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1. Introduction 
 

Variable actions such as traffic, wind, and temperature 
have a significant effect on structures. Because of the 
adverse environmental impacts and aging structures, the 
precise estimation of load effect (LE) under variable actions 
over the lifetime of a structure is particularly important and 
can contribute to the optimal resource allocation of 
maintenance and management for infrastructures 
(Frangopol and Liu 2007, Au-Yong et al. 2017, Zhou et al. 
2019). To ensure safety in the design or assessment of 
structures, the specified reference period for variable action 
is generally very long. For example, the return periods for 
traffic load on bridges in the Chinese design code (MCT 
2015) and the Eurocode 1 (EC1 2003) are 1950 years and 
1000 years, respectively. However, knowledge of the effect 
of variable actions on structures is limited because they are 
highly random and measurements are generally short-dated. 
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The common practice is to infer the characteristic value of 

long return periods based on available measurements or 

simulations, which is the scope of extreme value statistics 

(Gumbel 2012). 
 

1.1 Classical extreme value theory 
 

The classical extreme value theory (EVT) aims to build 

statistical models to identify the limit distribution for the 

maximum and minimum values based on the underlying 

data. In EVT, two classes of extreme value distributions are 

used to find an accurate limit. The first class is known as 

the generalized extreme value (GEV) distribution based on 

block maxima (BM) or minima (Gumbel 2012), and the 

second is the generalized Pareto distribution (GPD) based 

on peaks over thresholds (POT) (Davison and Smith 1990). 

These two theories are widely used in the research of 

lifetime structural LEs under the loading of traffic, wind, 

temperature, or wave (Zhou et al. 2018b, Ye et al. 2017, 

Easterling et al. 2000, Jeong et al. 2016, Xia and Ni 2016). 

Moreover, it was reported that the POT theory took more 

information on local extrema from limited underlying data 

and shown more accurate estimates than the BM theory in 

some engineering fields (Rivas et al. 2008, Madsen et al. 

1997). In this paper, we choose the POT theory based 

extrapolation method for further study. 

With a sequence of independent and identically 

distributed observations Xi (i=1,2,…,m), Davison and Smith 
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Abstract.  The common practice to predict the characteristic structural load effects (LEs) in long reference periods is to employ the 

extreme value theory (EVT) for building limit distributions. However, most applications ignore that LEs are driven by multiple 

loading events and thus do not have the identical distribution, a prerequisite for EVT. In this study, we propose the composite 

extreme value modeling approach using clustering to (a) cluster initial blended samples into finite identical distributed subsamples 

using the finite mixture model, expectation-maximization algorithm, and the Akaike information criterion; (b) combine limit 

distributions of subsamples into a composite prediction equation using the generalized Pareto distribution based on a joint threshold. 

The proposed approach was validated both through numerical examples with known solutions and engineering applications of 

bridge traffic LEs on a long-span bridge. The results indicate that a joint threshold largely benefits the composite extreme value 

modeling, many appropriate tail approaching models can be used, and the equation form is simply the sum of the weighted models. 

In numerical examples, the proposed approach using clustering generated accurate extrema prediction of any reference period 

compared with the known solutions, whereas the common practice of employing EVT without clustering on the mixture data 

showed large deviations. Real-world bridge traffic LEs are driven by multi-events and present multipeak distributions, and the 

proposed approach is more capable of capturing the tendency of tailed LEs than the conventional approach. The proposed approach 

is expected to have wide applications to general problems such as samples that are driven by multiple events and that do not have 

the identical distribution. 
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(1990) showed that the excess y=X-u over a certain high 

threshold u can be approximated by GPD 
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where F(.) is the probability distribution function of these 

observations; Fu(.) is the probability distribution function of 

these excesses; ξ, u, σ are the shape, location, and scale 

parameters of the GPD, respectively. The GPD is defined on 

the optimal threshold u. The shape parameter ξ shows the 

tail behavior of the GPD and keeps stable when the 

threshold changes. The scale parameter σ is closely related 

to the choice of threshold such that 𝜎′=σ+ξ(𝑢′-u), where 

𝑢′ and 𝜎′ are the new threshold and the scale parameter, 

respectively. 

A critical prerequisite for the application of EVT is that 

the underlying data for BM or the exceedance data for POT 

should follow the identical independent distribution (iid). 

However, real-world structural LEs do not necessarily 

follow this hypothesis, and this fact is ignored in most 

studies, which may lead to significant overestimation or 

underestimation of lifetime LEs. In practice, structural LEs 

subjected to a certain variable action (such as traffic) are 

multimodally distributed driven by multiple loading events. 

Some loading events have a large probability of occurrence 

but generate low LEs, while some events produce large LEs 

but their probabilities of occurrence are relatively low, such 

as bridge traffic loading effects induced by free flow and 

congested flow (Caprani 2012, Ruan et al. 2017a). 

Furthermore, several parallel loading events may jointly 

produce adverse LEs, such as structural wind loading 

effects induced by thunderstorms and hurricanes (Gomes 

and Vickery 1978, Zhang et al. 2018). Over the structure’s 

lifetime, these loading events may concurrently contribute 

to the prediction of extreme LEs. Therefore, the real-world 

LEs are the combination of the results of many loading 

events and do not have identical distributions. 

 
1.2 Composite extreme extrapolation approach 
 
On non-identical samples based extreme extrapolation, 

Gomes and Vickery (1978) reported that extreme wind 

speed can be generated by several wind climates such as 

extensive pressure system storms, thunderstorms, and 

hurricanes. Each wind climate represents a certain 

mechanism, and the samples are assumed to follow the iid 

distribution, and therefore are modeled using the classical 

EVT. However, mixed samples from more than one 

mechanism are not identically distributed; thus, a method of 

“composite extreme wind speed diagram,” which yields 

more accurate probability estimates than the traditional 

Gumbel (GEV type I) extrapolation, has been proposed. 

The Gomes and Vickery approach has been widely applied 

in wind engineering (Zhang et al. 2018, Cook 2004). For an 

analogous problem of extreme traffic loading effect on 

short- to medium-span bridges, Caprani et al. (2008) 

divided the traffic loading events that govern extreme LEs 

into several mechanisms, i.e., the number of trucks 

involved, and used the composite distribution statistics 

method to predict the characteristic values over the lifetime 

of a bridge. The work were motivated by the Gomes and 

Vickery approach, where the composite modeling function 

is derived theoretically based on GEV fitting on each 

mechanism-governed subsample using BM. Zhou et al. 

(2016) studied the same problem as Caprani et al. (2008) 

did but used the mixture peaks-over-threshold approach to 

predict the characteristic values. The outline of the mixture 

peaks-over-threshold approach (or composite distribution 

statistics method) is given as follows.: (1) identify and 

classify the bridge traffic LEs by known event types, i.e., 

the number of trucks involved; (2) pick the featured LEs of 

each event type using the POT (or BM) method; (3) 

construct the limit distribution of GPD (or GEV) for 

featured LEs of each event type; (4) combine these GPD (or 

GEV) distributions of event types to obtain the composite 

method of prediction. The composite extreme extrapolation 

using the BM or the POT theory follows the same concepts, 

and this study focuses on the POT theory. 

On mixture observations from K mechanisms, single-

mechanism-governed subsamples are assumed to be 

described by an identical distribution, and their POT can be 

approximated by a GPD based on the classical EVT. 

Zhou et al. (2016) assumed that the survivor function, i.e., 

the probability of the underlying data larger than a certain 

value (over threshold), x, for these mixed observations, 

could be formulated with composite GPD. 
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where Fk(.) is the probability distribution function of the 

kth-mechanism-governed subsamples; Gk(.) is the 

corresponding GPD distribution for Fk(.); ξk, uk, σk are the 

shape, location, and scale parameters of Gk(.), respectively. 
The studies reviewed in this section (Gomes and 

Vickery 1978, Zhang et al. 2018, Cook 2004, Caprani et al. 

2008, Zhou et al. 2016) are built on two prerequisites: (1) 

the mechanisms governing the extreme values are assumed 

to be identifiable; (2) observations in the same mechanisms 

are assumed to follow an identical distribution. These two 

conditions are acceptable for the problems investigated in 

those studies and therefore the LEs can be easily separated. 

However, in most real-world problems, the governed 

mechanisms of extreme values are generally unknown or 

numerous, and the underlying data are blended. For 

example, critical traffic loading events for long-span 

bridges are many, including free flow with high traffic 

volumes or high truck proportions and congested flow of 

various forms, and thus difficult to differentiate. However, 

the structural LEs in an assumed mechanism do not strictly 

follow an identical distribution. For instance, bridge LEs 

from the single-truck loading event are assumed to follow 

iid in current studies (Caprani et al. 2008, Zhou et al. 2016). 

However, it was reported that truck had many types and the 

bridge LEs under a single truck but of different truck types 

were multimodally distributed (Zhou et al. 2018b, Tabsh 

and Mitchell 2016, Ruan et al. 2017b). 
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1.3 Contribution 
 
This study proposes a framework for extreme value 

modeling of non-identical samples using clustering. The 

framework employs the POT theory to address the 

extrapolation problem of multi-event-driven structural LEs 

that are generated by unknown or numerous mechanisms 

and that do not accord with the iid assumption. Using 

clustering, initial blended non-identical samples are 

automatically categorized into several identical subsamples 

without assuming that the governing mechanisms are 

identifiable. Therefore, the approach is general and simple 

for use. 

The framework contains two parts: (1) cluster the initial 

blended samples into several iid subsamples based on the 

finite mixture model, expectation-maximization (EM) 

algorithm, and Akaike information criterion (AIC); (2) build 

the limit distribution of GPD based on the POT of each iid 

subsample, and combine these GPD models into a 

composite prediction equation. This framework was 

developed based on the work of Caprani et al. (2008) and 

Zhou et al. (2016). However, it further showed that a joint 

threshold largely benefits and simplifies the prediction 

equation. Numerical examples with known solutions are 

conducted to verify the framework of the composite 

extreme value modeling using clustering. Finally, the 

engineering application of the proposed approach is 

demonstrated on structural LEs of traffic loading on a long-

span bridge. The distribution functions of realistic 

engineering problems are unknown, and thus the theoretical 

solution for prediction is undefined. The proposed approach 

is more accurate to capture the tail tendency of real-world 

data than the conventional direct application of EVT 

without clustering. Furthermore, the choice of the type of 

the finite mixture model for clustering is discussed. 
 
 

2. Approach 
 

2.1 Framework 
 

LE is the structural response (such as displacement, 

internal force, or stress) in a continuous period of time 

under loading. Structural LEs in a specific direction can be 

regarded as unidimensional time-series samples. On given 

structural LEs that are not identically distributed, the 

framework of the approach is shown in Fig. 1. The 

approach first clusters the initial samples into finite 

subsamples that accord with the iid assumption, where the  

 

 

finite mixture model is used to fit and separate the 

subsamples. The traditional POT-based GPD approach is 

employed to build the limit distribution for each iid 

subsample, and these limit distributions are then combined 

to form the composite prediction equation. 
 

2.2 Clustering non-identical samples 
 
To categorize the initial samples into finite identical 

distributed subsamples, the finite mixture model is used as 

the target multimodal distribution. Then, the EM algorithm 

is employed to estimate the parameters in the finite mixture 

model. Finally, AIC is applied to determine the optimal 

number of model components used for clustering. 
 

2.2.1 Finite mixture model 
The initial unidimensional time-series samples, X, can 

be described by a finite mixture model 

( ) ( )=1
| = | .

K

kk kk
f x w f x 

 
(3) 

where K represents the number of models used; 𝜃𝑘
⃗⃗⃗⃗  is the 

parameter of the kth model component; f(.) is the 

probability density function of X; wk and 𝑓𝑘(𝑥|𝜃𝑘
⃗⃗⃗⃗ ) are the 

weight coefficient and the probability density function of 

the kth model component, respectively. These weight 

coefficients obey the constraint of ∑ 𝑤𝑘 = 1𝐾
𝑘=1 . 

In this manner, these variables can be clustered into 

finite sets of iid subsamples as Xk(k=1,2,…,K), where the 

density function of Xk is 𝑓𝑘(𝑥|𝜃𝑘
⃗⃗⃗⃗ ). In mixture modeling, 

the same or different types of models can be used. The 

Gaussian mixture model can well describe most engineering 

situations (McLachlan and Peel 2004), and the Gumbel 

distribution can well describe the tail tendency of many 

structural LEs (Gomes and Vickery 1978). Therefore, the 

Gaussian mixture model and the Gumbel mixture model, 

shown in Eqs. (4) and (5), respectively, are compared to 

investigate the sensitivity of the type of the finite mixture 

model selected. 
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where uk and ∑k are the mean value and the variance of the 

kth Gaussian component in the Gaussian mixture model, 

and ak and βk are the location and scale parameters of the 
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Fig. 1. Framework of the proposed approach 
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kth Gumbel component in the Gumbel mixture model, 

respectively. 

 

2.2.2 EM algorithm-based parameter estimation 
In a finite mixture model, part of the data in a certain 

model may not be observed, while the EM algorithm is 

preferred to estimate the model parameters in the case of 

incomplete data (McLachlan and Peel 2004, Ye et al. 2017) 

and applied hereon. The core of the EM algorithm is to 

calculate the optimal fitting parameters by iterating the 

maximum likelihood estimation from the two steps of 

estimating the expectation value (step E) and the 

maximization value (step M). Next, the parameter 

estimation using the EM algorithm is illustrated based on 

the Gaussian mixture model. The procedures are also 

applicable to the Gumbel mixture model. 

For the given dataset, X, that are generated from a 

Gaussian mixture model as described in Eq. (4), a new K-

dimensional random variable, z, is introduced as follows. 

( )=1 = .k kp z w
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where zk represents whether the kth Gaussian distribution 

component is selected, and it has a binary value of 0 or 1; 

p(z) is the prior probability; p(x|z) is the likelihood 

probability. Therefore, the posterior probability p(z|x) of the 

kth component, r(zk), can be expressed as follows. 
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For the Gaussian mixture model, the objective of the 

EM algorithm is to calculate the maximum likelihood 

function L(𝜃 )=argmax f(x|𝜃 ). The optimization of the 

estimated parameters is described as follows. 
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(9) 

where N is the sample size of X. 

Therefore, the EM algorithm can be employed to 

determine the optimal estimation of the Gaussian mixture 

model following four steps: (1) Initialization: define the 

number of components used, K, and set the initial values of 

wk, μk and ∑k for each component k; (2) Expectation (step 

E): calculate the posterior probability, r(zk), based on wk, uk 

and ∑k using Eq. (8); (3) Maximization (step M): 

recalculate these parameters using r(znk) according to Eq. 

(9); (4) Convergence: repeat steps E and M until ‖𝜃 𝑛𝑒𝑤 −

𝜃 ‖ < 𝜀, where 𝜀 is the iteration tolerance. 

2.2.3 Optimal clustering using AIC 
In the EM algorithm, the estimation of parameters in a 

finite mixture model depends on the posterior information, 

i.e., the number of selected components, K. For any given 

K, the optimal parameters can be determined using the EM 

algorithm, but they are not necessarily the optimal solution 

for the observed data. The more components are used, the 

more accurate the finite mixture model reflects the observed 

data. However, the resulting model is unnecessarily 

complex and may be overfitting. Therefore, it is critical to 

determine the optimum K for the finite mixture model. 

Akaike (1998) provides a method for selecting the optimal 

fitting model to describe the observed data, which is used 

here as AIC=2K-lnL(𝑥|𝐾, 𝜃 ), where K is the number of used 

components and lnL(𝑥|𝐾, 𝜃 ) is the maximized value of the 

likelihood function for the estimated finite mixture model 

using K components. With the selection of different K 

values, the finite mixture model that produces the minimum 

AIC value is regarded as the optimal one. Therefore, with 

the optimal fitting of the finite mixture model to non-

identical samples, any value Xi(i=1,2,…,N) can be clustered 

into its corresponding kth subsample if Eq. (10) is satisfied. 
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where q is a uniformly generated random variable between 

0 and 1. 

 

2.3 Composite extreme value modelling 
 

With initial non-identical samples clustered into iid 

subsamples, the traditional EVT can be successfully 

employed to find the limit distribution of each subsample. 

Gomes and Vickery (1978) first reported this observation 

but without deriving the equations when applying the BM-

based GEV fitting. Caprani et al. (2008) provided the 

theoretical deduction of the composite extreme modeling 

function based on the same mathematical problem. 

Motivated by these works, Zhou et al. (2016) proposed the 

mixture peaks-over-threshold approach in Eq. (2), which 

used separated thresholds for each loading event (i.e., 

model component) and combined them together. This 

approach, similar to that proposed by Caprani et al. (2008), 

solves the problems associated with realistic structural LEs 

with non-identical distribution that the classical EVT cannot 

be directly employed to solve. However, the equation form 

is rather complex because the optimal threshold for each 

model component may be different.  

However, our recent study (Zhou et al. 2018a) showed 

that if a joint threshold, u, of all model components is used, 

the probability distribution function of excesses, y=X-u, 

from Eq. (2) can be further simplified to Eq. (11). 
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where gk=wk[1-Fk(u)]/[1-F(u)]. 

The final expression of the composite extreme 

prediction function (Eq. (11)) is clear and simple; gk is the 

ratio of the number of exceeding data of the kth subsample 

to that of all subsamples based on the joint threshold. 

Therefore, the composite extreme prediction model is the 

sum of the weighted GPD models of the clustered iid 

subsamples. The simplified equation implies that many 

appropriate POT-based tail approaching models (not limited 

to GPD) can be used to approximate the tail of the mixture 

data, and its form for composite extreme extrapolation is 

simply the sum of the weighted models based on the joint 

threshold. For example, one can (if appropriate) use normal 

distribution to approach the tail of the real data, and the 

prediction equation will be the composite left truncated 

normal distribution. 

The critical feature of the above derivation is that a joint 

threshold can be found for all subsamples, where the 

estimated shape and scale parameters for each subsample 

are still optimal using the joint threshold. In the search of 

the optimal threshold for a GPD model, the shape parameter 

does not change with the threshold, and the scale parameter 

has a close relationship with the threshold such that 

𝜎′=σ+ξ(𝑢′-u), where 𝑢′and 𝜎′are the new threshold and 

the scale parameter, respectively. Therefore, the maximum 

of all the optimal thresholds for each subsample can be used 

as the joint threshold, and the re-estimated shape and scale 

parameters for each subsample based on the joint threshold 

are still optimal. 

The common problem for the joint threshold-based 

composite extreme value prediction equation is the 

determination of the three parameters in the GPD model. It 

is noted there are many algorithms for the parameter 

estimation of the GPD model, especially for threshold 

selection (Lang et al. 1999; Scarrott and MacDonald 2012). 

In the study, the following procedures are recommended to 

find the solution: (1) Set the initial threshold that starts from 

the value of the maximal probability density to the 

maximum of the kth subsamples; (2) Use the method of 

probability weighted moment (PWM) to estimate ξk and σk 

in the kth subsample considering the limited number of 

POT (Bermudez and Kotz 2010); (3) Employ the 

Kolmogorov-Smirnov (K-S) test, a computational approach, 

to determine whether the threshold is optimal by 

minimizing the fitting error; (4) Repeat the above steps to 

find the optimal threshold for the subsample, and the joint 

threshold is the maximum of these components, i.e., 

u=max{u1, u2,…,uk}.  
 

 

3. Numerical examples 
 

Numerical examples with given functions have known 

solutions to the predicted extreme of any reference period 

and therefore are used here for verification. The parameters 

of the numerical examples are shown in Table 1. The 

sample size per day is 3000, and 1000 days are simulated. 

The underlying data are generated by the known Gaussian 

mixture model or the Gumbel mixture model so that the 

theoretical extreme of any reference period can be easily 

calculated using Eq. (12). 

 

Fig. 2 Comparison between initial data and clustered data: 

an example of the numerical example 3 using the 

Gaussian mixture model (referring to Table 1). 
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where N is the sample size of X in the specified reference 

period. 

 

3.1 Verification of clustering 
 
Initial samples of each example are generated using the 

given parameters of the finite mixture model. The EM 

algorithm and AIC are then applied to estimate the 

parameters for fitting the finite mixture model. Finally, the 

initial data are clustered into subsamples using Eq. (10). As 

shown in Table 1, the estimated parameters show good 

agreement with the given data, where R2 for each example 

is larger than 0.9999. To illustrate the agreement between 

the clustering data and the initial data, example 3 of the 

Gaussian mixture model (Table 1) is demonstrated in Fig. 2. 

It is known from Fig. 2 that the clustering data are the same 

as the initial data of each model component (i.e., event 

type), and the tail tendencies are also consistent. Similar 

results are found in other numerical examples. Therefore, 

POT-based GPD can be applied to the clustered 

subsamples. 

 
3.2 Validation of extrapolation 
 

The fitting parameters of the GPD model for each event 

type are calculated using the K-S test and the PWM method 

(Table 2). The results of the Gaussian mixture model are 

only shown for the validation of the composite extreme 

value model using clustering, which is the proposed 

approach. The classical EVT fitting using the mixture POT 

that ignores the iid assumption is also studied for 

comparison, which is the conventional approach. For 

comparison, the joint threshold used in the proposed 

approach is also employed for the conventional approach, 

and the scale parameter is transformed from its estimated 

optimal threshold. With all the estimated parameters, the 

extracted data of POT from each event type together with 

their fitting models are plotted in Fig. 3. The sample sizes 

for each event and the mixture are different, indicating that 

the same vertical coordinate of each fit line in Fig. 3  
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represents different levels of return period. Fig. 3 also 

shows the plots of the data for each event type and the 

mixture without clustering. The changing regulations of the 

prediction results using the proposed and conventional 

approach, and their relationship with each event type are 

also presented. 

Three numerical examples with known solutions are 

demonstrated to validate the benefit of clustering and the 

joint threshold for the proposed composite extreme value 

modeling. Example 1 shows the non-identical data 

composited by two Gaussian components of equal weight. 

Event 1 has a larger location parameter and a greater scale 

parameter, while Event 2 has a lower location parameter 

and a smaller scale parameter. Event 1 has a longer tail and 

a greater proportion of tailed data, governing the extreme in 

the high-return period as shown in Fig. 3(a), where 

prediction results using the proposed approach with 

clustering nearly coincides with those of Event  1. 

Moreover, differences in the predicted values obtained 

using the proposed and the conventional approach are small 

because the data of POT are mainly from Event 1. Example 

2 shows the non-identical data also formed by two Gaussian 

components but with different weights, where Event 1 has a 

lower location parameter but a greater scale parameter and 

Event 2 has a larger location parameter but a smaller scale 

parameter. Event 1 has a longer tail but its proportion 

contributing to POT is small. Fig. 3 (b) shows that 

prediction results using the proposed approach changes  

 

 

along the trend of Event 2 in the lower part but shifts to the 

trend of Event 1 in the upper part; the extreme in the high-

return period is governed by Event 1. Significant 

differences in the values predicted using the proposed and 

the conventional approach are detected in example 2 

because the POT data are the mixture of Event 1 and 2; 

thus, the model fit using the conventional approach on the 

data does not well describe the tail tendency. Example 3 

adds a Gaussian component (Event 3) with the largest 

location parameter but the smallest scale parameter based 

on Example 2. The fitting results using the proposed 

approach changes along the trend of Event 3 in the lower 

part and then curves to the trend of Event 1 in the upper 

part, and the differences between the proposed and 

conventional approaches are significant (Fig. 3(c)). 

Fig. 4 shows the comparison of the predicted extrema 

under various return periods using the proposed and 

conventional approaches. The cumulative probabilities for 

the POT method are P=1-1/(365ⅹTⅹnPOT), where T is the 

return period and nPOT is the average daily number of data 

points exceeding the threshold. The theoretical value 

(known solution) is derived from the known distribution 

equations following Eq. (12). When the tailed data are 

generated by a certain Gaussian component, e.g., Example 

1, predictions using the proposed and the conventional 

approaches yield the same results. However, if the tailed 

data are a mixture of several Gaussian components, the 

predicted extrema using the two approaches are  

Table 1 Given and estimated parameters in numerical examples. 

Example 

No. 

Sample 

size per 

day 

Ev

ent 

No. 

Gaussian mixture model Gumbel mixture model 

Given (w, μ,√Σ) Estimated (w, μ,√Σ) R2 Given (w, α, β) Estimated (w, α, β) R2 

1 3000 
1 (0.5, 60, 100)  (0.50, 59.99, 101.54)  

0.99999 
(0.5, 50, 3)  (0.50, 50.02, 3.00)  0.9999

8 2 (0.5, 50, 90) (0.50, 50.17, 89.39) (0.5, 45, 2) (0.50, 45.02, 2.01) 

2 3000 
1 (0.9, 50, 100) (0.90, 49.95, 100.14) 

0.99998 
(0.9, 42, 3) (0.90, 42.00, 3.00) 0.9999

8 2 (0.1, 260, 60) (0.10, 260.23, 60.11) (0.1, 50, 2) (0.10, 50.01, 2.00) 

3 3000 

1 (0.7, 50, 100) (0.70, 50.12, 100.24) 

0.99996 

(0.7, 42, 3) (0.70, 42.00, 3.00) 
0.9999

7 
2 (0.2, 250, 50) (0.20, 249.96, 50.06) (0.2, 50, 2) (0.20, 50.02, 2.01) 

3 (0.1, 400, 20) (0.10, 400.09, 20.05) (0.1, 54, 1) (0.10, 53.48, 1.00) 
 

 

Table 2 The estimated parameters of the proposed and conventional approaches from the numerical examples of Gaussi

an mixture models. 

Example No. Event No. Approach type Weight, w Threshold, u Shape parameter, ξ Scale parameter, σ 

1 

1 
Proposed 

0.86 

388.60 

-0.0359 27.85 

2 0.14 -0.3089 29.15 

N/A Conventional 1.00 -0.0357 27.35 

2 

1 
Proposed 

0.16 

384.21 

-0.0343 27.00 

2 0.84 -0.1034 24.29 

N/A Conventional 1.00 -0.0812 24.49 

3 

1 

Proposed 

<0.01 

402.71 

-0.0322 26.40 

2 <0.01 -0.0601 14.46 

3 0.99 -0.1819 17.50 

N/A Conventional 1.00 -0.1539 16.28 
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(a) Example 1 

 
(b) Example 2 

 

 
(c) Example 3 

Fig. 3 Probability paper plot of extrapolation data and 

their fitting distributions (PA: the proposed approach, CA: 

the conventional approach) 

 

 

significantly different, e.g., Examples 2 and 3. Under these 

conditions, the proposed approach yields more accurate 

results, with a relative error of less than 1%, whereas the  

 

(a) Example 1 

 
(b) Example 2 

 
(c) Example 3 

Fig. 4 Comparison of predicted extrema using the 

proposed and conventional approaches (PA: the proposed 

approach, CA: the conventional approach) 

 

 

conventional approach yields a relative error up to 24% 

(Fig. 4(c)). 

The predicted extrema in long reference periods using 

the proposed approach are determined by the model 

component that governs the tailed data in the finite mixture 

model. One can directly employ a certain distribution  
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Fig. 5 Layout of the case bridge and influence lines 

 

 

function to approximate the tail of the empirical cumulative 

distribution of the underlying data, such as the straight-line 

inference using a Gaussian or Gumbel probability paper. If 

the underlying data can be clustered by a finite mixture 

model, then the subsamples from the model component that 

governs the tail tendency of the underlying data can be 

selected for extrapolation.  

Therefore, numerical studies verify that the composite 

extreme value model using clustering can address the 

prediction problem of non-identical samples and yield 

consistent results with theoretical solutions. 
 

 

4. Engineering application 
 

Application of the proposed approach to structural LEs 

of traffic loading on a long-span bridge is demonstrated in 

this section. A two-span continuous girder bridge with a 

constant section and equal span of 200 m is studied. The 

bridge is assumed to carry two-lane unidirectional traffic. 

The continuous bridge type assumed here is to illustrate the 

influence lines (ILs) of long-span bridges in terms of 

positive and negative lobes, similar to that of (Guo and 

Caprani 2018). To calculate bridge LEs under stochastic 

traffic flow, the linear superposition method is employed 

between vehicle load sequences and the ordinates of 

influence lines, where an IL is the graph of responses of a 

certain structural effect caused by a moving unit point load 

along the bridge span in a traffic lane. Two critical ILs of 

the bridge are investigated. One is the girder hogging 

moment in the center support, denoted by IL1. The other is 

the girder sagging moment in the span center, denoted by 

IL2. Fig. 5 shows the bridge and the two ILs, where the IL 

ordinates are derived based on the unit point load of 1 kN. 
To present how the proposed approach is applied to 

extrapolate the extreme traffic LE of the studied bridge, it is 
important to acquire adverse underlying traffic LEs over the 
bridge lifetime, which is difficult to measure because 
onerous traffic loading scenarios of long-span bridges are 
very rare in daily life. To address this concern, traffic 
simulation is performed to trigger adverse traffic LEs of the 
two ILs during the bridge lifetime. Using the time-history of 
LEs, the proposed clustering methods are applied and 
individual subsamples that accord with the iid assumption 
are extracted. Finally, the composite extreme prediction 
equation is applied to predict the characteristic bridge LEs. 

 

4.1 Simulation of bridge traffic loading 
 

Over the service life of a long-span bridge, there are 

many traffic loading events, and free flow and congestion  

 
Fig. 6 Hourly traffic volume from WIM data and traffic 

microsimulation 

 

 
Fig. 7 Comparison of congested traffic between (a) 

simulations and (b) observations 
 
 

are the two fundamental ones. However, free flow may vary 

depending on the situation such as high traffic volume but 

low truck proportion in the daytime and low traffic volume 

but high truck proportion in the nighttime (Ruan et al. 

2017b; Zhou et al. 2018b). Moreover, congestion can take 

several forms such as full stop traffic, stop and go waves, 

and homogeneous traffic congestion (Guo and Caprani 

2018). To model the real-world traffic loading over a long 

distance, the microscopic behavior of vehicles, such as car-

following and lane-changing, should be considered, which 

is known as traffic microsimulation. Herein, a novel cellular 

automaton-based traffic microsimulation, known as multi-

axle single-cell cellular automaton (MSCA), is used to 

model the traffic action on bridges (Ruan et al. 2017b). 

MSCA can generate accurate axle load sequences for bridge 

loading and is verified using the weigh-in-motion (WIM) 

data. Furthermore, two-lane unidirectional WIM data are 

utilized as the basis for the traffic microsimulation on the 

bridge. For further information on the WIM data, readers 

are referred to (Ruan et al. 2017b). 

The WIM data used here reflect the free-flow conditions 

with a medium volume of 20,373 vehicles per day including 

cars. However, the bridge may undertake much higher 

traffic volumes and thus severe LEs. In order to present the 

most severe LEs over the bridge’s service life, the average 

daily traffic volume in the simulation is amplified based on 

the hourly traffic volume regulations of the WIM data to 

trigger congestion. In the microsimulation by the MSCA, 

the random deceleration factor is set as 0.5 and the lane-

changing probabilities are set as 1.0. Finally, a relative high 

volume of 42,526 vehicles per day is generated. The 

changing regulation of hourly traffic volume of the  
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simulation is shown in Fig. 6, together with that of WIM 

data. In Fig. 6, the peaks in the hourly traffic volume of the 

WIM data show the rush hour traffic at 16:00–17:00. 

However, in the simulation, congestion occurs between 

10:00 and 18:00, as evidenced by the horizontal hourly 

traffic volume over time, indicating that the road capacity 

has been reached. 

Fig. 7(a) shows the space versus time information of the 

simulated traffic in the fast lane; dotted points represent 

vehicles. The horizontal axis represents the physical 

location of each vehicle on the road, and the vertical axis is 

the time range. Congestion is illustrated by the black belts 

in Fig. 7(a), which is consistent with the observed traffic 

phenomenon from the video records of an American 

freeway, Fig. 7(b) (Treiterer 1965).  

 

4.2 Clustering of bridge LEs  
 

In the microsimulation, free flow in the nighttime with 

high truck proportion and congested flow in the daytime 

with low truck proportion are modeled, which represents 

the adverse traffic loading events over the bridge’s service 

life. On the bridge, 1000-day traffic with a time step of 0.2 s 

is simulated, and the history of LEs on two ILs is obtained. 

The vehicle-bridge coupling vibration is significant under 

free-flow conditions but very low under traffic congestion. 

Hence, a dynamic impact factor should be added to the 

simulated load effects under free-flow conditions. Herein, a 

dynamic impact factor of 0.05 recommended for long-span 

bridges (MCT 2015) is used. 

 

 

The bridge LEs from the microsimulations are driven by 
multiple events; therefore, they require clustering. There are 
many components of the finite mixture model to accurately 
model the data if all the LEs are used because small LEs 
with a large proportion affect the fitting and clustering 
results of tailed LEs. Therefore, hourly maximal LEs are 
extracted as the initial data to filter these small and 
negligible LEs. Consequently, the tailed LEs can be 
properly modeled using a finite mixture model, and these 
initial data can be regarded as independent. These picked 
LEs belong to both the congested and free-flow traffic 
conditions, but the congested LEs contribute over 85%. To 
investigate the sensitivity of the finite mixture model used, 
Gaussian and Gumbel mixture models are synchronously 
studied and compared. 

Figs. 8 and 9 show the fitting and clustering of traffic 
LEs of IL1 and IL2 with a Gaussian mixture model and a 
Gumbel mixture model. These estimated parameters are 
presented in Table 3. The fitted Gaussian mixture model and 
the Gumbel mixture model both describe the empirical 
probability density distribution of the initial data with R2 
>0.999, and the tailed LEs are well captured. A smaller 
number of model components are used for effective 
clustering in the Gumbel mixture model than in the 
Gaussian mixture model. With the finite mixture model, all 
the initial data can be clustered into their corresponding 
model components. 

 

4.3 Prediction of characteristic LEs 
 

The trends in LEs in components 1 and 2 of the  

 
Fig. 8 Fitting and clustering on traffic LEs of IL1 with (a) a Gaussian mixture model and (b) a Gumbel mixture model 

 

 
Fig. 9 Fitting and clustering on traffic LEs of IL2 with (a) a Gaussian mixture model and (b) a Gumbel mixture model 
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Gaussian mixture models for IL1 and IL2 curve upward, 

and similar results are detected in LEs of component I of 

the Gumbel mixture model for IL1. These model 

components have very little impact on the prediction of the 

extrema because they produce low-magnitude LEs. 

Therefore, only contributive component-LEs are plotted in 

Figs. 10 and 11 together with the fitting models of 

components and the composite prediction equation. The 

estimated parameters are listed in Table 4 where a joint 

threshold is used for the proposed and conventional 

approaches of the Gaussian mixture model and the Gumbel 

mixture model. In the results of the Gaussian mixture  

 

 

model, only components 3 and 4 influence the extreme 

extrapolation of LEs, and the tail tendency of LEs is more 

likely to be influenced by component 4 than by component 

3 both for IL1 and IL2. The values predicted by the Gumbel 

mixture model in short evaluation periods are concurrently 

influenced by two model components, but mainly governed 

by the last model component in the high-return period. 

Moreover, the estimations using both approaches well 

describe the global data. However, the proposed approach 

more accurately captures the maximal outliers as indicated 

in Figs. 10 and 11 where it curves more significantly to 

these outliers. Furthermore, the Gumbel mixture model is  

Table 3 Estimated parameters of the finite mixture models on bridge traffic LEs 

Bridge 

effect 

Gaussian mixture model Gumbel mixture model 

Component 

No. 
w 

μ 

(104kN.m) 
√Σ 

(103kN.m) 
R2 

Component 

No. 
w 

α 

(104kN.m) 

β 

(103kN.m) 
R2 

IL1 

1 0.26 4.05 5.29 

0.99994 

I 0.74 4.35 8.37 
0.99985 

2 0.43 4.98 7.55  II 0.26 5.88 10.68 

3 0.21 6.27 9.22  
N/A 

4 0.10 7.58 15.92 

IL2 

1 0.17 1.29 1.51 

0.99982 

I 0.37 1.33 2.17 

0.99993 2 0.27 1.59 2.50 II 0.36 1.89 4.58 

3 0.36 2.45 5.18   III 0.27 2.73 4.08 

4 0.20 2.88 6.66 N/A 
 

 

Table 4 Estimated parameters using the proposed and conventional approaches for the studied case 

Bridge 

effect 

Approach 

type a 

μ 

(104kN.m) 

Gaussian mixture model Gumbel mixture model 

Component 

No. 
w ξ 

σ 

(103kN.m) 

Component 

No. 
w ξ 

σ 

(103kN.m) 

IL1 

PA 

7.88 

3 0.15 -0.1728 4.13 I 0.23 
-

0.1254 
9.58 

4 0.85 -0.1779 15.41 II 0.77 
-

0.1496 
14.05 

CA N/A 1.00 -0.1081 12.73 N/A 1.00 
-

0.1081 
12.73 

IL2 

PA 

3.52 

3 0.17 -0.1735 2.43 II 0.24 
-

0.2224 
5.08 

4 0.83 -0.1375 5.19 III 0.76 
-

0.0966 
4.28 

CA N/A 1.00 -0.0869 4.44 N/A 1.00 
-

0.0869 
4.44 

Note: a PA: the proposed approach; CA: the conventional approach 

 

  

(a) Gaussian mixture model (b) Gumbel mixture model 

Fig. 10 Comparison of LEs of IL1 using the proposed approach (PA) and the conventional approach (CA) 
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more effective than the Gaussian mixture model in 

capturing these outliers. Therefore, the composite extreme 

value model produces more accurate fitting results on the 

tailed LEs, and the conventional prediction method yields 

deviations especially for the evaluation of characteristic 

LEs in high-return periods. 

Table 5 presents the comparison of characteristic LEs in 

several typical return periods predicted using the proposed 

and conventional approaches. The predicted extrema of the 

proposed approach using the Gaussian and the Gumbel 

mixture models are in good agreement with a relative error 

of less than 2%. However, the results of the conventional 

approach show an up to 8% relative error compared to those 

of the proposed approach, and the error grows with the 

return period. The real-world bridge traffic LEs are driven 

by multiple events, and conventional extrapolation 

approach that ignores the iid assumption may produce large 

deviations in the prediction of extreme values, especially 

for long return periods. However, the proposed composite 

extreme value modeling approach generates much accurate  

 

 

results. Furthermore, provided that underlying data can be 

well clustered by the finite mixture model, the choice of the 

type of the finite mixture model slightly influences the 

prediction results, but Gumbel mixture model is still 

recommended because it more capable of capturing outliers 

of tailed structural LEs. 
 

 

5. Conclusion 
 

Composite extreme value modeling approach using 

clustering is proposed to address the prediction problems of 

structural LEs that are driven by multiple events thus not 

identically distributed. The finite mixture model, EM 

algorithm, and AIC are employed to cluster the initial 

mixture data into several subsamples that follow an 

identical distribution. POT-based GPD is applied to build 

the limit distribution of each subsample. The limit 

distributions are combined to form the composite extreme 

value modeling equation using a joint threshold. Numerical 

  

(a) Gaussian mixture model (b) Gumbel mixture model 

Fig. 11 Comparison of LEs of IL2 using the proposed approach (PA) and the conventional approach (CA) 

 

Table 5 Comparison of predicted characteristic LEs using the proposed and conventional approaches 

Bridge effect Return period (y) CA (105kN.m) 
Gaussian mixture model Gumbel mixture model 

RE3(%) 
PA (105kN.m) RE1(%) PA (105kN.m) RE2(%) 

IL1 

5 1.455 1.430 1.748 1.420 2.465 0.699 

20 1.526 1.479 3.178 1.478 3.248 0.068 

100 1.597 1.523 4.859 1.531 4.311 0.525 

500 1.656 1.555 6.495 1.573 5.277 1.158 

1000 1.678 1.567 7.084 1.588 5.668 1.340 

2000 1.699 1.577 7.736 1.602 6.055 1.585 

IL2 

5 0.597 0.592 0.845 0.585 2.051 1.182 

20 0.627 0.616 1.786 0.612 2.451 0.649 

100 0.658 0.638 3.135 0.630 4.444 1.254 

500 0.685 0.656 4.421 0.654 4.740 0.305 

1000 0.695 0.663 4.827 0.663 4.827 0.010 

2000 0.705 0.669 5.381 0.671 5.067 0.299 

Note: PA-the proposed approach, CA-the conventional approach; 1 relative error of CA to PA using Gaussian mixture model; 
2 relative error of CA to PA using Gumbel mixture model; 3 relative error of PA using Gumbel mixture model to PA using 

Gaussian mixture model. 
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examples with known solutions are used to validate the 

approach. Engineering application of the approach into the 

prediction of characteristic bridge traffic LEs is 

demonstrated on a long-span bridge. Main findings include 

the following: 

(1) A joint threshold largely benefits the clustering-

based composite extreme value modeling of non-identical 

samples using the POT theory, which highlights that many 

appropriate tail approaching models can be used to 

approximate the tail of the mixture samples, and its 

composite extrapolation equation is simply the sum of the 

weighted models based on the joint threshold. 

(2) Numerical examples verify that the proposed 

approach is effective in classifying the mixture samples into 

several iid subsamples, and can give accurate predictions on 

the extrema of any reference period compared to the known 

solutions. However, the conventional approach that ignores 

the non-identical assumption produces large deviations.  

(3) Engineering application indicates the proposed 

approach shows good agreement with the tail tendency of 

LEs, whereas the conventional approach produces large 

relative deviations, especially in high-return periods. The 

predicted extrema using the Gaussian mixture model and 

the Gumbel mixture model are in good agreement, 

indicating that the choice of the type of the finite mixture 

model slightly affects the prediction accuracy. However, the 

Gumbel mixture model is recommended because it is more 

capable of capturing the outliers of tailed structural LEs.  

The findings of the engineering application are based on 

the specific case study in the work and may show some bias 

in other cases. Nevertheless, the proposed composite 

extreme value modeling approach should find wide 

applications to general problems such as samples that are 

driven by multiple events and that do not accord with the 

identical distribution assumption in extrapolation. 

Furthermore, the approach can be extended to composite 

multivariate extreme value modeling. 
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