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1. Introduction 
 

The vast majority of the geographical compositions of 

the Earth’s crust are found to be porous or permeable media 

saturated with some sort of fluid. The reason behind this 

phenomenon is that underneath the Earth’s surface, 

permeable materials are available as coal, sandstones, 

petroleum reservoirs, etc. pervaded by water or oil. Further, 

some of the media are porous as well as viscoelastic in 

nature. For example, settlement and the unification of clay 

in substructures, porous rocks soaked with viscoelastic 

fluids, creep at elevated temperature in a permeable wall 

cooling, etc. The analysis of seismic surface waves through 

different regimes on Earth, comprising of poro-viscoelastic 

media is one of the major concerns for the researchers and 

seismologists round the globe. Hence, in the last few 

decades, the dynamic traits of poro-viscoelastic media have 

become the cynosure in the field of seismology; civil, 

geotechnical and earthquake engineering; soil and rock 

mechanics and many more. 

Porous materials consist of solid and pore components. 

When one or more fluids are filled inside the pores, then the 

medium is distinguished as fluid saturated porous medium. 

Since, there are two components of the fluid saturated  
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porous medium, hence there exist two different types of 

motion for both the components separately. Moreover, the 

presence of fluid inside the pores remarkably influences the 

traversal attributes, such as phase and damped velocities of 

surface waves. A number of articles are available on 

account of various conceivable applications of traversal of 

seismic waves through porous media. The speculation 

regarding the viscoelasticity of a porous anisotropic solid 

has been developed by Biot (1956a). Winkler and Nur 

(1979) experimentally verified the dominance of pore fluids 

not only on seismic wave velocities but also on seismic 

attenuation. Alam et al. (2018) briefly investigated the 

nature of phase velocity curves of torsional surface waves 

propagating through an intermediate poroelastic stratum 

lying between a stratum and a substratum of 

inhomogeneous as well as sandy type. Further, a 

comparative analysis has been carried out by Gupta et al. 

(2018) to irradiate the scattering of torsional waves in a 

layered Earth’s model. In their analysis, a fluid saturated 

porous medium as well as a transversely isotropic medium 

have been considered for the topmost layer one by one for 

two different cases. 

Viscoelasticity is a special characteristic of materials 

that display both viscous and elastic behaviors when 

subjected to distortion. The most determining attribute of 

the viscoelastic materials is their ability to absorb the high 

amount of energy produced during earthquakes and 

volcanic eruptions. Hence, to withstand the tremors during 

an earthquake, some of the metal alloys possessing 

viscoelastic property are utilized as dampers in the 

construction of multi-storey buildings. With the aid of 

suitable differential equations, Sharma and Gogna (1991) 

found a general solution irradiating the traversal behavior of 

seismic surface waves in a viscoelastic porous semi-infinite 
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medium. Modelling of seismic waves in viscoelastic media 

has been accomplished by Carcione (1993). Abo-Dahab et 

al. (2016) examined the impact of viscoelasticity, 

heterogeneity and reinforcement on the propagation of 

surface waves in a rotating anisotropic medium of higher 

order. Moreover, the impact of physical parameters like 

heterogeneity, dissipation factor, attenuation coefficient, 

sandiness, initial stress and thickness ratio on the phase and 

damped velocities of torsional waves in a viscoelastic 

stratified Earth’s structure has been analytically irradiated 

by Alam et al. (2017). The attenuation and dispersion 

attributes of torsional waves in a pre-stressed viscoelastic 

layered structure have been elucidated by Maity et al. 

(2018). 

Our Earth is a pre-stressed medium. A large quantity of 

initial stress often gets generated in a medium because of 

several natural and artificial phenomena such as difference 

in gravity, temperature, weight, hydrostatic tension or 

compression, differential external forces, slow process of 

creep, presence of overburdened layer, manufacturing 

activities, external loading etc. Initial stresses exhibit 

prominent impact not only on the traversal characteristics of 

elastic waves but also on the stability of the medium. 

Therefore, it is of great area of interest to the scientists and 

researchers to examine the effect of these stresses on the 

propagation traits of elastic waves due to their wide range 

of applications in numerous fields, including geophysics, 

seismology, mechanics of composites, rock mechanics, bio-

mechanics, non-destructive stress analysis, etc. Ozturk and 

Akbarov (2009) and Romenski et al. (2014) illustrated the 

traversal of surface waves in various pre-stressed elastic 

media. The traversal attributes, namely, phase and damped 

velocities of SH-waves in an inhomogeneous viscoelastic 

layer lying between an anisotropic porous layer and an 

initially stressed isotropic half-space have been studied 

graphically by Kundu et al. (2017). Alam et al. (2018) 

discussed the impact of a point source at the interface of a 

hydrostatically stressed magneto-viscoelastic stratum and a 

fiber-reinforced substratum of inhomogeneous kind on the 

propagation of Love-type waves. Gupta and Ahmed (2017) 

elaborated the impact of initial stress on the traversal 

behavior of Rayleigh waves in an orthotropic layer lying 

over a transversely isotropic dissipative half-space. Further, 

the effect of initial stress and inter facial imperfection on 

the propagation of shear waves through a piezoelectric 

stratum resting over a micropolar substratum has been 

investigated by Kumar et al. (2019). 

A persistent change in the material properties of any 

medium due to some natural or artificial phenomena is the 

principal reason behind the generation of heterogeneity in 

various layered structures of the Earth. In order to study 

seismic wave propagation, it is very much important to 

know the distribution of heterogeneity of Earth, both at the 

micro and mini scale. With the assistance of surface and 

body waves, tomographic studies are one of the significant 

tools in congregating knowledge about seismic 

heterogeneity. The presence of heterogeneity in a particular 

medium influences the traversal pattern of surface waves to 

a large extent. Hence, the study of seismic waves in 

heterogeneous media has attracted several eminent 

researchers both in the field of theoretical as well applied 

seismology. Selim (2007) briefly analysed the noteworthy 

influence of heterogeneity and surface irregularity on the 

traversal of torsional waves. A mathematical study has been 

contemplated by Kakar and Kakar (2016) describing the 

effect of initial stress, heterogeneity, gravity and porosity on 

the propagation behavior of SH-waves. Furthermore, the 

impact of exponential type of heterogeneity on the 

propagation of shear waves in a sandwiched elastic medium 

having voids has been presented by Gupta et al. (2017). 

Alam et al. (2018) considered six materials, namely beryl, 

magnesium, cadmium, zinc, cobalt and simply isotropic in 

order to demonstrate the traversal traits of Love-type waves 

in a magneto-elastic transversely isotropic layer resting over 

a heterogeneous half-space induced by a point source. 

Each and every particle on Earth, whether its size is big 

or small possesses different kinds of motion (rotational, 

translational etc.) about its center of gravity. The motion 

generated due to the gravitational field is one of the 

significant features of any media and it also generates 

internal friction, thus rendering a prominent influence on 

the equations of motion. Hence, in order to analyze various 

physical and dynamical problems related to the Earth, the 

consideration of gravity becomes quite inevitable. A few 

decades ago, De and Sen-Gupta (1974) slightly modified 

the Biot’s theory of initial stress and assumed that the 

gravitational force engenders a special kind of initial stress 

of hydrostatic nature. Based on this hypothesis, they made 

an attempt to study the nature of wave velocity under the 

effect of gravity. Also, Ahmed (1999) established the 

determinant form of frequency relation by considering 

Rayleigh waves traversing through a granular layer resting 

over a granular half-space under the influence of gravity. 

The explicit form of the dispersion relations of Stoneley 

waves propagating in a gravitating elastic medium for 

different cases has been elaborately discussed by Vinh and 

Seriani (2010). Alam et al. (2018) graphically demonstrated 

the influence of magneto-elasticity, hydrostatic stress and 

gravity on the phase velocity of Rayleigh waves 

propagating in a layered structure possessing sliding contact. 

It is notable from the real life scenario that the 

superficial layers of the Earth are not always smooth or 

planar, rather they are more undulated or fluted in their 

actual form. Some of the examples of corrugated or fluted 

boundaries are mountains, salt and mineral sediments, 

rooftops, rides in carnivals, etc. These imperfect surfaces or 

interfaces of various stratified media in the Earth’s crust 

certainly alter the transmission attributes of elastic waves to 

a great extent. Thus, the study of seismic waves through 

irregular boundaries has become a matter of interest among 

several geophysicists and seismologists worldwide. Tomar 

and Kaur (2007) applied the Rayleigh’s method to 

approximate the reflection and transmission coefficients of 

SH-waves at a corrugated interface between two dissimilar 

semi-infinite media. Recently, with the aid of Green’s 

function, the impact of corrugated interfaces on the 

diffraction of seismic waves in an elastic medium has been 

demonstrated by Elmorabie and Yahya (2017). Moreover, 

Alam et al. (2018) irradiated the importance of corrugation 

on the phase velocity of SH-waves traversing through a 
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Fig. 1 Structure of the stratified model of the Earth 

 

 

magneto-elastic anisotropic medium overlying a 

heterogeneous half-space. 

This theoretical analysis unfolds the impact of porosity, 

viscoelasticity, initial stresses, heterogeneity, gravity and 

corrugation on the propagation characteristics of torsional 

surface waves. With the assistance of appropriate equations 

of motion and variable separable technique, the 

displacement components corresponding to the layer and 

half-space have been deduced separately. From the obtained 

displacement components along with suitable boundary 

conditions, the condensed form of dispersion equation has 

been derived. Moreover, due to the consideration of Voigt-

type viscoelastic superficial layer as well as a complex form 

of wave number, the dispersion equation of our presumed 

geometry gets transformed to its complex form. With the 

aid of software Mathematica, the complex dispersion 

equation has been split into real and imaginary components. 

These real and imaginary components delineate the 

dispersion and damping phenomena of torsional waves, 

respectively. Thus, the velocity related with dispersion is 

termed as phase velocity (VP) whereas the velocity related 

with damping is termed as damped velocity (VD). The 

influence of corrugation along with different varying 

magnitudes of other parameters on the phase and damped 

velocities of torsional waves has been elucidated 

graphically. Permeable rocks saturated with viscoelastic 

fluids, stresses in a dam and stream of oil or any kind of 

fluid in oil supplies are some of the media exhibiting the 

poro-viscoelastic property. Moreover, the presence of 

corrugated boundaries can be naturally found in salt and 

mineral sediments, sand dunes in deserts, mainland edges, 

mountains, etc. The present investigation may thus find its 

applications in the study of seismic prospecting techniques 

in such regions of the Earth’s crust. 
 

 

2. Mathematical formulation of the problem 
 

A Voigt-type viscoelastic porous layer,  

1 2: ( ) ( )IM r H z r −  
 

resting over a heterogeneous transversely isotropic half-

space, 𝑀𝐼𝐼: 𝜙2(𝑟) ≤ 𝑧 ≤ ∞ has been contemplated in our 

presumed model. Here, H is the finite width; and 𝑧 =

𝜙1(𝑟) − 𝐻 and 𝑧 = 𝜙2(𝑟)  are the equations of the 

corrugated top and bottom boundaries of the considered 

layer. Also, the half-space has been assumed to be under the 

influence of gravity. A cylindrical coordinate system has 

been undertaken in which the torsional waves are presumed 

to traverse along the radial direction (r-axis) with velocity c. 

Moreover, the directions of z-axis and θ-axis are taken to be 

vertically downwards and along the horizontal plane of the 

cylindrical coordinate system, respectively. Both the layer 

and half-space are under the impact of initial stresses P1 and 

𝑃2
′  respectively, acting horizontally parallel to r-axis. It has 

been considered that the initial stress, elastic constants and 

density of the half-space vary exponentially with depth. The 

aforesaid geometrical structure of our problem has been 

depicted in Fig. 1. The Fourier series representation of the 

continuous and periodic functions ϕ1(r) and ϕ2(r) as 

established by Asano (1966) may be written as:  

( )i i

=1

( ) = ;    =1,2,n m r n m r

n m m

m

r e e n   


−

−+
 

(1) 

where  𝜙𝑚
𝑛  and 𝜙−𝑚

𝑛  are the coefficients and m is the 

order of the Fourier series expansion. Moreover, the 

constant entities γ n, 𝑆𝑚
𝑛  and 𝑇𝑚

𝑛 may be defined as  

𝜙±1
𝑛 =

𝛾𝑛

2
 and 𝜙±𝑚

𝑛 =
(𝑆𝑚

𝑛 ∓𝑖𝑇𝑚
𝑛)

2
;     𝑛 = 1,2 and 𝑚 = 2,3, . ..  

Hence, Eq. (1) can be written as  

=2

cos( )
( ) = cos( ) ;    =1,2.

sin( )

n

m

n n n
m m

S m r
r r n

T m r


  



  
+   + 
  (2) 

In our present work, the expansion of the series 

represented in Eq. (2) has been considered up to first order. 

Therefore, the corrugated top and bottom boundaries may 

be condensed up to only one cosine term i.e., 𝜙𝑛(𝑟) =
𝛾𝑛 𝑐𝑜𝑠( 𝛽𝑟), 𝑛 = 1,2, where γ n are the magnitudes of the 

respective corrugated boundary surfaces and 2π/β is the 

corrugation wavelength. 
 

 

3. Fundamental equations and solution 
 

3.1 Dynamics of the viscoelastic porous layer 
 

As per the considered geometry of our problem, let 

(u1,v1,w1) and (U1,V1,W1) be the displacement of the solid 

and the liquid constituents of the anisotropic porous layer in 

the radial (r), azimuthal (θ) and axial (z) directions, 

respectively. The traversal of torsional surface waves in the 

layer is distinguished by the following displacement and 

non-zero strain components: 

(1) (1) (1)

1 1 1 1= = 0,  = = ( , , ),  = = 0,r zu u v u v r z t w u  

1 1 1 1= = 0,  = = ( , , ),  = = 0,r zU U V U V r z t W U  

(1) (1)1 1 11 1
=   and  = .

2 2
r z

v v v
e e

r r z
 

  
− 

    

(3) 

With the aid of relations in (3), the non-zero stress 

components for the anisotropic Voigt-type viscoelastic 
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porous layer is given by: 

(1) (1)1 1 1=    and   = ,r z
N G

v v v
D D

r r z
    

  
− 

    

(4) 

where 𝐷𝜇𝑁
and 𝐷𝜇𝐺

are the anisotropic Voigt-type 

viscoelastic parameters defined as  

' '=   and  = ,N N G G
N G

D D
t t

    
 

+ +
   

where μN and μG are the shear moduli along longitudinal 

and transverse directions, respectively. Also, 𝜇𝑁
′  and 

𝜇𝐺
′  are the internal frictions along the longitudinal and 

transverse directions, respectively.  

The governing pair of equation of motion for the 

traversal of torsional waves through a pre-stressed 

viscoelastic porous layer in the absence of body force given 

by Biot (1965) is written as 

( )

(1) (1) (1)

2
(1) (1) (1)

1 1 12

2

=

r z r

z rr r

r z r

P v V
r t

  



  

  

 
+ +

 

 
− +

 

 (5) 

( )
2

(1) (1)

1 12
and      = 0,r v V

t
  


+

  

(6) 

where 𝜔𝑧
(1)

=
1

2𝑟
(

𝜕(𝑟𝑣1)

𝜕𝑟
−

𝜕𝑣1

𝜕𝜃
)  is the axial rotational 

component. Also, 𝜌𝑟𝑟
(1)

, 𝜌𝜃𝜃
(1)

 and 𝜌𝑟𝜃
(1)

 are the coefficients 

of mass obeying the following inequalities: 

(1) (1) (1) (1) (1) (1) 2> 0,  > 0,  < 0  and  ( ) > 0.rr r rr r        −
 

It is considered that there does not exist any kind of 

correlative movement between the liquid and solid 

components of the porous medium. Hence, 𝜌𝑟𝑟
(1)

, 𝜌𝜃𝜃
(1)

 and 

𝜌𝑟𝜃
(1)

 are associated with the overall density (ρ1) of the 

porous layer and densities of solid phase (𝜌𝑠
(1)

) and liquid 

phase (𝜌𝑤
(1)

) , by the following relations given by Biot 

(1956b, c): 

(1) (1) (1)= (1 )rr r p sf  + −
 

(1) (1) (1)and = ,r p wf   +
 

(7) 

where the layer’s porosity is denoted by fp. Thus, with the 

help of Eq. (7), the density of the layer is given by  

(1) (1) (1) (1) (1) (1)

1 = 2 = ( ).rr r s p w sf       + + + −
 

(8) 

Applying Eqs. (4) and (6), Eq. (5) gets converted to 

2 2 2
'1 1 1 1 1 1
12 2 2 2

1
= ,

2N G

P v v v v v
D D d

r r r r z t
 

     
− + − +  

       

(9) 

where 𝑑1
′   is defined in Appendix-I. 

For a harmonic wave propagating along r-axis, the 

solution of Eq. (9) may be considered of the form as 

( ) ( ) i

1 1, , = ( ) ,tv r z t V z J kr e 

 
(10) 

where k =wave number, ω(=kc) =angular frequency, c 

=torsional wave velocity and J1(kr) = Bessel’s function of 

first kind and first order. 

Substituting Eq. (10) into Eq. (9), we obtain 

2
2 2

2

( )
( ) = 0,

d V z
k V z

dz
+

 

(11) 

where ξ is defined in Appendix-I. 

The solution of (11) is procured as 

1 2( ) = cos( ) sin( ),V z M k z M k z +
 

(12) 

where M1 and M2 are constants. 

Hence, the desired displacement component of torsional 

surface waves in the considered layer is written as 

( ) i

1 1 2 1( , , ) = cos( ) sin( ) ( ) .tv r z t M k z M k z J kr e  +
 
(13) 

 

3.2 Dynamics of the transversely isotropic half-
space 

 

For the propagation of torsional surface waves, let

2 2 2( , , )u v w  be the displacement components of the half-

space obeying the following condition 

(2) (2)

2 2

(2)

2 2

= = 0,    =

= ( , , )   and   = = 0.

r

z

u u v u

v r z t w u


 (14) 

Further, let us consider that the initial stress (𝑃2
′), elastic 

constants (
' ' '

11 12 44,  and    ) and density (𝜌2
′ ) of the half-

space vary exponentially with depth, i.e.,  

' ' '

2 2 11 11 12 12

' '

44 44 2 2

( ) = , ( ) = , ( ) = , 

( ) =  and ( ) = ,

qz qz qz

qz qz

P z P e z e z e

z e z e

   

   
 

(15) 

where q is the heterogeneity of the half-space having 

dimension same as that of inverse of length. 

In the absence of body forces, the only non-vanishing 

equation of motion for the transversely isotropic half-space 

under initial stress and gravity as given by Biot (1965) is 

written as 

( )
(2) (2) (2)

' ' (2)

2 2

2
' '2 2 2
2 2 2

2
( ) ( )

1
( ) = ( ) ,

2

r z r
zP z z gz e

r z r z

v v v
z gz z

r r r t

  


  


 

  
 + + + −
   

    
− +  

      

(16) 

where g is the acceleration due to gravity. 

For the half-space under the influence of initial stress 

and gravity, the stress- strain relations are given by  

( )(2) ' ' (2) (2) ' (2)

11 12 44= ( ) ( )    and   = 2 ( ) ,r r z zz z e z e       −
 
(17) 

where 𝜏𝑟𝜃
(2)

 and 𝜏𝜃𝑧
(2)

 are the stress components; and 𝑒𝑟𝜃
(2)

 

and 𝑒𝜃𝑧
(2)

 are the strain components defined by  
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(2) (2)2 2 21 1
=  and  = .

2 2
r z

v v v
e e

r r z
 

  
− 
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(18) 

Using the relations (15), (17) and (18), Eq. (16) 

becomes 

( )
2 2

2 2 2 2 2 2
11 12 2 442 2 2

( )1 1
( )

2 2

v v v P gz v
gz

r r r r z


   

   −  
− − − + + +   

    
2

2 2 2 2 2
44 2 2

( )
= .

2

q P gz g v v
q

z t

 
 

− −   
+ + 

    

(19) 

For the propagation of a harmonic wave along the radial 

(r) direction, the solution of (19) can be written as  

( ) i

2 2 1( , , ) = ( ) ,tv r z t V z J kr e 

 
(20) 

where V2(z) is the solution of the following second order 

differential equation, 

2 *

2 2

2 *

2

44

( ) ( )

2 1
2 2

d V z dV zkG
q

dz dzP G zk



 
 
 + −
  

+ −   
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*
2 11 12

2
44

2* *
22 11 12
2

44 44

2 2
1 ( ) = 0,

1
2 2 2 2

G zk
k

c
V z

P G zk G zk
c

 



 

 

  −
−   

   − −
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+ − −     
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(21) 

where,G* and c2 are defined in Appendix-I. 

Substituting, 

1
* 2

22
2

44

( ) = ( ) 1
2 2

qz
P G zk

V z z e


−
−  

+ − 
   

in Eq. (21), we obtain  

2

2

( )
( ) ( ) = 0 ,

d z
z z

dz


 +

 

(22) 

where κ (z) is defined in Appendix-I. 

Again, putting 𝛿1 =
4

𝐺∗ (1 +
𝑃2

2𝜇44
−

𝐺∗𝑧𝑘

2
) in Eq. (22), 

we have  

2 2

1
12 2 2

1 1 1

( ) 1 1
( ) = 0,

4 4 16

d m q

d k

 
 

  

 
+ − + + − 
   

(23) 

where m is defined in Appendix-I. 

Eq. (23) is the the well known Whittaker’s equation 

(Whittaker and Watson (1991)) having solution given by  

1 1 3 1 2 3 1
,0 ,0

3 3

( ) = ( ) ( ) ,m m

k k

N W k N W k   
−

+ −

 
(24) 

where N1, N2 are arbitrary constants, 𝑊𝑚

𝑘3
,0

(𝑘3𝛿1) is the 

Whittaker’s function and k3 is defined in Appendix-I.  

Since, we are concerned with the propagation of 

torsional surface waves in the half-space, the solution 

disappears at z→∞ (i.e., at δ1→ −∞) and hence, the solution 

can be obtained as  

1 2 3 1
,0

3

( ) = ( ) .m

k

N W k  
−

−

 
(25) 

Thus, the desired solution of the half-space taken into 

consideration is obtained as  

*
i t2 2

2 3 1*
,0

44
3

2 1
* 2

2

44

4
1 ( )

2 2
( , , ) =  .

1
2 2

qz

m

k

P G zk
N W k e J kr e

G
v r z t

P G zk







−

−

  
− + −   

  

 
+ − 

   

(26) 

 

 

4. Boundary conditions and dispersion relation 
 

Continuity of displacement and shearing stress 

components at the common corrugated interface of the layer 

and half-space; and the stress free case at the upper 

corrugated surface of the layer provide suitable boundary 

conditions, mathematically manifested as:  

(1) At the common corrugated interface 𝑧 = 𝜙2(𝑟), the 

displacement components are continuous,  

1 2. .,  =i e v v
 

(2) Again at the common corrugated interface 𝑧 = 𝜙2(𝑟), 

the shearing components of stresses are continuous,  

 
(1) ' (1) (2) ' (2)

2 2. .,  ( ) = ( )z r z ri e r r        − −
 

(3) At the upper corrugated boundary plane(free 

surface) 𝑧 = 𝜙1(𝑟) − 𝐻 , the shearing stress component 

vanishes,  

(1) ' (1)

1. .,  ( ) = 0z ri e r   −
 

Now, using the above three boundary conditions and 

Eqs. (13) and (26) simultaneously, we obtain the following 

set of equations: 

11 1 12 2 13 2 = 0 ,a M a M a N+ +
 

(27) 

21 1 22 2 23 2 = 0 a M a M a N+ +
 

(28) 

31 1 32 2and  = 0 ,a M a M+
 

(29) 

where the coefficients a11 to a13, a21 to a23, a31 and a32 are 

well defined in Appendix-I. 

Eliminating M1, M2 and N2 from Eqs. (27) to (29), we get  

1
1 2

2

( , ) = tan( ( ( ) ( ))) = 0,k c k H r r


  


 − + −

 

(30) 

where 𝜒1and 𝜒2 are defined in Appendix-II. 

Eq. (30) is the desired dispersion equation for the 

propagation of torsional waves through a corrugated pre-

stressed Voigt-type viscoelastic porous layer overlying a 

pre-stressed heterogeneous transversely isotropic half-space 

under the influence of gravity.  
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5. Particular cases  
 

5.1 Case-I 
 

Considering both the top and bottom boundaries of the 

viscoelastic porous layer to be corrugated i.e., 𝑧 =
𝛾1 𝑐𝑜𝑠( 𝛽𝑟) − 𝐻 and 𝑧 = 𝛾2 𝑐𝑜𝑠( 𝛽𝑟) , the dispersion Eq. 

(30) gets converted to  

( ) 11
1 2

22

tan ( cos( ) cos( )) = ,k H r r


    


− +

 

(31) 

where 𝜒11 and 𝜒22 are defined in Appendix-II. 

Eq. (31) is the desired dispersion equation for the 

propagation of torsional waves through a pre-stressed 

Voigt-type viscoelastic porous layer bounded by upper and 

lower periodically corrugated boundary surfaces resting 

over a pre-stressed heterogeneous transversely isotropic 

half-space under the influence of gravity.  
 

5.2 Case-II 
 

Considering both the top and bottom boundaries of the 

viscoelastic porous layer to be non-corrugated i.e., z = −H 

and z = 0, the dispersion Eq. (30) gets converted to  

44 3 1 333

22 3 1

( )
tan( ) = ,

2

bk q
k H

A bk

  




+

 

(32) 

where ψ333 is defined in Appendix-II. 

Eq. (32) is the desired dispersion equation for the 

propagation of torsional waves through a pre-stressed 

Voigt-type viscoelastic porous layer bounded by upper and 

lower flat surfaces resting over a pre-stressed heterogeneous 

transversely isotropic half-space under the influence of 

gravity. 

 

5.3 Case-III 
 

Considering the layer to be isotropic without initial 

stress and corrugated boundary surfaces; and the half-space 

to be isotropic in the absence of heterogeneity, initial stress 

and gravity, i.e., 

 

' ' '

1 1 1 1

11 12
1 2 44 2

*

2

= = 0, = = , / 1, = 0, 

( ) = ( ) = 0, = = , = 0, 
2

= 0 and = 0,

N G N G d P

r r q

P G

     

 
   

→

−

 

the dispersion relation (30) gets reduced to  

2

2 22
2

2 2
11

1 2

11

1

tan( 1) = ,

1

c

cc
kH

c c

c





−

−

−

 

(33) 

where c11 is defined in Appendix-II. 

Eq. (33) coincides with the well established classical 

equation of Love waves (Love (1920)), thus validating our 

considered problem. 

6. Numerical results and discussion 
 

With the aid of dispersion Eq. (30), a considerable 

amount of analysis has been carried out to shed light on the 

traversal characteristics of torsional surface waves through 

a corrugated pre-stressed Voigt-type viscoelastic porous 

layer resting over a pre-stressed heterogeneous transversely 

isotropic half-space under the influence of gravity. In our 

work, the wave number k has been assumed to be complex, 

and hence represented as 𝑘 = 𝑘1 + 𝑖𝑘2 = 𝑘1(1 + 𝑖𝛿) , 

where k1 and k2 are real entities and 𝛿 =
Im[𝑘]

Re[𝑘]
=

𝑘2

𝑘1
(<< 1) 

is the attenuation coefficient. With the help of the software 

Mathematica, the dispersion relation (30) has been split into 

real and imaginary parts elucidated by the following 

relations,  

1Re[ ( , , )] = 0k c 
 

(34) 

1and  Im[ ( , , )] = 0.k c 
 

(35) 

Eqs. (34) and (35) generate the phase and damped 

velocity curves i.e., “VP versus k1H” and “VD versus k1H”, 

respectively.  

The parameters influencing the propagation behavior of 

torsional waves in our work are 

 
' ' '

1 1 1 1

1 2

1 2

44

1 2 44 1

porosity ( = / ), viscoelasticity ( = / , = / ),

initial stresses ( = (layer), = (half space)),
2 2

heterogeneity ( / ) and Biot'sgravity ( = / ).

N N G G

N

d d f f

P P

q k G g k

    

 
 

 

−

 
 

The dominance of these parameters on the phase and 

damped velocities has been depicted in Figs. 2 to 7 for both 

the corrugated and planar (non-corrugated) boundary 

surfaces of the layer. Also, the impact of position (r/H) and 

undulation (βH) parameters on the traversal of torsional 

waves has been elucidated in Fig. 8. 

The traversal of seismic waves through different kinds 

of porous media has always been an interesting topic for the 

researchers and seismologists round the globe. Hence, the 

points mentioned below are quite notable for understanding 

the presence of porosity in the layer: 

•  when the layer is assumed to be a non-porous 

medium, we get d1→1. 

•  when the layer is assumed to be a medium 

containing fluid, we get d1→ 0. 

•  when the layer is assumed to be a porous medium, 

we get 0 < d1 < 1. 

For plotting of graphs, the following data have been 

taken into account: 

(a) For the corrugated viscoelastic porous layer (Chattaraj 

and Samal (2013)): 

𝜇𝑁 = 0.2774 × 1010N/m2, 𝜇𝐺 = 0.1387 × 1010N/m2, 

𝜌𝑟𝑟
(1)

= 1.926137 × 103kg/m3, 𝜌𝑟𝜃
(1)

= −0.002137 ×

103kg/m3and 𝜌𝜃𝜃
(1)

= 0.215337 × 103kg/m3 

(b) For the heterogeneous transversely isotropic half-space  

(Prosser and Green Jr (1990)): 
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10 2

11 =1.426 10 N/m ,  10 2

12 = 0.678 10 N/m ,   

10 2 3 3

44 2= 0.527 10 N/m and =1.422 10 kg/m .  
 

 

6.1 Influence of porosity parameter 
 

Figs. 2(a) and 2(b) exemplify the influence of porosity 

parameter (d1) associated with the layer on the phase and 

damped velocity curves i.e., “VP versus k1H” and “VD 

versus k1H”, respectively. The curves 1, 2 and 3 have been 

drawn for d1=0.05, 0.13 and 0.21, respectively. Also, in 

both the figures a comparative analysis has been carried out 

to study the propagation characteristics of torsional waves 

for both corrugation and corrugation free cases.  

 

 
 

It is evident from Fig. 2(a) that rising magnitude of 

porosity disfavors the growth of phase velocity for both the 

corrugated and planar boundary surfaces of the layer. But 

for a particular value of porosity parameter the phase 

velocity in case of planar boundaries is always higher than 

the phase velocity in case of corrugated boundaries of the  

layer. Also, the dominance of the porosity parameter on the 

phase velocity curves can be seen prominently for higher 

values of wave number.  

On the other hand, Fig. 2(b) irradiates the fact that in the 

presence and absence of corrugation, the damped velocity 

diminishes with the increasing value of d1. In both the 

cases, the damping curves are convergent for lower and  

  
(a) (b) 

Fig. 2 Plots of dimensionless (a) phase (VP) and (b) damped (VD) velocities as a function of dimensionless real wave number 

(k1H) for different magnitudes of porosity parameter (d1) 

  
(a) (b) 

Fig. 3 Plots of dimensionless (a) phase (VP) and (b) damped (VD) velocities as a function of dimensionless real wave 

number (k1H) for different magnitudes of viscoelastic parameters (f, f1) 
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higher frequencies of wave number which means the impact 

of d1 is negligible on the damped velocity at these 

frequencies of wave number. In addition to this, with the 

growing value of k1H, the damped velocity curves fall off 

quickly in case of corrugated boundaries than in case of 

planar boundaries. 

 

 6.2 Influence of viscoelastic parameters 
 

Figs. 3(a) and 3(b) unravel the behavior of viscoelastic 

parameters (f, f1) on the phase and damped velocities of 

torsional waves by taking parametric values of (f, f1) as 

(0.50, 0.50), (0.58, 0.58) and (0.66, 0.66) for curves 1, 2 and 

 

 

3, respectively. In case of corrugated as well as planar 

bounded surfaces of the upper medium, it is perceived from  

Fig. 3(a) that as the viscoelasticity related with the layer 

increases, the phase velocity curve shifts downwards.  

Moreover, the presence of viscoelasticity is very much 

effective on the phase velocity for the entire frequency 

regime of wave number, i.e., in the overall range of wave 

number, the diminishing behavior of phase velocity of 

torsional waves is very much noteworthy by considering 

different values of viscoelastic parameters. 

 Fig. 3(b) irradiates the damping characteristics of 

torsional waves for different magnitudes of (f, f1). Further, 

the presence of corrugation in the boundary surfaces of the 

  
(a) (b) 

Fig. 4 Plots of dimensionless (a) phase (VP) and (b) damped (VD) velocities as a function of dimensionless real wave number 

(k1H) for different magnitudes of initial stress parameter (ς1) 

  

(a) (b) 

Fig. 5 Plots of dimensionless (a) phase (VP) and (b) damped (VD) velocities as a function of dimensionless real wave number 

(k1H) for different magnitudes of initial stress parameter (ς2)  

98



 

Comparative study of torsional wave profiles through stratified media with fluted boundaries 

 

 

 
layer is very much vital in determining the attributes related 

to the damping curves. Initially, for lower values of wave 

number i.e., k1H ≤2 and for a fixed magnitude of (f, f1), the 

curves corresponding to corrugation and corrugation free 

cases share a common damped velocity profile. Thus, it can 

be concluded that the damped velocity of torsional waves is 

independent of corrugated boundaries of the layer for k1H 

≤2. Contrary to this, the impact of the corrugation is 

distinguishable for different magnitudes of viscoelasticity 

and higher values of wave number i.e., k1H > 2. Moreover, 

irrespective of corrugated boundary surfaces, it is observed 

that the damped velocity curves 1, 2 and 3 decline with the 

increasing value of viscoelasticity and wave number. 

 
 

6.3 Influence of initial stress parameters 
 

The potential dominance of initial stress parameters, i.e., 

ζ1 (layer) and ζ2 (half-space) on traversal characteristics of 

torsional waves has been delineated through Figs. 4(a) and 

4(b); and 5(a) and 5(b), respectively. In addition to initial 

stresses, the impact of corrugation has also been exhibited 

graphically through these figures. To examine the effect, the 

numerical values assigned to ζ1 and ζ2 for curves 1, 2 and 3 

are 0.10, 0.15 and 0.20; and 0.20, 0.40 and 0.60, 

respectively.  

 It is remarked from Figs. 4(a) and 4(b) that escalating 

value of ζ1 reduces the growth of both phase and damped 

velocities. This decreasing trend of phase and damped  

  

(a) (b) 

Fig. 6 Plots of dimensionless (a) phase(VP) and (b) damped (VD) velocities as a function of dimensionless real wave 

number(k1H) for different magnitudes of heterogeneity parameter (q/k1) 

  
(a) (b) 

Fig. 7 Plots of dimensionless (a) phase (VP) and (b) damped (VD) velocities as a function of dimensionless real wave number 

( k1H) for different magnitudes of gravity parameter (G) 
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velocity curves is notable for both corrugation and 

corrugation free cases. Moreover, it is clear from Fig. 4(b) 

that the damped velocity curves tend to get united in the 

neighbourhood of k1H =0, elucidating the fact that in this 

particular region of wave number, the damping 

characteristics are independent of the presence of initial 

stress and undulated boundaries of the layer.  

However, Figs. 5(a) and 5(b) irradiate the favourable 

influence of initial stress parameter of the half-space on the 

phase and damped velocity curves i.e., both the velocities 

increase as ζ2 increases. The impact of ζ2 is more prominent 

on damped velocity as compared to phase velocity of 

torsional waves. Further, emphasising on the effect of 

corrugation, it can be seen from Fig. 5(a) that the phase 

velocity curves 1, 2 and 3 related to the corrugated 

boundary surfaces lie below the phase velocity curves 1, 2 

and 3 related to the planar boundary surfaces. Hence, it can 

be concluded that any medium bounded by corrugated 

surfaces decreases the phase velocity of torsional waves. 

Also, it is remarked from Fig. 5(b) that the influence of 

varying magnitude of ζ2 on damped velocity curves is more 

notable in case of planar boundaries rather than corrugated 

boundaries. 

 

6.4 Influence of heterogeneity parameter 
 

The propagation behavior of torsional waves through 

our presumed heterogeneous medium has been elucidated 

through Figs. 6(a) and 6(b). For plotting the phase and 

damped velocity curves 1, 2 and 3, the magnitudes of the 

heterogeneity parameter q/k1 have been taken as 0.20, 

0.28and 0.36, respectively.  

It is noteworthy from Fig. 6(a) that with the increasing 

magnitude of heterogeneity in the half -space, the 

propagation of torsional waves becomes faster for both 

corrugation and corrugation free cases. Unlike earlier 

figures, it is observed from Fig. 6(a) that the phase velocity  

 

 

curves 2 and 3 corresponding to corrugated and planar 

surfaces are intersecting in nature. Hence, for fixed values 

of q/k1 i.e., 0.28 and 0.36; and lower frequencies of wave 

number, the phase velocity for corrugated surfaces is lower 

than the phase velocity for planar surfaces. But, this trend 

gets reversed for higher values of wave number.  

Fig. 6(b) represents the favourable effect of q/k1 on the 

damping characteristics of torsional waves. However, this 

effect is not uniform over the entire range of wave number. 

It is clear from the figure that for both corrugation and 

corrugation free cases, the effect of q/k1 on the damped 

velocity curves is negligible for the region 0 ≤ k1H ≤ 1. 

Moreover, the damped velocity curves tend to unite in the 

neighbourhood of k1H = 6.5 for the case of corrugated 

boundaries and in the neighbourhood of k1H = 10.5 for the 

case of planar boundaries. 
 

6.5 Influence of gravity parameter 
 

To examine the influence of gravity parameter G on the 

phase and damped velocities of torsional surface waves, the 

parametric values allotted to G are 0.200, 0.202 and 0.204 

for curves 1, 2 and 3, respectively. The graphical analysis 

has been exhibited through Figs. 7(a) and 7(b).  

From Fig. 7(a), it is inferred that the existence of gravity 

helps the phase velocity of torsional waves to rise up its 

value for both corrugated and planar bounded surfaces of 

the layer. Further, the presence of gravity is very much 

prominent on the phase velocity over the entire region of 

wave number.   

Fig. 7(b) illustrates the fact that the damped velocity 

curve shifts upwards with the increasing magnitude of 

gravity parameter. For a fixed value of G, the damped 

velocity curves corresponding to corrugation and 

corrugation free cases share a common profile in the region 

0 ≤ k1H ≤ 4.5. However, with the rising value of wave 

number, the damping curves decline rapidly in case of 

corrugated surfaces than in case of non-corrugated surfaces. 

  
(a) (b) 

Fig. 8 Plots of dimensionless (a) phase (VP) and (b) damped (VD) velocities as a function of dimensionless real wave number 

(k1H) for different magnitudes of position (r/H) and undulatory (βH) parameters 
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6.6 Influence of position and undulation parameters 
 

Figs. 8(a) and 8(b) illustrate the dynamic response of 

torsional surface waves under the influence of position 

(r/H) and undulatory (βH) parameters associated with the 

corrugated bounded surfaces of the considered layer. In 

these figures, curves have been plotted for phase (VP) and 

damped (VD) velocities against corrugation parameter (γβ). 

The numerical values considered for (r/H, βH) are (0.12, 

0.12), (0.13, 0.13) and (0.14, 0.14) for curves 1, 2 and 3, 

respectively.  

 It is evident from Fig. 8(a) that growing value of (r/H, 

βH) escalates the phase velocity of torsional waves. 

However, when the corrugation parameter (γβ) proceeds 

towards higher values, an opposite trend is followed by the 

phase velocity curves, i.e., the phase velocity tends to 

diminish and then finally becomes stable for higher 

magnitudes of γβ.  

 Fig. 8(b) elucidates that in the region 0 ≤ γβ ≤ 0.36, the 

damped velocity curves corresponding to different values of 

(r/H, βH) are convergent in nature. Hence, it can be 

concluded that in this region the impact of (r/H, βH) on the 

damping characteristics is almost negligible. Moreover, the 

favourable influence of (r/H, βH) on the damped velocity 

curves is prominently visible for γβ > 0.36. 
 

 

7. Concluding remarks 
 

In this article, the dispersion and damping attributes of 

torsional waves in a corrugated Voigt-type viscoelastic 

porous layer resting over a heterogeneous transversely 

isotropic gravitating half-space have been examined in 

detail. The influencing parameters in the presumed 

geometry are porosity, viscoelasticity, initial stress, 

heterogeneity and gravity. The impact of these parameters 

has been exhibited graphically for both corrugated and 

planar bounded surfaces of the layer. Moreover, graphs 

have been plotted to irradiate the behavior of phase and 

damped velocities for increasing magnitudes of corrugation, 

undulation and position parameters. The remarkable 

highlights from the current analysis can be encapsulated as: 

•  The dispersion relation obtained for the isotropic and 

homogeneous condition is discovered to be in well consent 

with the pre-established Love wave equation, thus fulfilling 

the validity of the problem.  

•  The phase and damped velocities of torsional waves 

tend to diminish with the growing magnitude of wave 

number for both corrugated and planar boundary surfaces of 

the layer.  

•  The rising value of porosity and viscoelasticity of 

the layer disfavours the growth of phase and damped 

velocity curves. Moreover, the effect of these parameters on 

phase velocity is very much prominent over the entire 

frequency regime of wave number.  

•  Initial stress parameters of the layer and half-space 

exhibit opposite behavior on the phase and damping 

characteristics of torsional waves. With the increment in the 

initial stress of the layer, the phase and damped velocity 

curves shift downwards whereas the phase and damped 

velocities increase with the growing magnitude of initial 

stress of the half-space.  

•  For both corrugation and corrugation free cases, the 

impact of initial stress of the half-space on the damping 

curves is negligible in the lower frequencies of wave 

number. Also, with the presence and growth of initial stress 

of the half-space, the phase and damped velocities for 

planar boundaries are always higher than the phase and 

damped velocities of corrugated boundaries.  

•  The phase and damped velocities for both corrugated 

and planar bounded surfaces get boosted with the rise in 

heterogeneity and gravity parameters associated with the 

half-space. The influence of these parameters is dominant 

on the phase velocity curves, whereas the influence is 

relatively meagre on the damping curves.  

•  The increment in the position and undulation 

parameters exhibits a significant as well as positive effect 

on both the phase and damped velocities of torsional waves. 

However, the phase and damped velocity curves are 

independent of the effect of these parameters in the higher 

and lower frequency regime of corrugation parameter, 

respectively.  

The existence of porosity and viscoelasticity in any 

corrugated stratified media is an essential characteristic 

influencing the traversal behavior of seismic waves and 

assumes an imperative part in numerous geophysical 

potentialities. Thus, some of the perceptions of the present 

study may serve as a powerful tool in order to elucidate 

information in seismic prospecting methods.  
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