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1. Introduction 
 

The loss of stiffness due to structural damage affects the 

dynamic behavior of frame structures. Natural frequencies 

and harmonic responses of cracked frames are used as 

effective tools for non-destructive structural health 

monitoring of existing structures. From this point of view, 

accuracy of free and forced vibration analysis of cracked 

frames plays a very important role on taking precautions 

against catastrophic failures of engineering structures. The 

free vibration analysis of different types of cracked beams 

with various boundary conditions was well studied by many 

researchers (Ostachowicz and Krawczuk 1991, Chondros et 

al. 1998, Khiem and Lien 2001, Khiem and Lien 2004, 

Loya et al. 2006, Barad et al. 2013, Khiem and Toan 2014, 

Kindova-Petrova 2014, Thalapil and Maiti 2014, Khnaijar 

and Benamar 2017, Satpute et al. 2017, Elshamy et al. 

2018, Khatir et al. 2018, Kim et al. 2018, Moezi et al. 

2018). However, there are limited papers about vibrations 

of cracked frame structures in comparison with cracked 
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beams. Nikolakopoulos et al. (1997) presented a crack 

identification procedure for a single-bay single-story frame 

model using FEM and experimentally obtained eigen 

frequencies. Brasiliano et al. (2004) applied residual error 

method in the moving equation for damage identification in 

frame structures. Carden and Fanning (2004) reviewed 

vibration based structural health monitoring techniques for 

beam-like structures. Umar et al. (2018) applied response 

surface methodology for crack detection of a steel portal 

frame. Due to complicated and time-consuming 

formulations, very few studies about exact vibrations of 

cracked frames can be found in literature. Greco and Pau 

(2012) performed free vibration analysis of cracked frames 

using EBT and dynamic stiffness formulations. Caddemi 

and Calio (2013) proposed a closed form solution for free 

vibration analysis of multiple-cracked single-bay single-

story frame according to EBT via dynamic stiffness method 

(DSM). Labib et al. (2014) applied DSM to free vibrations 

of multiple-cracked frames using EBT. Ntakpe et al. (2014) 

investigated forward and inverse problem of cracked L-

frames based on analytical solutions. The free vibration 

analysis results were compared with FEM solutions and a 

crack detection approach that based on a relation between 

strain energy for the transverse modes and natural 

frequency change due to damage was proposed. Free 

vibration of cracked beams was further studied by many 

authors, e.g. Tan et al. (2017) using Timoshenko beams, 

Shahverdi and Navardi (2017) using generalized differential 

quadrature element method and Cunedioglu (2015) for 
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functionally graded sandwich beams. Moreover, the use of 

vibration data for damage assessment and structural health 

monitoring has been extensively used in the literature, e.g. 

Khatir et al. (2019), Tiachacht et al. (2018), Gillich et al. 

(2019).  

Exact vibration analyses of cracked beam-like structures 

are generally performed by using a rotational spring to 

model the crack (Ostachowicz and Krawczuk 1991, Khiem 

and Lien 2001, Khiem and Lien 2004, Barad et al. 2013, 

Khiem and Toan 2014, Kindova-Petrova 2014). As 

equivalent rotational spring approach divides the cracked 

member into segments, the TMM is a perfect tool for 

performing free and forced vibration analyses of cracked 

beam-like structures. The TMM is based on obtaining the 

relation between state vectors of boundaries by a chain 

multiplication of transfer matrices of each segments. After 

construction of global transfer matrix of whole vibrating 

system, natural frequencies and harmonic responses can be 

calculated precisely. In recent years, the TMM was applied 

to free vibration analysis of various types of cracked beams 

with different boundary conditions (Attar 2012, Attar et al. 

2014, Lee and Lee 2017, Lee and Lee 2017, Dastjerdi and 

Abbasi 2019). 

It is seen from literature that, for the exact cracked 

frame vibration problem, the members were modelled as 

Euler-Bernoulli beams to simplify the complicated problem. 

However, it is well known that EBT overestimates natural 

frequencies of thick beams due to the assumption of cross-

sections of beams remain rigid and perpendicular to beam 

axis under bending. Thus, an important task about using 

more realistic beam theories on exact free and forced 

vibrations of cracked frames arises. The TBT is an 

important alternative as the theory does not ignore shear 

deformation and rotation inertia. Anagnostides (1986) used 

dynamic stiffness formulations for harmonic response 

analysis of single-bay single-story space frame. However, 

there is a shear coefficient parameter based on cross-section 

geometries for reducing the error of assuming constant 

shear stress distribution on the cross-section (Han et al. 

1999). Thus, high-order beam theories that focus on 

realistic shear stress distribution on cross-sections were 

studied (Levinson 1981, Bickford 1982, Heyliger and 

Reddy 1988). Although high-order beam theories provide 

more realistic results in comparison with EBT and TBT, the 

formulations of high-order beam theories and their use for 

beam-assembly structures such as frames are not effectively 

applicable. Therefore, a research area focusing on a simple, 

effective and realistic beam theory arised. Shimpi et al. 

(2017) presented a new SVSDT, which considered a 

parabolic shear stress distribution along cross-section. 

Bozyigit and Yesilce (2018) investigated free vibrations and 

harmonic responses of multi-story frames using SVSDT via 

DSM. The SVSDT does not require a shear coefficient 

factor and formulations of SVSDT are applicable to 

vibrations of frame structures as equation of motion is a 

fourth order differential equation similar to EBT and TBT. 

Another important advantage of SVSDT is that it provides 

EBT results as a special case by ignoring terms of shear 

deformation from governing equation of motion (Shimpi et 

al. 2017).  

In recent years, isogeometric analysis (IGA), which 
outweighs classical FEM in terms of high differentiability 
was used as an effective tool for solving novel three-
variable plate formulations (Nguyen et al. 2017) and 
applied to static analysis of laminated composite plates 
using high order shear deformation theory (Nguyen et al. 
2016). The quasi-3D IGA was performed for functionally 
graded micro plates based on modified coupled stress 
theory (Nguyen et al. 2017) and for size-dependent analysis 
of functionally graded nanoplates (Nguyen et al. 2015). The 
IGA can be an important alternative for the analysis of 
cracked structures. An extended IGA was applied to thin 
shell analysis based on Kirchhoff-Love theory (Nguyen-
Thanh et al. 2015).  

Accurate analysis of cracked structures is not limited by 

simple crack modeling approaches like equivalent spring 

method. Areias et al. (2016) introduced a new staggered 

algorithm for elastic materials using a phase-model of crack 

regularization. Rabczuk et al. (2007) used crack particles 

and local partition of unity techniques to model cracks in 

continua. Areias and Rabczuk (2013) investigated finite 

strain fractures of plates and shells considering brittle 

fracture where energy is dissipated in a crack edge and 

quasi-brittle fracture where energy is dissipated in a surface. 

Rabczuk et al. (2010) treated cracks of a structure 

conveying fluid by introducing either cracking particle 

method and partition of unity base method, which is 

continuous discontinuities into the approximation. Recently, 

the extended IGA (XIGA), which is the combination of 

IGA and extended FEM, was applied to crack detection and 

quantification of plate structures (Khatir and Abdel Wahab 

2019). Khatir et al. (2019) presented a study on the use of 

modal strain energy damage indicator coupled with 

teaching-learning-based optimization algorithm and IGA. 

In this study, free and forced vibration analyses of 

cracked frames are investigated by using SVSDT via 

transfer matrix formulations. Firstly, natural frequencies of 

a L-type frame are calculated for experimental validation of 

results. Then, a numerical case study of a single-bay single-

story cracked frame is presented for general boundary 

conditions, which are fixed-fixed (F-F), fixed-simple (F-S) 

and simple-simple (S-S). First three natural frequencies of 

frame model using SVSDT are presented comparatively 

with TBT and EBT results. Moreover, FEM solutions of 

SAP2000 are also tabulated with TMM results for 

validation. Finally, harmonic response curves of single-bay 

single-story frame model are plotted for various crack 

length values by using bending moment and shear force 

response of supports. The novelties of this study are based 

on performing forced vibration analysis of a frame structure 

by using TMM and applying a novel beam theory other than 

EBT and TBT to vibrations of cracked frames.  

This paper consists of six main sections. After the 

introduction, the second section presents details of SVSDT 

formulations for bending vibration, formulations of axial 

vibration and crack modelling approach. Application of 

TMM on free and forced vibrations of cracked frames are 

presented in the third section. In the fourth section, the 

numerical free vibration results of proposed approach is 

validated by using experimental data from literature. 

Section five illustrates three numerical case studies 
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considering general boundary conditions. The paper is 

finalized with concluding remarks in section six.  

 

 

2. Theory and model  
 

The following assumptions are considered in this study: 

1. The material of frame members is isotropic. 

2. The cross-sections of frame members is uniform. 

3. The behavior of frame is linear elastic. 

4. The cracks remain open during the vibration of 

structure. 

5. The damping is neglected for simplification. 

The foundation of SVSDT formulations are based on 

bending and shearing components of transverse 

displacement of the beam as (Shimpi et al. 2017): 

T
b sy y y= +

 
(1) 

where yT represents the total transverse displacement, yb and 

ys represent the bending and shearing components of 

transverse displacement, respectively. According to 

SVSDT, the governing equation of motion of a beam in free 

vibration can be written as (Shimpi et al. 2017): 
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where x is coordinate, t is time, E is elastic modulus, A is 

area of cross-section, I is area moment of inertia, ν is 

Poisson’s ratio and 𝑚̅  is mass per unit lentgh. The 

component yb is obtained from the solution of Eq.(2). Eq.(3) 

is obtained with the assumption of yb(x,t) = yb(x)eiωt where 

ω and i represent natural frequency and imaginary unit, 

respectively. Applying separation of variables technique for 

the beam having a length L gives, 

4 2
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It should be noted that A0, B0, C0 and D0 are notations 

used for a clear presentation of equation and they do not 

have physical meaning. 

The solution of yb(z) is written as (Bozyigit and Yesilce 

2018): 

  ikz
by ( z ) D e=

 
(4) 

yb(z) can be written in open form in Eq.(5) as assembly 

of four components as Eq.(3) is a fourth order ordinary 

differential equation. 

1 2 3 4
1 2 3 4

ik z ik z ik z ik z
by ( z ) ( D e D e D e D e )= + + +

 
(5) 

where D1, D2, D3, D4 are integration constants and k1, k2, k3, 

k4 are characteristic roots that obtained from the solution of 

Eq.(3). The following procedure is used for calculation of 

characteristic roots: Eq.(4) is substituted into Eq.(3) and 

derivation of fourth order (first term in left-hand side of 

Eq.(3)) and second order (second term in left-hand side of 

Eq.(3)) are obtained. Then, a fourth order equation with 

unknown k is achieved. The solution of the fourth order 

equation provides four characteristic roots which are k1, k2,  

k3 and k4.   

By using Eq.(5), the bending component of slope 

function according to SVSDT is written as: 

1 2 3 4
1 1 2 2 3 3 4 4

b ik z ik z ik z ik zdy
( ik D e ik D e ik D e ik D e )

dz
= + + +  (6) 

The bending moment function and shear force function 

according to SVSDT are presented in Eqs. (7) and (8), 

respectively (Shimpi et al. 2017). 
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where M(z) and Q(z) represent bending moment function 

and shear force function, respectively. Eqs. (7)-(8) are 

rewritten as Eqs.(9)-(10) using Eq. (5) as 
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where  

( ) ( )2 2 3K mIω / AL ,H EI / L ,J EI / L= = =
 

It should be noted that H, J and K are notations for a 

simple representation of internal force functions. 

The shearing component of transverse displacement 

function and total transverse displacement function are 

given in Eqs. (11) and (12), respectively (Shimpi et al. 

2017). 
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where 

( ) ( )212 1 5T ν / AE;P mIω / A= + =
 

The total slope function can be written as assembly of 

bending and shearing components of slope: 
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( ) ( )
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(13) 

where the notation R is defined as R=P/L for simplification. 

In this study, the axial vibrations of frame members are 

considered. Thus, axial displacement and axial force 

functions of members are obtained by solving the equation 

of motion of a beam in free axial vibration (Rao 1995): 

2 2

2 2
0

u( x,t ) u( x,t )
AE m

x t

 
− =

   
(14) 

where u(x,t) is axial displacement function. Eq.(15) can be 

obtained by assuming u(x,t)=u(x)eiωt and applying 

separation of variables method. 

2 2 2

2
0

d u( z ) mω L
u( z )

AEdz
+ =

 
(15) 

The axial displacement function and axial force function 

of frame members are obtained by substituting Eq.(16) into 

Eq.(15) as Eqs.(17)-(18), respectively.  

  ikzu( z ) D e=
 

(16) 

5 6
5 6

ik z ik zu( z ) ( D e D e )= +
 (17) 

5 6
5 5 6 6

ik z ik zN( z ) V( ik D e ik D e )= +
 (18) 

where D5, D6 are integration constants and k5, k6 are 

characteristic roots that calculated from the solution of 

Eq.(15) and V is defined as V=AE/L for simplification. 

The crack modelling approach of this study is using a 

linear rotational spring for representing local stiffness 

reduce. A single cracked frame member modelled by means 

of a linear rotational spring is presented in Fig. 1 where CR 

represents spring flexibility, b represents width of the cross 

section, h represents height of the cross section, L* and L 

represent location of crack and length of the frame member, 

respectively. 

The CR constant can be calculated via Eqs. (19)-(20) as 

(Ostachowicz and Krawczuk 1991): 

2

72π (α)
R

f
C

Ebh
=

 
(19) 

f(α) = 0.6384α2 – 1.035α3 + 3.7201α4 – 5.1773α5 + 

7.553α6     –7.332α7 + 2.4909α8 
(20) 

where α is crack ratio (lc/h), lc is crack length and f(α) is 

 

 

local compliance function calculated according to linear 

elastic fracture mechanics (Kindova-Petrova 2014). The 

TMM procedures according to SVSDT can be started by 

using Eqs.(9)-(10), Eqs.(12)-(13) and Eqs.(17)-(20). 
 
 

3. Transfer matrix formulations 
 

The transfer matrix of a frame member can be formed 

using the relation between internal forces and displacements 

at two ends (z=0 and z=1). The state vector (Z) of left-hand 

side (z=0) is given as:  
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Eq.(21) is rewritten in closed form as 

{Z}z=0 = [T0]{D} (22) 

where 
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The state vector of right-hand side (z=1) of frame 

member element is given in Eq. (23).  
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(23) 

 

Fig. 1 A single cracked frame member modeled by a linear rotational spring 
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Eq. (23) can be formed in a simple form as: 

{Z}z=1 = [T1]{D} (24) 

where  

 
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(25) 

{D} is written as Eqs. (25) and (26) using Eqs.(21) and 

(23), respectively. 

{D} = [T0]-1{Z}z=0 (25) 

{D} = [T1]-1{Z}z=1 (26) 

By using Eqs. (25)-(26), the relation between state 

vectors {Z}z=0 and {Z}z=1 can be obtained as: 

{Z}z=1 = [T1] [T0]-1{Z}z=0 (27) 

{Z}z=1 = [T*]{Z}z=0 (28) 

where [T*]=[T1] [T0]-1 and [T*] represents local transfer 

matrix of beam element.  

The global transfer matrix of frame members are 

constructed using angular transformation of local transfer 

matrices.  The angular transformation matrix (ATM) and 

global transfer matrix of a frame member are given in Eqs. 

(29) and Eq. (30), respectively. 
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where, θ represents angle between local axes of the frame 

member and global axes of the frame, [𝑇𝐺
∗] is the global 

transfer matrix of frame member modelled according to 

SVSDT. It should be noted that global axes of all frame 

models in this study are taken as local axes of horizontal 

frame member. Therefore, θ is taken as 0.5π radian and 0 

radian for all column members and beam members, 

respectively. 

If the frame member is divided into m sub-segments 

along its length, the global transfer matrix of the system can 

be obtained by a chain multiplication of transfer matrices of 

frame segments as: 

* * * * *
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         =           

(31) 

where [𝑇FR
∗ ] is global transfer matrix of frame structure. 

Table 1 Reduced global transfer matrices of frames for 

general boundary conditions 

Boundary condition Reduced global transfer matrix 

Simple-Simple 

1 3 1 4 1 5

2 3 2 4 2 5

6 3 6 4 6 5

* * *

FR FR FR

* * *

FR FR FR

* * *

FR FR FR

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

 
 
 
 
   

Fixed-Simple 

1 4 1 5 1 6

2 4 2 5 2 6

6 4 6 5 6 6

* * *

FR FR FR

* * *

FR FR FR

* * *

FR FR FR

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

 
 
 
 
   

Fixed-Fixed 

1 4 1 5 1 6

2 4 2 5 2 6

3 4 3 5 3 6

* * *

FR FR FR

* * *

FR FR FR

* * *

FR FR FR

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

 
 
 
 
   

Fixed-Free 

4 4 4 5 4 6

5 4 5 5 5 6

6 4 6 5 6 6

* * *

FR FR FR

* * *

FR FR FR

* * *

FR FR FR

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

T ( , ) T ( , ) T ( , )

 
 
 
 
   

 

 

A discontinuity occurs between slopes of frame member 

segments as a result of using a rotational spring for crack 

modelling. Thus, an additional local flexibility matrix that 

represents the discontinuity at crack location is added in 

Eq.(31). The global transfer matrix of the cracked frame can 

be constructed using Eq. (31) and local flexibility matrix 

[C*] where 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0
*

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

RC
C

 
 
 
 

=  
 
 
 
    

 

3.1 Free vibration analysis 
 

One of the main advantages of TMM on free vibration 

analysis of beam-assembly structures such as frames is that 

dimensions of reduced global transfer matrix remain 3×3 

independently from number of frame member segments and 

any other local attachments. After construction of global 

transfer matrix written in Eq. (31), a reduction procedure 

according to boundary conditions is applied. The reduced 

global transfer matrices of frames for general boundary 

conditions are given in Table 1. 

In Table 1, TFR
* (i,j)  (i=1:6; j=3:6) represents the 

reduced global transfer matrix member, which is located at 

ith row and jth column of global transfer matrix of frame. 

The ω values equating the determinant of reduced 

global transfer matrices to zero are obtained as natural 

frequencies for intact and cracked frame models. A trial and 

error procedure based on interpolation is used for 

calculating roots. When there is a change of sign between 

trial values, there must be a root lying in this interval. Using 

some iterations, the natural frequencies can be calculated. 

The calculation of natural frequencies is performed in 

MATLAB. 
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3.2 Forced vibration analysis 
 

The transfer matrix formulations of state vectors 

presented in Eqs.(21) and (23) are reformed as Eqs.(32) and 

(33), respectively. 

1

1 2 3 4 2

1 2 3 4 3

5 6 4

1 2 3 4 5

1 2 3 4 6

0

1
1 0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

T

T

z ( forced )

u
D

y
D

dy
D

dz
Vik Vik D

N
D

Q
D

M

   

   

   

   
=

 
   
   
   
   
   

=    
    
    
    
    

   
 

 

(32) 

5 6

31 2 4

31 2 4

5 6

31 2 4

31 2 4

1 2 3 4

1 2 3 4

5 6

1 2 3 4

1 2 3 4

1

1
1 0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0

ik ik

T
ikik ik ik

T
ikik ik ik

ik ik

ikik ik ik

ikik ik ik

z ( forced )

u
e e

y
e e e e

dy
e e e e

dz
e Vik e Vik

N
e e e e

Q
e e e e

M

   

   

   

   
=

 
 

 
 
 
 

= 
 
 
 
 
 
 

1

2

3

4

5

6

1

D

D

D

D

D

D

  
   
   
   
   

  
  
  
  
  

   
 

(33) 

As matrix dimensions must agree for mathematical 

formulations of TMM, the angular transformation matrix 

and local flexibility matrix of crack location are revised as 

Eqs. (34) and (35), respectively. 

 

1 0 0 0 0 0 0

0 cos( ) sin( ) 0 0 0 0

0 sin( ) cos( ) 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 cos( ) sin( ) 0

0 0 0 0 sin( ) cos( ) 0

0 0 0 0 0 0 1

forced
ATM

 

 

 

 

 
 
 
 −
 

=  
 
 

− 
 
   

(34) 

 

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

* 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

R
C C

 
 
 
 
 

=  
 
 
 
 
   

(35) 

 

 

Finally, a jump matrix with dimensions 7×7 is defined 

for a beam-column joint of frame structure under a dynamic 

point load as: 

 

0

1 0 0 0 0 0 0

0 cos( ) sin( ) 0 0 0 0

0 sin( ) cos( ) 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 cos( ) sin( ) 0

0 0 0 sin( ) cos( ) 0

0 0 0 0 0 0 1

JF

P

 

 

 

 

 
 
 
 −
 

=  
 
 

− 
 
   

(36) 

where P0 and [FJ] represent the amplitude of point dynamic 

load and the jump matrix of node under dynamic load, 

respectively. The use of [FJ] is necessary to reflect the 

discontinuity of beam-column joint under dynamic point 

load. Eq.(36) is constructed as a special case of standard 

angular transformation matrix by adding dynamic load 

parameter.    

The harmonic response curves of cracked frames can be 

plotted using the global transfer matrix of system that 

constructed by a chain of matrix multiplication using Eqs. 

(32)-(36). By ignoring first row and first column of global 

transfer matrix for forced vibration analysis, a 6×6 matrix 

that represents relationship between supports of frame 

structure is obtained. The harmonic responses of supports 

can be calculated with ease by solving a 6×6 system of 

equations with known zero displacements and zero forces 

according to boundary conditions. 

It should be noted that the detailed TMM formulations 

for free and forced vibrations of cracked frames using well 

known EBT and TBT are not presented to shorten the 

paper. A brief summarized formulation of EBT and TBT for 

transfer matrix formulations can be found in Appendix 

section. 
 

   

4. Comparison of TMM results and experimental 
data 
 

Due to lack of experimental studies based on cracked 

frame structures, a L-type frame model is considered. The 

natural frequencies of a cracked L-type frame presented in 

Fig. 2 are calculated via the proposed approach. The first 

four natural frequencies of L-type frame model are 

 

Fig. 2 Cracked L-type frame model with geometric properties 
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presented in Fig.3. Furthermore, Fig.4 represents fifth, 

sixth, seventh and eighth natural frequencies of L-type 

frame. The following material properties are considered: 

Mass density = 7850 kg/m3, ν = 0.3, E = 2×1011 N/m2. For 

the experiment, the crack was made by a saw cut, which has 

a width of 2 mm (Ntakpe et al. 2014). 

Figs.3-4 show that TMM results on free vibration 

analysis of cracked L-type frames are in a good agreement 

with experimental data. All of the first eight natural 

frequencies are decreased by a crack having 2.5 mm depth 

(α=0.50) for EBT, TBT and SVSDT. It is seen from Figs. 3 

and 4 that SVSDT provides higher natural frequencies for 

1st, 2nd, 4th and 7th modes, when compared to TBT. The 

relative errors between TMM approach and experimental 

modal analysis results on natural frequencies are presented 

in Table 2. According to Table 2, the maximum error of 

proposed approach is below 5% for natural frequencies 

calculation of frame model using SVSDT and TBT. This 

acceptable error level may be a result of non-ideal fixed 

support condition and non-exact material properties of 

experiment. Table 2 also reveals that the accuracy of TBT 

for cracked frame vibrations is higher than intact frame 

vibration. However, SVSDT provides more accurate natural 

frequencies for cracked frame in comparison with intact 

frame only for first two modes according to experimental 

results. The SVSDT should provide more realistic results in 

 
 

comparison with TBT according to theoretical assumptions. 

The SVSDT considers a parabolic shear stress distribution 

along cross-section. However, the height of cross-section of 

frame members used in experimental validation is very 

small (5 mm). Therefore, for the thin frame members used 

in the experiment, non-constant shear stress distribution on 

cross-sections may become insignificant and this situation 

may result in relatively high errors between SVSDT and 

experimental results. 

It should be noted that FEM results in the experimental 

validation section of this study is based on meshing frame 

members in 250 segments. The convergence of FEM results 

of SAP2000 is presented in Fig. 5 for the first eight natural 

frequencies of L-type frame model. Moreover, the first 

eight mode shapes of intact L-type frame can be seen from 

Fig. 6 to observe symmetric and anti-symmetric modes. 

Fig.6 shows that the crack location is very close to a node 

on the fifth mode shape of L-type frame. Therefore, the 

effect of crack on natural frequencies is minimum for fifth 

mode of L-type frame model. 
 

 

5. Numerical case study 
 

A numerical example is presented for cracked single-

bay single-story frame model with general boundary 

conditions, which are F-F, F-S and S-S. As frame structures  

 

Fig. 3 First four natural frequencies of L-type frame model 
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in engineering applications are not limited to fixed 

supported building type frames, different combinations of 

boundary conditions are considered. The proposed approach 

can be used effectively for different boundary conditions 

using Table 1. The crack location and length of frame 

members can be observed from Fig. 7 where P(t) and ω̅ 

represent a dynamic point load and forcing frequency, 

respectively. The numerical case study is based on the 

following data: ν = 0.2, mass density = 2500 kg/m3, E = 

2×1010 N/m2, cross-sections of columns = 0.3 × 0.3 m, 

cross-sections of beams = 0.25 × 0.50 m.  

The first three natural frequencies of intact frame 

models are presented in Table 3 using TMM and FEM. For 

different crack ratio values, Tables 4-6 list natural 

frequencies of cracked frames having S-S, F-S and F-F 

boundary conditions, respectively. It should be noted that 

FEM results of SAP2000  are based on the following crack 

modeling technique: Firstly, the cracked column is cut from 

crack location and a two joint link element is defined at this 

section. Then, the spring stiffness that calculated from Eqs. 

(19) and (20) is entered as effective rotational spring 

stiffness value of two joint link element. The other 

displacements of two joint link element except rotation are 

restrained to reflect the jump of rotation because of crack. A 

representation of cracked frame in SAP2000 can be seen in 

Fig. 8. 

 

Table 2 The relative errors between proposed approach, 

FEM and experimental results 

  Relative error (%) 

 Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 

Intact 

EBT 2.24 3.95 4.08 0.47 3.01 1.74 1.25 2.42 

TBT 0.59 1.95 1.62 1.61 1.95 1.51 2.18 1.90 

SVSDT 2.25 3.96 4.05 0.45 2.97 1.79 1.27 2.48 

 SAP2000 0.60 1.96 1.62 1.60 1.95 1.48 2.15 1.86 

α=0.50 

EBT 0.59 3.63 7.43 0.85 3.03 4.47 1.63 2.59 

TBT 0.04 1.83 1.59 0.79 1.94 0.81 1.68 1.89 

SVSDT 0.60 3.64 4.99 0.83 2.99 4.49 1.68 2.65 

 SAP2000 0.40 1.72 0.25 0.59 1.94 0.26 1.13 1.84 

 

 

According to Tables 3-6, EBT overestimates natural 

frequencies of single-bay single-story frame models.  

Table 3 shows that the SVSDT provides slightly higher 

natural frequencies in comparison with TBT for general 

boundary conditions of single-bay single-story intact frame.  

Tables 3-6 reveal that highest natural frequencies are 

obtained from fixed supported frame and lowest natural 

frequencies are obtained from simply supported frame for 

EBT, SVSDT and TBT. For cracked single-bay single-story 

frame model, it can be seen from Tables 4-6 that increasing  

 

Fig. 4. Fifth, sixth, seventh and eighth natural frequencies of L-type frame model 
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crack ratio decreases natural frequencies for F-F, F-S as 

well as S-S boundary condition. According to Tables 4-6, 

the TMM results using SVSDT and TBT are in a good 

agreement with FEM results. The relative error between 

FEM results and TMM for intact and cracked single-bay 

single-story frames are tabulated in Table 7. According to 

Table 7, the maximum error between TMM formulations of 

SVSDT and FEM results of SAP2000 is below 4% on 

natural frequency calculation of frame models. It can be 

observed from Table 7 that relative errors on natural 

frequencies between TBT and FEM are lower than relative  

 

 

error between SVSDT and FEM because SAP2000 uses a 

similar beam modelling approach like TBT. 

It should be noted that FEM results in the numerical 

case study is obtained by meshing members of single-bay 

single-story frame models in 250 segments to obtain a 

perfect convergence. The convergence of FEM results of 

SAP2000  can be seen from Fig.9 for first three natural 

frequencies for S-S, F-S and F-F boundary conditions. 

The first three mode shapes of intact single-span single-

story frame models can be seen from Figs.10-12 for F-F, F-

S, S-S boundary conditions, respectively. For the forced 

 

Fig. 5. FEM convergence for intact L-type frame model 
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Fig. 6. First eight mode shapes of intact L-type frame model 

 
Fig. 7. a) Cracked single-bay single-story frame with S-S boundary condition, b) Cracked single-bay single-story frame with 

F-S boundary condition and c) Cracked single-bay single-story frame with F-F boundary condition 

 

 

Fig. 8. Cracked single-bay single-story frame with F-F boundary condition in SAP2000  
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Table 3 First three natural frequencies of intact single-bay 

single-story frames 

  Natural frequency (rads-1) 

Boundary condition Mode EBT TBT SVSDT FEM 

S-S 

1st 40.5626 40.2720 40.3482 40.3010 

2nd 323.6715 316.3500 316.5611 317.8797 

3rd 436.7721 421.9356 423.9112 424.0312 

F-S 

1st 65.2848 64.4128 64.6662 64.4365 

2nd 354.8976 345.4844 346.0222 347.2470 

3rd 501.7379 479.7303 482.6143 482.5067 

F-F 

1st 85.7325 84.3439 84.7564 84.3762 

2nd 414.6869 400.2214 401.1641 402.6845 

3rd 610.5192 576.7871 583.3769 579.7040 
 

Table 4 First three natural frequencies of cracked single-bay 

single-story frame with S-S boundary condition 

 

Table 5 First three natural frequencies of cracked single-bay 

single-story frame with F-S boundary condition  

  Natural frequency (rads-1) 

α Mode EBT TBT SVSDT FEM 

0.125 

1st 65.2839 64.4113 62.0839 64.4353 

2nd 354.6652 345.1595 347.7092 347.0237 

3rd 500.9686 478.7329 477.9304 481.7685 

0.25 

1st 65.2813 64.4073 62.0700 64.4316 

2nd 353.9818 344.2082 346.7970 346.0709 

3rd 498.6318 475.6682 474.6666 478.7114 

0.50 

1st 65.2697 64.3905 62.0079 64.4162 

2nd 350.5454 339.5510 342.1405 341.4214 

3rd 485.7417 459.0299 458.9956 462.1461 
 

 

vibration analysis of numerical case study, the harmonic 

response curves of intact and cracked frames are plotted 

according to a point dynamic load P(t). The harmonic 

response curves represent a logarithmic scaled response of a 

node versus forcing frequency and TMM formulations 

provide response of boundaries. Thus, an appropriate 

response of supports of frame model should be chosen to 

plot harmonic responses. In this study, for S-S boundary 

condition, the harmonic response curves are plotted using 

the shear force response (Q0) at the left hand side support. 

Table 6 First three natural frequencies of cracked single-bay 

single-story frame with F-F boundary condition 

  Natural frequency (rads-1) 

α Mode EBT TBT SVSDT FEM 

0.125 

1st 85.0978 84.3438 83.2402 84.3760 

2nd 413.5565 399.3704 401.1067 402.0711 

3rd 596.9846 573.4145 573.9224 577.3091 

0.25 

1st 85.0951 84.3437 83.2370 84.3759 

2nd 410.6920 396.8705 398.5669 399.5559 

3rd 589.8685 562.7048 567.6429 566.7458 

0.50 

1st 85.0832 84.3435 83.2224 84.3758 

2nd 396.8325 384.7355 386.2111 387.3831 

3rd 562.0414 524.0146 542.0142 528.0200 
 

 

The bending moment response (M0) of left hand side 

support is used to obtain harmonic responses of frames 

having F-S and F-F boundary conditions. For the frame 

with S-S boundary condition, the harmonic response curves 

are presented in Figs.13-14 using SVSDT and TBT, 

respectively. Similarly, Figs. 15-16 represent harmonic 

response of intact and cracked frame model that has F-S 

boundary condition. The harmonic response curves of frame 

model having F-F boundary condition can be seen from 

Figs. 17-18 for SVSDT and TBT, respectively. By using 

EBT, the harmonic response curves of frame model with S-

S boundary condition is presented in Fig.19. The harmonic 

response curves for the single-bay single-story frame model 

using EBT with F-S and F-F boundary conditions are 

presented in Figs.20-21, respectively. 

From Figs. 13-21, the natural frequencies of intact and 

cracked frame models can be detected as resonant 

frequencies represented by peaks of harmonic response 

curves. It is observed from Figs. 13-21 that peaks of 

harmonic responses shift negatively by increasing crack 

ratio for all general boundary conditions and for EBT, 

SVSDT and TBT. For comparison purposes, harmonic 

response curves of intact single-bay single-story frames 

using EBT, TBT and SVSDT are presented in Figs. 22-24 

for S-S, F-S and F-F boundary conditions, respectively. By 

using EBT, TBT and SVSDT comparatively, Figs. 25-27 

are plotted for harmonic responses of cracked single-bay 

single-story frames for S-S, F-S and F-F boundary 

conditions, respectively.  

The harmonic response curves allow very fast detection 

of natural frequencies as there is no need to use any root 

finding algorithm unlike standard analytical based 

solutions. It should be noted that elapsed time for 

calculating natural frequencies of single-bay single-story 

frame model using FEM is 4 seconds for all intact and 

cracked cases. The CPU usage times of MATLAB  for 

calculating harmonic responses are presented in Table 8. 

According to Table 8, the proposed approach is 

significantly faster than FEM for calculation of natural 

frequencies of single-bay single-story frame. Table 8 shows 

that harmonic responses of EBT can be obtained slightly 

faster when compared to TBT and SVSDT. Although, there 

is no significant difference between CPU usage time of 

TBT and SVSDT. 

  Natural frequency (rads-1) 

α Mode EBT TBT SVSDT FEM 

0.125 

1st 40.4788 40.1491 39.3392 40.1776 

2nd 322.5565 314.7689 305.0638 316.6735 

3rd 435.2167 419.7936 415.2200 422.3997 

0.25 

1st 40.2356 39.7968 39.1476 39.8238 

2nd 319.2837 310.1520 300.9817 312.0609 

3rd 431.0190 414.2640 412.1882 416.8241 

0.50 

1st 39.0779 38.1951 38.2204 38.2161 

2nd 303.4642 289.0497 282.1197 290.9828 

3rd 416.3331 397.8700 401.8798 400.2923 
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Fig. 9 FEM convergence for intact single-bay single story frame model 

 

Fig. 10 First three mode shapes of intact single-bay single-story frame with F-F boundary conditions 

 

Fig. 11 First three mode shapes of intact single-bay single-story frame with F-S boundary conditions 
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Table 7 The relative errors between proposed approach and FEM for intact and cracked frames 

Relative error (%) 
  Intact α = 0.125 α = 0.25 α = 0.50 

Boundary 

condition 
Mode EBT TBT SVSDT EBT TBT SVSDT EBT TBT SVSDT EBT TBT SVSDT 

S-S 

1st 0.65 0.07 0.12 0.75 0.07 2.09 1.03 0.07 1.70 2.26 0.05 0.01 

2nd 1.82 0.48 0.41 1.86 0.60 3.67 2.31 0.61 3.55 4.29 0.66 3.05 

3rd 3.00 0.49 0.03 3.03 0.62 1.70 3.41 0.61 1.11 4.01 0.61 0.40 

F-S 

1st 1.32 0.04 0.36 1.32 0.04 3.65 1.32 0.04 3.67 1.33 0.04 3.74 

2nd 2.20 0.51 0.35 2.20 0.54 0.20 2.29 0.54 0.21 2.67 0.55 0.21 

3rd 3.99 0.58 0.02 3.99 0.63 0.80 4.16 0.64 0.84 5.11 0.67 0.68 

F-F 

1st 1.61 0.04 0.45 0.86 0.00 1.35 0.33 0.04 1.35 0.84 0.00 1.37 

2nd 2.98 0.61 0.38 2.86 0.00 0.24 2.79 0.67 0.25 2.44 0.00 0.30 

3rd 5.32 0.50 0.63 3.41 0.00 0.59 4.08 0.71 0.16 6.44 0.00 2.65 

              

 

Fig. 12 First three mode shapes of intact single-bay single-story frame with S-S boundary conditions 

 

Fig. 13 Harmonic response curve of frame model with S-S boundary condition using SVSDT 

 

Fig. 14 Harmonic response curve of frame model with S-S boundary condition using TBT 
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Fig. 15 Harmonic response curve of frame model with F-S boundary condition using SVSDT 

 

 
Fig. 16 Harmonic response curve of frame model with F-S boundary condition using TBT 

 

 

Fig. 17 Harmonic response curve of frame model with F-F boundary condition using SVSDT 
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Fig. 18. Harmonic response curve of frame model with F-F boundary condition using TBT 

 

 
Fig. 19. Harmonic response curve of frame model with S-S boundary condition using EBT 

 

 

Fig. 20 Harmonic response curve of frame model with F-S boundary condition using EBT 

47



 

Baran Bozyigit and Yusuf Yesilce and Magd Abdel Wahab 

 

 

 

 

 

 

 

Fig. 21. Harmonic response curve of frame model with F-F boundary condition using EBT 

 
Fig. 22 Harmonic response curve of intact frame model with S-S boundary condition using EBT, TBT and SVSDT 

 

 

Fig. 23 Harmonic response curve of intact frame model with F-S boundary condition using EBT, TBT and SVSDT 
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Fig. 24 Harmonic response curve of intact frame model with F-F boundary condition using EBT, TBT and SVSDT 

 

 
Fig. 25 Harmonic response curve of cracked frame model with S-S boundary condition using EBT, TBT and SVSDT 

(α=0.50) 

 

 
Fig. 26 Harmonic response curve of cracked frame model with F-S boundary condition using EBT, TBT and SVSDT 

(α=0.50) 
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Table 8 CPU usage time for calculation of harmonic 

responses using EBT, TBT and SVSDT 

 CPU usage time (sec) 

 Intact frame Cracked frame 

Boundary condition EBT TBT SVSDT EBT TBT SVSDT 

S-S 0.439 0.552 0.560 0.447 0.580 0.583 

F-S 0.332 0.567 0.556 0.314 0.579 0.565 

F-F 0.450 0.597 0.556 0.334 0.579 0.576 

 

 

6. Conclusions 
 

In this study, the forward problem of calculation of the 

natural frequencies of cracked frames is exactly solved by 

using the SVSDT, which considers a parabolic shear stress 

distribution along cross-section of frame members. The 

transfer matrix formulations are derived and applied to free 

vibrations of cracked frame structures. Moreover, the 

harmonic response curves of cracked frames, which allow 

to detect natural frequencies without using any root-finding 

algorithm, are plotted via transfer matrix formulations 

according to a dynamic point load. It is proved that the 

TMM can be used as a powerful tool for harmonic response 

analysis of frame structures. The dimension of global 

transfer matrix of whole vibrating system is irrespective of 

the number of cracks or any other concentrated attachments 

on frame members. Therefore, the computer programs 

prepared for free and forced vibration analysis of cracked 

frames using TMM are working fast for both SVSDT, TBT, 

as well as EBT. It is predictable that the significant 

difference between computation times of proposed 

approach and FEM would become larger for more 

complicated structures like multi-bay multi-story frames or 

3-D frames as a result of using thousands of finite elements 

for accurate results. 

The TMM would be very effective for harmonic 

response and free vibration analysis of multiple-cracked 

frame structures as the method is based on chain-

multiplication of member global transfer matrices and jump 

 

 

matrices arised from cracks. Unlike other analytical based 

methods that are effective for on frame vibrations such as 

dynamic stiffness approach, the dimension of overall global 

transfer matrix of whole vibrating system is not affected by 

number of members as well as number of cracks. Therefore, 

computation time of TMM for multiple-cracked frames 

would remain very well when compared to other exact 

methods. The formulations of SVSDT are very 

straightforward when compared to TBT. Moreover, the 

SVSDT provides EBT results as a special case by ignoring 

shear related terms from governing equation of motion. 

This advantage of SVSDT would be used effectively in 

future studies on cracked beam-assembly structures 

considering and ignoring shear deformation and rotational 

inertia effects via the same formulations.  
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Appendix 
 

The governing equation of a motion of beam in free 

vibration according to EBT is presented in Eq.(A.1) (Barad 

et al. 2013). 

4 2

4 2

( , ) ( , )
0

y x t y x t
EI m

x t

 
+ =

   

(A.1) 

where y(x,t) is transverse displacement function. Eq.(A.2) is 

obtained by applying separation of variables method with 

the assumption of y(x,t) = y(x)eiωt. 

4 2 4

4

( )
( ) 0

d y z m L
y z

EIdz

 
− = 
   

(A.2) 

Assuming the solution of Eq.(A.2) is in the following 

form: 

  irzy( z ) C e=
 

(A.3) 

By substituting Eq.(A.3) into Eq.(A.2), y(z) and slope 

function 

dy

dz  are obtained as in Eqs.(A.4)-(A.5), 

respectively. 

31 2 4

1 2 3 4( ) ( )
ir zir z ir z ir z

y z C e C e C e C e= + + +
 (A.4) 

31 2 4

1 1 2 2 3 3 4 4( )
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dz
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(A.5) 

Bending moment function ME(z) and shear force 

function QE(z) are defined as: 

31 2 42 2 2 2
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(A.6) 
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(A.7) 

The state vectors and transfer matrices of frame 

members according to EBT can be constructed without any 

difficulty using Eqs.(A.4)-(A.7) and Eqs.(17)-(18). The 

governing equation of a motion of a Timoshenko beam free 

vibration can be written as follows (Bozyigit and Yesilce 

2018): 

( ) ( ) ( )2 2

2 2
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xk x t
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A.9 

where w(x,t) is transverse displacement function, φ(x,t) is 

rotation function due to bending, k  is shear correction 

factor and G is shear modulus. 

The bending moment function MT(x,t) and the shear 

force function QT(x,t) of the Timoshenko beam are written 

as: 

( )
( ),

,T
x t

M x t EI
x


=

  

(A.10) 
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(A.11) 

Eqs.(A.12)-(A.13) are obtained by applying separation 

of variables method with the assumption of w(x,t) = w(x)eiωt 

and φ(x,t) = φ(x)eiωt. 
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(A.13) 

 It is assumed that the solution of w(z) and φ(z) are in the 

following forms:  

( )   ipzw z D e=
 

(A.14) 

( )   ipzφ z E e=
 

(A.15) 

where p represents characteristic roots obtained from 

substituting Eqs.(A.14)-(A.15) into Eqs.(A.12)-(A.13). 

Substituting Eqs.(A.14) and (A.15) into Eqs.(A.12)-(A.13) 

results in  
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(A.17) 

Eqs.(A.16)-(A.17) can be written in matrix form for the 

two unknown integration constant vectors as: 
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where 
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The non-trivial solution is achieved by equating the 

determinant of the coefficient matrix to zero. Then, we have 

a fourth-order equation with the unknowns, resulting in four 

values and the displacement functions are obtained as: 

( ) 31 2 4
1 2 3 4

ip zip z ip z ip zw z D e D e D e D e = + + +
   

(A.19) 
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( ) 31 2 4
1 2 3 4

ip zip z ip z ip zφ z E e E e E e E e = + + +
   

(A.20) 

where 

( )
( )

( ) ( )
( )

2

2 2
1 2 3 4n n n n n

n

m I / A
E j D , j AGip / Lk / , n : , , , .

AG / k EIp / L

 
 = = −
 
 − −
 

 

Finally, the bending moment function MT(z) and shear 

force function QT(z) of the Timoshenko beam are obtained 

as: 

( )T EI d
M z

L dz

 
=  
   

(A.21) 

( ) ( )T AG dw AG
Q z φ z

dzkL k

  
= −  

    

(A.22) 

Using Eqs. (A.19)-(A.22) and Eqs. (17)-(18), the TMM 

formulations for Timoshenko element frame members can 

be obtained. 
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