness 

direction on the basis of the power-law as follows 

 

Fig. 1 Geometry and coordinate system of spherical panel 
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𝑧
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)
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   ,   𝑃𝑐𝑚 = 𝑃𝑐 − 𝑃𝑚 (1) 

in which 𝑃𝑚  and 𝑃𝑐  stand for the material properties 

related to material and ceramic phases, respectively. In 

addition, volume fraction index 𝑘 (𝑘 ≥ 0)  denotes the 

material distribution profile. On the basis of the FSDT, the 

displacement components are expressed as 

𝑢1 = 𝑢0 + 𝑧 𝜓0(𝜑, 𝜃, 𝑡), 
𝑢2 = 𝑣0 + 𝑧 𝜙0(𝜑, 𝜃, 𝑡), 

𝑢3 = 𝑤0(𝜑, 𝜃, 𝑡) 
(2) 

where 𝑢0, 𝑣0 and  𝑤0 are the displacement of mid-plane 

and 𝜓0  and 𝜙0  stand for the rotations. The strain-

displacement relations are given as 
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in which 𝑅1 =  𝑅 sin (𝜑). In addition, the stress vector is 

presented in accordance with the following constitutive 

equation 

{
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 with 

𝑄11 =
𝐸(𝑧)

1 + 𝜈(𝑧)2
, 
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,   𝑄66 = 
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2(1 + 𝜈(𝑧))
 

(6) 

where 𝐸(𝑧) and 𝜈(𝑧) are Young’s modulus and Poisson’s 

ratio, respectively. Based on the integration of stress field 

along the thickness direction, the force and moment 

resultants are obtained as 

{
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where 𝜅 is the shear correction factor and 𝐴𝑖𝑗 , 𝐵𝑖𝑗  and 

𝐷𝑖𝑗  are defined as 

𝐴𝑖𝑗 = ∫ 𝑄𝑖𝑗  𝑑𝑧
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(8) 

Now, the elastic strain energy of the FG spherical panel 

can be defined as 
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Furthermore, the kinetic energy is presented according 

to the following expression 
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Additionally, the potential energy of the elastic 

foundation is 

𝑈𝑓 =
1
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where 𝐾𝑤 and 𝐾𝑔 are Winkler and Pasternak coefficients 

of the elastic medium. Finally, the potential energy due to 

external force can be expressed as 

𝑈𝑒 =
1

2
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where 𝑁𝜑
0, 𝑁𝜃

0 and 𝑁𝜑𝜃
0  are the initial force resultants due 

to the external pressure 𝑝 defined as (Su et al. 2014 c) 
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Now, the energy functional of FG spherical panel is 

introduced as 

Π = 𝑈 + 𝑈𝑓 + 𝑈𝑒 − 𝑇 (16) 

 
 

3. Solution procedure 
 

The Rayleigh-Ritz method is implemented to solve the 

problem. Considering appropriate analytical functions for 

displacement and rotation components is one of the most 

significant issues to obtain the proper accuracy. The survey 

of the literature shows the employment of different kinds of 

approximate functions. In this study, the vibration and 

buckling mode shapes of the FG spherical panels for 

different boundary supports are approximated using the 

beam displacement functions as follows 

𝑢0(𝜑, 𝜃, 𝑡) = 𝒰
𝜕Φ(𝜑)

𝜕𝜑
Ψ(𝜃)𝑒𝑖𝜔𝑡 , 

𝑣0 = 𝒱 Φ(𝜑)
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𝜕𝜃
𝑒𝑖𝜔𝑡 , 
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𝑒𝑖𝜔𝑡 

(17) 

in which 𝒰, 𝒱, 𝒲, 𝒮 and 𝒫 are the constant parameters 

and 𝜔 stands for the natural frequency. In addition, Φ(𝜑) 
and Ψ(𝜃) are the displacement beam functions in 𝜑 and 

𝜃 directions defined as 

Φ(𝜑) = 𝑎1 cosh (
𝜆𝑚𝜑

𝜑𝑙
) + 𝑎2cos (

𝜆𝑚𝜑

𝜑𝑙
) 

             −𝜉𝑚 [𝑎3 sinh (
𝜆𝑚𝜑

𝜑𝑙
) + 𝑎4 sin (

𝜆𝑚𝜑

𝜑𝑙
)] , 

(18) 
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Ψ(𝜃) = 𝑎1 cosh (
𝜆𝑛𝜃

𝜃1
) + 𝑎2cos (

𝜆𝑛𝜃

𝜃1
) 

            −𝜉𝑛 [𝑎3 sinh (
𝜆𝑛𝜃

𝜃1
) + 𝑎4 sin (

𝜆𝑛𝜃

𝜃1
)] 

where 𝑎𝑖(𝑖 = 1,2,3,4) ,  𝜆𝑖(𝑖 = 𝑚, 𝑛)  and 𝜉𝑖(𝑖 = 𝑚, 𝑛) 
are given in Table 1 for different boundary conditions. Note 

that 𝑚 is the half wave number in the axial direction and 

𝑛 is the circumferential wave number. 

Substituting Eq. (17) into (16) and minimizing the 

energy functional with respect to unknown constant 

parameters as 

𝜕Π

𝜕𝒰
=
𝜕Π

𝜕𝒱
=
𝜕Π

𝜕𝒲
=
𝜕Π

𝜕𝒮
=
𝜕Π

𝜕𝒫
= 0 (19) 

result in the following governing equation 

(𝐊 − 𝑝𝐊𝑔 −𝜔
2𝐌)𝐗 = 𝟎 (20) 

where 𝐊 , 𝐊𝑔  and 𝐌  are the elastic stiffness matrix, 

geometrical stiffness matrix and mass matrix, respectively. 

Note that in the case of buckling analysis, the effect of the 

mass matrix is neglected. The eigenvalue problem of Eq. 

(20) has five conjugate solutions for each value of 𝑚 and 

𝑛 . Each of these eigenvalues and corresponding 

eigenvectors relates to different displacement components. 

On the other hand, the eigenvalues should be minimized 

with respect to 𝑚 and 𝑛 values (Wave numbers in half-

axial and circumferential directions, respectively) to obtain 

the critical buckling load and fundamental natural 

frequency. 

4. Results and discussion 

 

The FG spherical panel is made of Aluminum and 

Alumina respectively as the metal (m) and ceramic (c) 

phases. The inner surface is full of metal while the outer 

surface is ceramic rich. The material properties of 

Aluminum and Alumina including Young’s modulus, 

Poisson’s ratio and mass density are provided as follows 

(Su et al. 2014 c) 

𝐸𝑚 = 70 GPa,        νm = 0.3,         𝜌𝑚 = 2707 kg/m3 , 
𝐸𝑐 = 380 Gpa, νc = 0.3, 𝜌𝑐 = 5700 kg/m3 

Various sets of boundary supports including clamped (C), 

simply-supported (S) and free (F) are considered at the 

edges of the panel. For example, SSCC indicates that the 

edges at 𝜃 = 0, 𝜃1 are simply supported and the other two 

edges are clamped. In order to account the impacts of the 

elastic medium, the following non-dimensional Winkler and 

Pasternak coefficients are considered 

𝑘𝑤 =
𝐾𝑤𝑅

4

𝐷𝑚
, 𝑘𝑔 =

𝐾𝑔𝑅
2

𝐷𝑚
,   𝐷𝑚 =

𝐸𝑚ℎ
3

12(1 − 𝜈𝑚
2 )
          

In order to obtain the numerical results, the radius of the 

spherical panel is considered to be 𝑅 = 1 m.  

Diverse comparative results are given to demonstrate the 

accuracy of the presented study. In the first case, the critical 

buckling pressure of the FG spherical panel is compared in 

Table 2 with the results reported in (Bich and Phuong 

2013). In the next, the comparison for the non-dimensional  

 

 

 

Table 1 Value of  𝑎𝑖 , 𝜆𝑖  and 𝜉𝑖  for different boundary conditions 

BC 𝑎𝑖(𝑖 = 1,2,3,4) 𝜆𝑖(𝑖 = 𝑚, 𝑛) 𝜉𝑖(𝑖 = 𝑚, 𝑛) 

Simply supported- Simply supported 
𝑎1 = 𝑎2 = 𝑎3 = 0, 

 𝑎4 = −1 
𝑖𝜋 1 

Clamped-Clamped 
𝑎1 = 𝑎3 = 1, 
𝑎2 = 𝑎4 = −1 

cos 𝜆𝑖 cosh 𝜆𝑖 = 1 
cosh 𝜆𝑖 − cos 𝜆𝑖
sinh 𝜆𝑖 − sin 𝜆𝑖

 

Clamped- Simply supported 
𝑎1 = 𝑎3 = 1, 
𝑎2 = 𝑎4 = −1 

tan 𝜆𝑖 = tanh 𝜆𝑖 
cosh 𝜆𝑖 − cos 𝜆𝑖
sinh 𝜆𝑖 − sin 𝜆𝑖

 

Table 2 Comparison of the critical buckling pressure (10 × MPa) of SSSS FG spherical panel 

 (R = 1, 𝜑0 = 11.537, 𝜑1 = 30
°, 𝜃1 = 15°) 

𝑘  𝑅/ℎ 

1000 1200 1500 

0 

Present study 3.870 2.758 1.684 

Bich and Phuong (2013) 3.929 2.640 1.698 

Error (%) 1.502 4.470 0.824 

1 
Present study 2.196 1.485 0.908 

Bich and Phuong (2013) 2.114 1.443 0.945 

 Error (%) 3.879 2.911 3.915 

5 
Present study 1.306 0.905 0.555 

Bich and Phuong (2013) 1.294 0.868 0.556 

 Error (%) 0.927 4.263 0.180 

10 
Present study 1.097 0.779 0.480 

Bich and Phuong (2013) 1.127 0.748 0.473 

 Error (%) 2.662 4.144 1.480 
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frequencies of isotropic and FG spherical panels is 

performed in Tables 3 and 4 for different boundary 

conditions. As observed, the numerical results have an 

excellent agreement that shows the correctness of the 

proposed formulation. In the following, various numerical 

results are provided to analyze the mechanical behavior of 

FG spheres. 

The effects of the elastic medium on the critical 

buckling pressure of FG spherical panel were investigated 

in Table 5 for diverse boundary supports, subtended angles 

 

 

 

and circumferential angles. It is found that the existence of 

the elastic medium makes the panel more stable and 

increases the buckling pressure. The elastic medium has 

more impacts on the buckling pressure of SSSS panel in 

comparison to the other types of edge supports. In addition, 

results indicated that the effects of the elastic medium on 

the buckling pressure are more considerable for the panel 

with the larger subtended and circumferential angles. In 

other words, the rise of 𝜙2  and 𝜃1  highlights the 

influences of the elastic medium. 

Table 3 Comparisons of Non-dimensional frequencies Ω = 𝜔𝑅2√𝜌ℎ/𝐷 of isotropic spherical panel with different boundary 

condition (𝑅 = 1 m, 𝜃1 = 0.1, 𝜑1 =
𝜋−𝜃1

2
, 𝜑2 =

𝜋+𝜃1

2
, 𝐸 = 70 GPa, 𝜈 = 0.3, 𝜌 = 2700 kg/m3) 

BC  Mode Number 

1 2 3 4 5 

SSSS Su et al. (2014 c) 1750.700 3216.600 3220.400 3817.000 3817.200 
 Present study 1750.500 3217.500 3220.500 3817.200 3818.600 

 Error (%) 0.011 0.028 0.003 0.005 0.037 

SSCC Su et al. (2014 c) 2242.200 3220.400 3987.500 4462.500 5675.700 
 Present study 2242.000 3217.500 3988.600 4462.100 5673.800 

 Error (%) 0.009 0.090 0.028 0.009 0.033 

SSFF Su et al. (2014 c) 897.400 1406.200 2441.800 2916.600 3126.400 
 Present study 898.200 1408.000 2440.000 2917.500 3131.600 

 Error (%) 0.089 0.128 0.074 0.031 0.166 

Table 4 The non-dimensional fundamental frequencies Ω = 𝜔𝑅2√𝜌ℎ/𝐷𝑚 of FG spherical panel with various boundary 

conditions and subtended angle (𝑅 = 1, 𝜑1 = 45°,
ℎ

𝑅
= 0.1, 𝜃1 = 60

°, 𝐸𝑚 = 70 𝐺𝑃𝑎, 𝜈𝑚 = 0.3, 𝜌𝑚 = 2707
𝐾𝑔

𝑚3 , 𝐸𝑐 =

168 𝐺𝑃𝑎, 𝜈𝑐 = 0.3, 𝜌𝑐 = 5700
𝐾𝑔

𝑚3,  ) 

𝜑2 𝑘  Boundary condition 

CCCC SSSS CCSS 

90 

0.5 
Present study 64.85 41.09 48.11 

Su et al. (2014 c) 64.63 41.03 48.21 

 Error (%) 0.340 0.146 0.207 

1 
Present study 64.25 40.7 47.66 

Su et al. (2014 c) 64.14 40.73 47.85 

 Error (%) 0.171 0.074 0.397 

20 
Present study 63.530 40.100 47.060 

Su et al. (2014 c) 63.200 39.990 47.090 

  Error (%) 0.522 0.275 0.064 

135 

0.5 
Present study 50.670 34.660 48.110 

Su et al. (2014 c) 50.630 33.380 48.210 

 Error (%) 0.079 3.835 0.207 

1 
Present study 50.200 34.330 47.660 

Su et al. (2014 c) 50.250 33.130 47.850 

 Error (%) 0.100 3.622 0.397 

20 
Present study 49.670 33.340 47.060 

Su et al. (2014 c) 49.530 32.080 47.020 

  Error (%) 0.283 3.928 0.085 
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The effects of the elastic medium on the variations of 

buckling pressure versus the power-law index are reported 

in Fig. 2. The SSSS FG spherical panel with the geometrical 

parameters of 𝜑1 = 45°, 𝜑2 = 90°, 𝜃1 = 45
°, ℎ 𝑅⁄ = 0.02 

is considered. It is generally observed that the rise of the 

power-law index reduces the buckling capacity and tends 

the critical pressures to the lower values.  A comparison of 

the results for Winkler and Pasternak coefficients implies 

that the shear coefficient of the elastic medium has a more  

 

 

considerable effect on the buckling pressure. In addition, it 

is apparent that by the enhancement of the foundation 

coefficients, the impacts of the power-law index decrease.  

On the other hand, one can see that the effects of the 

elastic foundation on the critical buckling pressure are still 

significant for higher values of the FG index. Note that 

considering the Pasternak coefficient of elastic medium 

considerably increases the critical buckling pressure. 
The variations of the buckling pressure of fully simply- 

 
Fig. 2 Critical buckling pressure of SSSS FG spherical panel versus power-law index for various elastic 

foundation coefficient (𝜑1 = 45°, 𝜑2 = 90
°, 𝜃1 = 45°,

ℎ

𝑅
= 0.02) 

 
Fig. 3 Critical buckling pressures of SSSS FG spherical panel versus subtended angle (𝜑2) for various power-law 

index and circumferential angle (𝜃1). ( 𝜑1 = 30
°, (𝑘𝑤 , 𝑘𝑔) = (100,10),

ℎ

𝑅
= 0.02). 
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supported FG spherical panel versus subtended angles for 
variant power-law indexes and circumferential angles are 
demonstrated in Fig. 3. One can see that the rise of the 
subtended angle decreases the buckling pressure. This 
reduction is more remarkable for the lower values of the 
power-law index. 

In addition, results reveal that in most of the cases, for 

the subtended angles larger than 𝜙2 > 70, the buckling 

pressure does not considerably change. The first four 

natural frequencies of the fully clamped FG spherical panel 

are presented in Table 6 for two different elastic medium 

coefficients and several subtended and circumferential 

angles. It is concluded that the FG panel with the larger 

circumferential angle has a lower frequency. To give some 

more details, the first six vibrational mode shapes of the FG 

spherical panel are demonstrated in Fig. 4. Moreover, the 

effects of the elastic medium on the natural frequencies 

ofsimply-supported FG panel are reported in Table 7 for 

diverse thickness-radius ratios, circumferential angles and  

 

 

power-law indexes. It is evident that the effects of the 

elastic medium on the buckling pressure of the thinner 

panel are more significant. In addition, it can be seen that 

by the increase of Winkler and Pasternak coefficients of the 

elastic medium, the impacts of elastic medium decrease. 

The effects of the elastic medium on the variations of 

natural frequencies of the FG spherical panel versus 

subtended angle are illustrated in Fig. 5 for four different 

circumferential angles (𝜃1 = 15, 13, 45,60). It is clearly 

seen that the existence of elastic medium results in the 

higher natural frequencies. In addition, different reduction 

trends were observed for various circumferential angles. In 

the case of 𝜃1 = 15, the uniform reduction of frequencies 

is found with the increase of 𝜙2. However, in the case of 

𝜃1 = 60, one can see the higher rate of reduction for 40 <
𝜙2 < 60. 

 

 

 

Table 5 The effect of elastic foundation on critical buckling pressure (MPa) of FG spherical panel for various boundary conditions  

(𝜑1 = 30, 𝑘 = 1,
ℎ

𝑅
= 0.02) 

𝜑2 𝜃1 
(𝑘𝑤 , 𝑘𝑔) = (0,0) (𝑘𝑤 , 𝑘𝑔) = (100,10) (𝑘𝑤 , 𝑘𝑔) = (200,20) 

CCCC SSSS SSCC CCCC SSSS SSCC CCCC SSSS SSCC 

45 

30 211.08 173.78 196.76 249.65 216.21 232.58 288.01 251.91 267.97 

60 167.46 125.60 166.58 209.20 171.78 206.81 249.04 217.23 244.35 

90 159.88 122.08 159.07 201.56 165.69 200.94 241.69 209.07 239.53 

120 157.37 121.83 156.63 198.97 164.41 198.67 239.22 206.79 237.77 

60 

30 142.68 118.10 121.83 180.67 160.46 162.71 218.19 199.41 201.51 

60 92.73 81.61 85.08 132.45 121.71 126.05 171.74 161.66 166.76 

90 87.02 79.65 82.89 126.42 118.64 122.54 165.33 157.43 161.95 

120 84.61 79.83 82.99 124.35 118.46 122.16 163.25 156.82 161.07 

90 

30 115.10 87.26 88.18 157.69 128.66 130.00 199.15 169.03 170.73 

60 84.05 76.81 78.13 123.85 116.52 118.43 163.13 155.99 158.41 

90 78.53 74.61 75.44 118.10 113.60 114.95 157.12 152.25 154.11 

120 76.74 74.41 75.03 116.26 113.25 114.35 155.20 151.66 153.25 

Table 6 The effect of elastic foundation on the frequencies (Hz) of CCCC FG spherical panel (𝜑1 = 30°, 𝑘 = 1,
ℎ

𝑅
= 0.05) 

𝜑2 𝜃1 
(𝑘𝑤 , 𝑘𝑔)  =  (0,0) (𝑘𝑤 , 𝑘𝑔)  =  (200,15) 

𝜔1 𝜔2 𝜔3 𝜔4 𝜔1 𝜔2 𝜔3 𝜔4 

60 

30 3306.1 4710.4 6095.0 7030.2 3853.2 5401.8 6817.7 7828.4 

60 2213.3 2768.2 3610.8 3917.4 2671.2 3373.2 4270.2 4633.7 

90 2089.7 2204.3 2604.3 3315.5 2509.7 2727.1 3228.1 4014.2 

120 2051.8 2064.1 2228.7 2563.7 2465.8 2539.0 2765.9 3191.6 

90 

30 2305.3 2609.9 3222.8 3979.9 2765.0 3174.1 3867.0 4644.7 

60 1629.6 1672.2 1786.1 2207.9 2006.9 2133.3 2292.6 2829.9 

90 1442.3 1447.6 1515.6 1735.3 1841.8 1844.0 1939.7 2252.1 

120 1360.7 1371.2 1401.6 1576.5 1714.0 1747.4 1840.8 2006.8 

120 

30 2099.1 2157.1 2440.0 2764.3 2524.0 2657.9 2995.4 3389.9 

60 1387.8 1465.6 1544.4 1722.9 1760.7 1857.8 2002.1 2135.8 

90 1195.8 1260.6 1313.9 1408.3 1513.7 1586.3 1695.8 1856.7 

120 1103.8 1186.3 1218.8 1295.4 1398.8 1436.6 1565.9 1684.3 
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𝜔1 

 

𝜔2 

 
𝜔3 

 

𝜔4 

 

𝜔5 

 

𝜔6 

 

Fig. 4 First six vibrational mode shapes of CCCC FG spherical panel 

(𝜑1 = 30
°, 𝜑2 = 90

°, 𝜃1 = 90
°, 𝑘 = 1,

ℎ

𝑅
= 0.05, (𝑘𝑤, 𝑘𝑔)  =  (0,0)) 

 
Fig 5 The fundamental frequency (Hz) of CCCC FG spherical panel versus subtended angle (𝜑2) for various elastic 

foundation coefficient and subtended angle (𝜃1) (𝜑1 = 30
°, 𝑘 = 1,

ℎ

𝑅
= 0.05) 
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The impacts of external pressure on the natural 

frequencies of FG spherical panel are given in Table 8 for 

various elastic medium coefficients, power-law indexes and 

boundary supports. As expected, the increase of external 

pressure lessens the natural frequencies. The numerical 

results indicate that increasing the elastic medium 

coefficients reduces the influences of external pressure on 

the natural frequencies. In addition, one can see that the 

fully clamped and simply-supported boundary conditions 

result in the highest and lowest frequencies, respectively. 

The changes of fundamental frequencies of fully clamped 

FG panel against the external pressure are demonstrated in 

Fig. 6 for different power-law indexes and circumferential 

angles. It is found that the rise of external pressure 

significantly decreases the frequency. Almost the same 

trends are observed for different circumferential angles. In 

addition, a comparison of the results for various power-law 

indexes shows the higher rate of reduction (slope) in 

frequency for the larger 𝑘. 

 

 
 

The variations of the frequencies of simply-supported 

FG Panel versus external pressure are exhibited in Fig. 7 for 

diverse elastic medium coefficients and subtended angles. It 

is obvious that increasing the subtended angle reduces the 

influences of external pressure on the fundamental 

frequency. Since the existence of the elastic medium 

improves the stability of the panel, the fewer effects of 

external pressure on the fundamental frequencies are 

observed for the larger values of the elastic medium 

coefficients. 

5. Conclusion 

 

The vibration and buckling analysis of FG spherical 

panels resting of elastic medium under external pressure 

was highlighted in this study. The continuous variation of 

material properties along the thickness direction was 

regarded for the FG sphere. On the basis of FSDT and 

employing the Ritz method the governing equations were  

Table 7 The effect of elastic foundation on the fundamental frequency (Hz) of SSSS FG spherical panel for various 

thickness to radius ratio (𝜑1 = 45°, 𝜑2 = 90°) 

𝜃1 k 
(𝑘𝑤 , 𝑘𝑔)  =  (0,0) (𝑘𝑤 , 𝑘𝑔)  =  (200,0) (𝑘𝑤 , 𝑘𝑔)  =  (200,20) 

ℎ

𝑅
= 0.02 

ℎ

𝑅
= 0.04 

ℎ

𝑅
= 0.06 

ℎ

𝑅
= 0.02 

ℎ

𝑅
= 0.04 

ℎ

𝑅
= 0.06 

ℎ

𝑅
= 0.02 

ℎ

𝑅
= 0.04 

ℎ

𝑅
= 0.06 

15 

0 1953.75 3007.56 4034.12 1981.86 3043.47 4073.38 2439.71 3637.16 4731.94 

0.5 1797.46 2714.13 3608.42 1834.10 2761.41 3659.94 2408.91 3513.53 4492.91 

1 1698.50 2539.80 3356.67 1741.54 2595.49 3417.14 2397.75 3455.87 4366.67 

5 1501.94 2286.88 3011.53 1564.78 2365.95 3096.45 2443.97 3497.96 4325.43 

30 

0 1527.67 1714.13 1951.10 1562.62 1775.31 2030.51 1762.95 2100.70 2445.46 

0.5 1434.26 1613.10 1825.93 1479.08 1690.66 1926.41 1733.09 2091.87 2433.17 

1 1365.67 1538.88 1739.01 1418.05 1628.83 1855.13 1710.20 2083.57 2424.70 

5 1165.25 1333.46 1525.94 1244.17 1465.50 1692.83 1644.73 2075.29 2435.23 

60 

0 1444.42 1661.27 1748.44 1481.33 1724.16 1836.12 1702.67 1908.93 2060.89 

0.5 1350.52 1556.26 1658.76 1397.94 1636.96 1769.31 1656.66 1877.41 2050.16 

1 1285.33 1478.52 1585.18 1340.73 1572.75 1713.27 1621.88 1849.97 2033.68 

5 1099.15 1268.53 1361.04 1182.35 1408.31 1549.00 1504.96 1758.62 1968.00 

Table 8 The effect of elastic foundation on the fundamental frequency (Hz) of FG spherical panel under external 

pressure 𝑃 (MPa) (𝜑1 = 45°, 𝜑2 = 90°, 𝜃1 = 90
°,
ℎ

𝑅
= 0.02) 

BC k 
(𝑘𝑤 , 𝑘𝑔)  =  (0,0) (𝑘𝑤 , 𝑘𝑔)  =  (100,5) (𝑘𝑤 , 𝑘𝑔)  =  (200,10) 

𝑝 = 15 𝑝 = 30 𝑝 = 45 𝑝 = 15 𝑝 = 30 𝑝 = 45 𝑝 = 15 𝑝 = 30 𝑝 = 45 

CCCC 

0.5 1316.41 1242.29 1129.31 1423.28 1364.01 1292.67 1517.50 1466.31 1408.64 

1 1233.27 1126.56 947.20 1361.18 1289.55 1188.92 1470.16 1410.80 1341.83 

2 1128.98 967.15 631.71 1286.57 1197.64 1048.67 1414.59 1344.91 1260.59 

SSSS 

0.5 1251.90 1223.42 1095.31 1360.09 1334.54 1274.32 1459.53 1430.45 1379.49 

1 1183.71 1111.51 897.94 1309.89 1267.99 1173.44 1423.62 1379.69 1319.57 

2 1098.52 932.83 594.59 1249.73 1181.61 1015.05 1376.31 1316.50 1243.50 

SSCC 

0.5 1292.30 1229.35 1109.00 1392.30 1339.82 1279.77 1480.72 1435.35 1384.64 

1 1214.48 1118.91 910.36 1333.12 1270.77 1182.14 1434.77 1382.90 1323.16 

2 1115.24 940.88 612.09 1260.45 1183.96 1025.49 1378.90 1319.18 1246.84 

CCSS 

0.5 1256.45 1227.92 1119.84 1365.03 1340.18 1285.74 1464.90 1441.73 1401.01 

1 1187.68 1121.10 935.45 1314.30 1281.01 1181.95 1428.66 1398.98 1336.92 

2 1101.82 961.35 614.02 1253.63 1193.88 1040.94 1386.80 1339.66 1256.24 
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Fig 6 The fundamental frequency (Hz) of CCCC FG spherical panel versus external pressure for various power law index 

and subtended angle (𝜃1) (𝜑1 = 45
°, 𝜑2 = 90

°, (𝑘𝑤 , 𝑘𝑔) = (100,10),
ℎ

𝑅
= 0.02) 

 
Fig 7 The fundamental frequency (Hz) of SSSS FG spherical panel versus external pressure for various elastic foundation 

coefficient and subtended angle (𝜑2) (𝜑1 = 90
°, 𝜃1 = 90°, 𝑘 = 1,

ℎ

𝑅
= 0.02) 
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obtained. The beam functions in two-dimensions were used 

to approximate displacement components. Different results 

were comparatively presented to check the accuracy of the 

presented model. A wide range of results was given to 

examine the mechanical behavior of embedded FG 

spherical panels under external pressure. It was concluded 

that the FG panels with larger power-law index, subtended 

and circumferential angles have the lower fundamental 

frequencies and buckling pressures. It was also found that 

the elastic medium increases frequency and buckling 

pressure. Moreover, the results revealed that external 

pressure reduces the fundamental frequencies. In addition, it 

was concluded that the increase of power-law index and 

subtended angle respectively increases and decreases the 

effect of external pressure on the fundamental frequency. 
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Appendix 
 

The coefficients of the elastic stiffness matrix, mass 

matrix and geometrical stiffness matrix are presented in the 

Appendix. 

- Elastic stiffness matrix 

 

𝐾11 = ∫ ∫ {𝐴11Ψ
2(𝜃) [(

𝜕2Φ(𝜑)

𝜕𝜑2
)

2

sin(𝜑)

𝜑2

𝜑1

𝜃1

0

+ (
𝜕Φ(𝜑)

𝜕𝜑
)

2
cos2(𝜑)

sin(𝜑)
]  

    +2𝐴12Ψ
2(𝜃)

𝜕2Φ(𝜑)

𝜕𝜑2
𝜕Φ(𝜑)

𝜕𝜑
cos(𝜑)

+ 𝐴66 (
𝜅 sin2(𝜑) + 1

sin(𝜑)
) (
𝜕Φ(𝜑)

𝜕𝜑
)

2

(
𝜕Ψ(𝜃)

𝜕𝜃
)

2

} 𝑑𝜑𝑑𝜃 

𝐾12 = ∫ ∫ {𝐴11 cos(𝜑)Ψ(𝜃)
𝜕2Ψ(𝜃)

𝜕𝜃2
𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑)

𝜑2

𝜑1

𝜃1

0

+ 𝐴12Ψ(𝜃)
𝜕Ψ2(𝜃)

𝜕𝜃2
𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑) 

      +𝐴66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2
𝜕Φ(𝜑)

𝜕𝜑
[
𝜕Φ(𝜑)

𝜕𝜑

− Φ(𝜑)cot (𝜑)]} 𝑑𝜑𝑑𝜃 

𝐾13 = ∫ ∫ {𝐴11cos(𝜑)Ψ
2(𝜃)

𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑)

𝜑2

𝜑1

𝜃1

0

+ 𝐴12sin (𝜑)Ψ
2(𝜃)

𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑)  

       −𝐴66sin (𝜑)Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

} 𝑑𝜑𝑑𝜃 

𝐾14 = ∫ ∫ {−𝜅𝑅𝐴66 sin(𝜑)Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

 

𝜑2

𝜑1

𝜃1

0

+2𝐵12Ψ
2(𝜃)

𝜕2Φ(𝜑)

𝜕𝜑2
𝜕Φ(𝜑)

𝜕𝜑
cos(𝜑) 

       +𝐵11Ψ
2(𝜃) [(

𝜕2Φ(𝜑)

𝜕𝜑2
)

2

sin(𝜑)

+ (
𝜕Φ(𝜑)

𝜕𝜑
)

2
cos2(𝜑)

sin(𝜑)
] 

       +
2𝐵66
sin(𝜑)

(
𝜕Ψ(𝜃)

𝜕𝜃
)

2

(
𝜕Φ(𝜑)

𝜕𝜑
)

2

} 𝑑𝜑𝑑𝜃 

𝐾15 = ∫ ∫ {𝐵11 cot(𝜑)Ψ(𝜃)
𝜕2Ψ(𝜃)

𝜕𝜃2
𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑) 

𝜑2

𝜑1

𝜃1

0

+𝐵12Ψ(𝜃)
𝜕Ψ2(𝜃)

𝜕𝜃2
𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑) 

       +𝐵66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2
𝜕Φ(𝜑)

𝜕𝜑
[
𝜕Φ(𝜑)

𝜕𝜑
− Φ(𝜑)cot (𝜑)], 

 
𝐾21 = 𝐾12, 
 

𝐾22 = ∫ ∫ {
𝐴11
sin(𝜑)

(
𝜕2Ψ(𝜃)

𝜕𝜃2
)

2

Φ2(𝜑) 

𝜑2

𝜑1

𝜃1

0

+ 𝐴66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

[(
𝜕Φ(𝜑)

𝜕𝜑
)

2

sin(𝜑) 

       + (
𝜅 sin2(𝜑) + cos2(𝜑)

sin(𝜑)
)Φ2(𝜑)

− cos(𝜑)Φ(𝜑)
𝜕Φ(𝜑)

𝜕𝜑
]} 𝑑𝜑𝑑𝜃, 

𝐾23 = ∫ ∫ {𝐴11
𝜕2Ψ(𝜃)

𝜕𝜃2
Ψ(𝜃)Φ2(𝜑)

𝜑2

𝜑1

𝜃1

0

− 𝜅𝐴66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑)}  𝑑𝜑𝑑𝜃 

𝐾24 = ∫ ∫ {𝐵11 cot(𝜑)Ψ(𝜃)
𝜕2Ψ(𝜃)

𝜕𝜃2
𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑) 

𝜑2

𝜑1

𝜃1

0

+𝐵12Ψ(𝜃)
𝜕Ψ2(𝜃)

𝜕𝜃2
𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑) 

       +𝐵66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2
𝜕Φ(𝜑)

𝜕𝜑
[
𝜕Φ(𝜑)

𝜕𝜑
− Φ(𝜑)cot (𝜑)], 

𝐾25 = ∫ ∫ {−𝜅𝑅𝐴66 sin(𝜑) (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ(𝜑)2 

𝜑2

𝜑1

𝜃1

0

+
𝐵11
sin(𝜑)

(
𝜕2Ψ(𝜃)

𝜕𝜃2
)

2

Φ2(𝜑) 

       +𝐵66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

[(
𝜕Φ(𝜑)

𝜕𝜑
)

2

sin(𝜑)+(
cos2(𝜑)

sin(𝜑)
)Φ2(𝜑)

− 2 cos(𝜑)Φ(𝜑)
𝜕Φ(𝜑)

𝜕𝜑
]} 𝑑𝜑𝑑𝜃, 

𝐾31 = 𝐾13, 𝐾32 = 𝐾23, 
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𝐾33 = ∫ ∫ {𝐴11 sin(𝜑)Ψ
2(𝜃)Φ2(𝜑)

𝜑2

𝜑1

𝜃1

0

+
𝜅

sin(𝜑)
Ψ2(𝜃) [sin2(𝜑) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

+Φ2(𝜑)]  

        𝐾𝑤𝑅
2 sin(𝜑)Ψ2(𝜃)Φ2(𝜑)

+ 𝐾𝑔 [sin(𝜑)Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

+
1

sin(𝜑)
(
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑)]} 𝑑𝜑𝑑𝜃 

𝐾34 = ∫ ∫ {𝜅𝑅𝐴66 sin(𝜑)Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

 

𝜑2

𝜑1

𝜃1

0

+sin (𝜑)𝐵12Ψ
2(𝜃)

𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑) 

       +2𝐵11 cos(𝜑)Ψ
2(𝜃)

𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑), 

𝐾35 = ∫ ∫ {𝜅𝑅𝐴66 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑)

𝜑2

𝜑1

𝜃1

0

+ 𝐵11
𝜕2Ψ(𝜃)

𝜕𝜃2
Ψ(𝜃)Φ2(𝜑)}  𝑑𝜑𝑑𝜃, 

𝐾41 = 𝐾14, 𝐾42 = 𝐾24, 𝐾43 = 𝐾34, 

𝐾44 = ∫ ∫ {𝜅𝑅2𝐴66 sin(𝜑)Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

 

𝜑2

𝜑1

𝜃1

0

+ 2𝐷12cos (𝜑)Ψ
2(𝜃)

𝜕Φ(𝜑)

𝜕𝜑

𝜕2Φ(𝜑)

𝜕𝜑2
 

      +𝐷11Ψ
2(𝜃) [(

𝜕2Φ(𝜑)

𝜕𝜑2
)

2

sin(𝜑)

+ (
cos2(𝜑)

sin(𝜑)
)(
𝜕Φ(𝜑)

𝜕𝜑
)

2

]

+
𝐷66
sin(𝜑)

(
𝜕Ψ(𝜃)

𝜕𝜃
)

2

(
𝜕Φ(𝜑)

𝜕𝜑
)

2

} 𝑑𝜑𝑑𝜃, 

𝐾45 = ∫ ∫ {𝐷11 cot(𝜑)Ψ(𝜃)
𝜕2Ψ(𝜃)

𝜕𝜃2
𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑) 

𝜑2

𝜑1

𝜃1

0

+𝐷12Ψ(𝜃)
𝜕Ψ2(𝜃)

𝜕𝜃2
𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑) 

      −𝐷66
𝜕Ψ2(𝜃)

𝜕𝜃2
Ψ(𝜃)

𝜕2Φ(𝜑)

𝜕𝜑2
Φ(𝜑), 

𝐾51 = 𝐾15, 𝐾52 = 𝐾25, 𝐾53 = 𝐾35, 𝐾55 = 𝐾45 

𝐾55 = ∫ ∫ {𝜅𝑅2𝐴66 sin(𝜑) (
𝜕Φ(𝜑)

𝜕𝜑
)

2

Φ2(𝜑) 

𝜑2

𝜑1

𝜃1

0

+
𝐷11
sin(𝜑)

(
𝜕Ψ2(𝜃)

𝜕𝜃2
)

2

Φ2(𝜑) 

      + (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

[(
𝜕Φ(𝜑)

𝜕𝜑
)

2

sin(𝜑)+(
cos2(𝜑)

sin(𝜑)
)Φ2(𝜑)

− 2 cos(𝜑)Φ(𝜑)
𝜕Φ(𝜑)

𝜕𝜑
]} 𝑑𝜑𝑑𝜃 

- Non-zero elements of Mass matrix 

𝑀11 = ∫ ∫ 𝐽0Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

, 

𝑀14 =
1

2
∫ ∫ 𝐽1Ψ

2(𝜃) (
𝜕Φ(𝜑)

𝜕𝜑
)

2

𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

 

𝑀22 = ∫ ∫ 𝐽0 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑)𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

, 

𝑀25 =
1

2
∫ ∫ 𝐽0 (

𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑)𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

, 

𝑀33 = ∫ ∫ 𝐽0Ψ
2(𝜃)Φ2(𝜑)𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

, 

𝑀41 = 𝑀14, 

𝑀44 = ∫ ∫ 𝐽2Ψ
2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2

𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

, 

𝑀52 = 𝑀25, 

𝑀55 = ∫ ∫ 𝐽2 (
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑)𝑅2sin (𝜑)𝑑𝜑𝑑𝜃

𝜑2

𝜑1

𝜃1

0

, 

- Non-zero elements of geometrical stiffness matrix 
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𝐾𝑔33 = ∫ ∫ [𝑁𝜑𝜑
0 Ψ2(𝜃) (

𝜕Φ(𝜑)

𝜕𝜑
)

2
𝜑2

𝜑1

𝜃1

0

+
𝑁𝜃𝜃
0

sin2(𝜑)
(
𝜕Ψ(𝜃)

𝜕𝜃
)

2

Φ2(𝜑) 

          +
𝑁𝜑𝜃
0

sin(𝜑)
Ψ(𝜃)

𝜕Ψ(𝜃)

𝜕𝜃

𝜕Φ(𝜑)

𝜕𝜑
Φ(𝜑)] sin(𝜑) 𝑑𝜑𝑑𝜃 
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