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1. Introduction 
 

The seismic performance evaluation of reinforced 

concrete (RC) shear wall structures and the application of 

the displacement-based seismic design method are based on 

accurate simulations of structural responses (Thomsen and 

Wallace 2004, Zhang et al. 2014). However, computational 

stability, accuracy, and convergence continue to represent 

significant challenges when simulating the large 

deformation behavior of RC shear walls. 

As an anisotropic composite material, concrete exhibits 

cracking and crushing behaviors, which make the failure 

analysis complex, especially at the large deformation stage 

when RC shear walls are subjected to vertical and 

horizontal loads. Few simulation methods have successfully 

analyzed the nonlinear behaviors of various types of RC 

structural elements under various stress combinations  
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(Ayoub and Filippou 1998). Traditional finite-element 
algorithms assume the shape functions of the deformations, 
which should satisfy the continuity condition. Variations 
based on the global coordinates may induce a non-
equilibrium condition among the forces when applying 
traditional the finite-element method (FEM) (Messaoudi et 
al. 2018 and Gulsan et al. 2018). Furthermore, the 
calculations of stress and strain depend on the deformation, 
and large deformations may cause numerical instabilities 
when calculating the internal forces. During the stiffness 
descending stage, an ill-conditioned stiffness matrix and 
complex differential equation may also prevent the 
computation from converging, or may require a large 
computation time. Moreover, the superposition of a small 
deformation on a large rigid body motion for the traditional 
FEM is not suitable for the damage process. The foundation 
of the continuum mechanics theory and the complexity of 
the force-deformation mechanism of the shear wall present 
great challenges for the simulation of the large deformation 
and large motion problem (Zhang et al. 2010b).  

In case of the ordinary quadratic four-node elements 
used in the analysis of the large deformation and damage 
development process, small deformation calculation 
assumption, error accumulation, and integration for the 
stiffness may cause serious errors. Furthermore, for the 
traditional four-node element, especially with a complete 
linear form, there will be a “shear lock” problem in the 
shear and bending interaction behavior, which also causes 
considerable errors, even with a fine mesh size.  
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Abstract.  For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining 

accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material 

nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large 

deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the 

traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a 

planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path 

element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the 

structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, 

to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to 

obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical 

load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the 

damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a 

stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, 

including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in 

accordance with the experimental observation. This study demonstrated the potential of the developed planar element for 

simulating the entire process of large deformation and damage behavior in RC shear walls. 
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The vector mechanics was developed based on 

Newton’s law, and it aimed to solve large deformation, 

fragmentation, and collapse problems (Ting et al. 2004a, b, 

2012, Shih et al. 2004). In vector mechanics, the structure is 

simulated as an assembly of mass particles, and a 

superposition method of the incremental response is applied 

to simulate the nonlinear response by increasing the time 

step. In this way, the assembly of the global stiffness matrix 

is not required, and the ill-conditioned stiffness matrix that 

induced instability in the calculation can be avoided. Bases 

on the theory of vector mechanics, computation procedure, 

Vector Form Intrinsic Finite Element (VFIFE) method has 

been developed (Ting, et. al. 2004a, 2012). Wu et al. (2006) 

proposed a plane element of VIFIFE and carried out a large 

deflection analysis for flexible frame structures. Wu (2008) 

developed a quadrilateral membrane element of VIFIFE and 

verified the approach by performing a large deflection 

analysis of membrane structures. Wang et al. (2011) tested a 

VIFIFE planar element for an elasto-plastic plane frame 

under static and dynamic loads. Wu (2013) performed a 

dynamic nonlinear analysis of shell structures. Luo (2009a, 

b) developed vector mechanics-based theory for the large 

deflection analysis of deployable structures, bar assemblies, 

and membranes (Luo and Yang 2014, Yang et al. 2014). A 

vector mechanics-based solution to the cracking problem 

has also been reported with fairly good results (Duan et al. 

2017). Duan et al. (2014) developed the vector mechanics 

to simulate the entire process of the collapse for a cable-

stayed bridge under earthquake load, which presents a 

successful study in collapse simulation. 

Vector mechanics has advantages in the solving of large 

deformation, deflection, and fracture problems compared 

with the traditional continuum mechanics. For the large 

response simulations of RC shear walls, concrete cracking, 

concrete crushing and steel bar damage will induce fracture 

problems and may cause the simulation results to be 

inaccurate and unstable (Ting et al. 2004a, b). The 

deformation coordination is essential before the vector 

mechanics-based four-node planar element application, as 

well as the particle position, which can be obtained by 

solving the differential equation. Furthermore, the 

fluctuation problem caused by the loading speed when 

applying dynamic equilibrium function needs to be 

eliminated. When dealing with a static problem, the loading 

speed, mesh dimension, and damping factor will also induce 

errors in the simulation accuracy. 

This study aims to develop an efficient framework for 

large deformation and damage involved simulations using 

precisely described concrete material properties for RC 

shear walls or this kind of planar problem. The following 

perspectives are involved: (i) The development of a vector 

mechanics-based planar four-node element subjected to 

large deformation; (ii) Damage criteria involving the biaxial 

concrete constitutive model corresponding to the vector 

mechanics-based four-node planar element considering 

concrete cracking and crushing. (iii) The treatment of the 

loading speed, mesh size, and damping factor for the static 

response use existing vector mechanics, which was 

developed for dynamic response analysis. The proposed 

simulation framework the developed four-node element has 

been verified based on a group of laboratory test results on 

RC shear walls. 
 

 

2. Four-node planar element 
 

2.1 Kinematics equation 
 

According to the present vector mechanics, structural 

systems are supposed to be constituted by particles and 

elements, and the mass is concentrated on the particles 

(Ting et al. 2004a, Shih et al. 2004). The equations of 

motion of the particle are established according to 

D'Alembert's principle, and the internal force of each 

particle is calculated using the path element. The equation 

of motion of particles under both internal and external 

forces satisfies Newton’s law, which can be shown as: 

dext PPP
td

xd
m ++= int2

2

 (1) 

where m is the mass matrix, which can be discrete as 

separate particles according to the body dimension and 

density; x is the position vector; t is the time variable; Pext is 

the external force vector; Pint is the internal force vector 

caused by the neighboring elements; and Pd is the damping 

force vector. 

The path element and time steps are used to describe 

the motion of particles by solving Eq. (1). The path element 

is the segmented movement of particles along the path of 

motion. The time step is the minimum unit in the integral. 

One or multiple time steps can be included into one path 

element. The massive particle motion is continuous and has 

the same characters in the path element. The material 

property transform only occurs at the joint path element, 

e.g., the critical turning point of the concrete for cracking or 

crushing. By controlling the length of time steps, the 

structural deformation can be divided into small fragments 

to satisfy the small deflection assumption of material 

mechanics.  

By applying the central differential method, Eq. (1) can 

be converted into the following explicit form (Ting, Duan, 

and Wu 2012): 

1

21int

12

1

1 2)( −−+ −++= nn

ext

n xcxcPPmhcx  (2) 

where 𝑐1 = 1/(1 + 0.5𝜉ℎ) , 𝑐2 = (1 − 0.5𝜉ℎ) ∗ 𝑐1 ;  𝜉  is 

the damping factor; ℎ  is the length of the time step; 

𝑥(𝑛+1), 𝑥(𝑛), and 𝑥(𝑛−1)are the position vectors at the time 

steps of (n+1), n, and (n-1), respectively. 

As shown in Eq. (2), the errors in the displacement (x) 

of the particles are caused by the time step and the damping 

factor. If the velocity is zero, the method becomes the Ritz 

approach, and there will be no convergence problem. 

However, in real cases, the loading process is not a real 

static process; there is a damping force that is caused by the 

loading speed. The damping effect of a quasi-static process 

can be eliminated by a very low loading speed, and the 

damping factor is also assumed to be a large value in order 

to eliminate the possible vibration for a static problem. The 

impacts of loading speed and damping factor on simulating 

a static problem of RC shear walls are also discussed in this 
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study. 
 

2.2 Transformation of displacement vector and 
shape function 

 

As stated above, the time sequence and superposition 

are adopted in vector mechanics (Ting, 2004a). The 

increasing nodal displacement vector ∆𝜂𝑖 from time tn to 

time tn+1 in global coordinates can be represented by the 

position transformation as follows: 

1 T{ , } , 1,2,3,4n n

i i i i ix x u v i + = − = =  (3) 

where 𝑥𝑖
𝑛 and 𝑥𝑖

𝑛+1are position vectors of node i at times 

tn and tn+1, respectively; and i = 1, 2, 3, and 4 is defined as 

the node number of the four-node planar element.  

The plane object being analyzed can be divided into 

individual elements according to the simulation demands in 

order to compute the internal forces independently. The 

element model is a continuum that satisfies the 

requirements of the continuity. The masses are concentrated 

at the four nodes. For the four-node planar element, the 

displacement vector 𝑢𝑒can be expressed as 

 T

e vuvuvuvuu 44332211 ,,,,,,,=  (4) 

The transformation between the global and local 

coordinates are shown as:        

ˆ
ˆ

ˆ

i i

i

i i

u u

v v


   
 = =    

   
 (5) 

Here, ∆𝜂̂𝑖 is the displacement vector (𝑢̂𝑖,𝑣̂𝑖) of node i in 

the local coordinate. (𝑢̂𝑖,𝑣̂𝑖) and (𝑢𝑖,𝑣𝑖) are the horizontal 

and vertical displacement vectors in the local and global 

coordinate, respectively. Ω is the transform matrix from 

the global coordinate to the local coordinate. 

A local coordinate system for a deformed element is 

established in order to reduce the number of degrees of 

freedom of the elements. Setting the reference point located 

at node 1, we get  

0ˆˆ
11 == yx  (6) 

The x̂-axis of the local coordination can be set to be 

parallel to the nodal displacement vector (∆𝜂̂2) at node 2, 

as shown in Fig. 1. Accordingly, the three displacement 

variables are zero: 

0ˆˆˆ
211 === vvu  (7) 

The transformation matrix for deformation coordinates 

Ω in Eq.5 can be obtained using the geometrical 

relationship(Ting et al. 2004b), as shown in Fig. 1 as             
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(8) 

where 𝑒̂𝑥 and 𝑒̂𝑦 are the direction unit vectors in the x 

and y directions of local coordinate 𝑒̂𝑥 =
1

|∆𝜂2|
{∆𝜂2𝑥, ∆𝜂2𝑦}; 𝑒̂𝑦 =

1

|∆𝜂2|
{−∆𝜂2𝑦, ∆𝜂2𝑥}, which is  

 
Fig. 1 Local coordinates of a deformed element 

 

Note: The planer element moves from a (1a, 2a, 3a, 4a) 

to b (1b, 2b, 3b, 4b) in the deformation process. 

 

 

perpendicular to 𝑒̂𝑥 ; ∆𝜂2 = {∆𝜂2𝑥, ∆𝜂2𝑦}T is the 

displacement vector of node 2 in the global coordinate 

system. 

To find the state of any point in the element, the shape 

function (𝑁𝑖) is employed. Ni is used to transfer the nodal 

displacement to that of any point in the element, as 

described by Eqs. (9) and (10): 


=

=
n

j

ii xtsNx
1

ˆ),(ˆ , 1,  2,  3,  4;  4i n= =  (9) 

i

n

j

j tsN  ˆ),(ˆ
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= 
=

, 1,  2,  3,  4;  4i n= =  (10) 

where (s, t) is the computed point of the local coordinate 

and ( x̂ , ŷ ) is the local position (Ting et al. 2004b). The 

shape functions for each node can be written as 

4
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(11) 

 

2.3 Strain and stress transfer Matrix  
 

As described above, there are five independent variables 

for the four-node planar element in the local coordinates: 

 T

e vuvuuu 44332
ˆ,ˆ,ˆ,ˆ,ˆˆ =

 
(12) 

The incremental strain d𝜀̂  is obtained by using the 

method that is similar to the traditional FEM (Ting et al. 

2004b): 

 
e

T

xyyx uBdddd ˆˆ,ˆ,ˆˆ ==   (13) 

where B is the geometry matrix 
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where,  𝑥̂𝑠 ,𝑥̂𝑡 ,𝑦̂𝑠 , and 𝑦̂𝑡  represent the derivative  ∂𝑥̂/𝜕𝑠 , 

∂𝑥̂/𝜕𝑡, ∂𝑦̂/𝜕𝑠, and ∂𝑦̂/𝜕𝑡, respectively, and                                                      
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The Jacobian matrix in Eq. (14) is shown below as 

tt

ss

yx

yx
J

ˆˆ

ˆˆ
det=  (20) 

For cases involving the four-node planar element, the 

above variables are confirmed value after the derivation. 

The stress incremental vector dσ̂ is the variable of the 

incremental strain d𝜀̂ and element modulus matrix of E. 

Then, the incremental stress can be expressed as                             

euEBEdd ˆˆˆ ==   (21) 

                    

2.4 Virtual work and internal force 
 

The virtual work principle is applied to resolve the 

internal force of the elements at time step tn+1 in Eqs. (22) 

and (23) as:                       

out inW W=  (22) 

4

1 1 1 1ˆ
1

ˆ ˆ ˆˆˆ ˆ ˆi i i T

n n n n
A

i

f u d u B dA+ + + +
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 =  
 

(23) 

where 𝑑̂ and 𝐴̂ represent the thickness and area of the 

element, respectively, and 

4
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where 𝜎̂𝑛  is the strain at time step 𝑡𝑛 , ∆𝜎̂  is the 

incremental strain, d̂ is the virtual element thickness, and 

𝐴̂ is the element area at tn. 𝜎̂𝑛+1  and 𝜎̂𝑛 are the stress 

vectors at 𝑡𝑛+1 and 𝑡𝑛 respectively; 𝑓𝑛
𝑖 is the nodal force, 

and the incremental stress is:                          

 T
xyyx dddd  ˆ,ˆ,ˆˆ =  (25) 

The nodal force at a time step of tn+1 is defined as 

1
ˆ ˆ ˆi i i

n nf f df+ = +  (26) 
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The local geometry matrix is: 

 
834321 ,,,

1ˆ


= BBBB
J

B  
(28) 

where 𝐵𝑖  (i =1, 2, 3, 4) is defined in Eqs. (14) and (15); 

and 𝒇𝑛+1
𝑖  is the global nodal force, which is translated by                      

T

1 1
ˆi i

n nf f+ +=   (29) 

Finally, the nodal force shown in Eq. (30) can be 

balanced by the equilibrium equation of Eq. (1).                            

4

int, 1 1

1

e i

n n

i

P f+ +

=

=  (30) 

where int, 1

e

nP +  is the total internal nodal force at a time step 

of tn+1. 

 
 
3. Material models 

 
3.1 Stress-strain relationship for concrete 
 

(1) Equivalent biaxial incremental model 
In this research, the Darwin-Pecknold (1977) increment 

model was adopted as the constitutive model to calculate 

the structural behavior of the RC shear walls. In this model, 

two directions of strain and stress are considered, and are 

equivalent to a uniaxial model. The shear walls were 

supposed to be subject to an in-plane lateral load, and the 

response can be considered as a 2D problem. The increment 

of the stress and strain relationship of the equivalent 2D 

concrete can be represented as 

1 1

2 2

3 12

d d

d D d

d d

 
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 
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  (31a) 
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(31b) 

where E1 and E2 are the tangent modulus in the two 

directions of the strain; v is the Poisson’s ratio, which is 

defined as 
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where fc and ft are the uniaxial compressive strength and 

tensile strength of concrete, respectively.    

According to Darwin and Pecknold’s equivalent uniaxial 

strain model, the stress-strain relationship is assumed to be 

elastic within the increment of each load step, as shown in 

Eq. (33): 


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The equivalent increment of the uniaxial strain d𝜀𝑖𝑢 is:                            
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d






 =

−
=

1
 (34) 

where𝛼 = 𝜎1/𝜎2 and 𝑛 = 𝐸2/𝐸1;  𝜀𝑖𝑢 can be accumulated 

in the process of the loading step-by-step, as shown below: 

=
1E

d i
iu


  (35) 

where 𝜎𝑖 is the equivalent stress.  

 
(2) Failure criteria 
The equivalent uniaxial stress-strain curve can be 

defined as the above equivalent uniaxial strain. 

Corresponding to the Darwin-Pecknold model (1977), 

Saenz’s compression constitutive model was adopted for the 

ascending branch of the concrete compressive constitutive 

model: 
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where 𝐸0 is the original tangent modulus and 𝐸𝑠 is the 

secant modulus of maximum compressive stress. 𝜀𝑖𝑐 is the 

equivalent uniaxial strain at the maximum compressive 

stress. To describe the stress criteria 𝜎ic, the Kupfer and 

Gerstle (1973) model was adopted (Fig. 2) as: 
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Fig. 2 Biaxial strength failure envelope of concrete 

(Kupfer and Gerstle 1973) 
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where σit  is the equivalent uniaxial tension strength of 

concrete in direction i; σic  is the equivalent uniaxial 

compression strength of concrete in the direction of i(i= 1, 

2); 𝑓𝑡  and 𝑓𝑐
′  are the uniaxial tensile and compressive 

strength, respectively. 

In Eqs. (37)–(40), σ1 ≥ σ2, and 𝜀ic can be calculated 

by 
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(41) 

The compression branch of the concrete can be 

expressed as 
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(42) 

When the compressive stress of concrete 𝜎i decreases 

to 0.2 times of the maximum compressive strength (𝜎ic), 

the stress is maintained as a constant value if the strain is 

over 4𝜀𝑖𝑐. When 𝜀𝑖𝑢 > 4𝜀𝑖𝑐, the concrete is considered to 

be completely crushed. 

The equivalent stress-strain curves of concrete subjected 

to tension were referred to as the bilinear model proposed 

by Hillerborg et al. (1976) as below:  

( )
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(43) 
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Fig. 3 Equivalent uniaxial stress-strain constitutive curve 

of concrete (Kupfer and Gerstle 1973) 

 

 

where 𝜀it  and 𝜎it  are the tensile strain and stress, 

according to the tensile strength, respectively.  

When the material in the element reaches the equivalent 

ultimate tensile strength 𝜀tu,  cracks will appear 

perpendicular to the principal axis of the element. Actually, 

the crack tip extension, stress release, and coupling can be 

included in the crack development simulation. In this study, 

to simplify the crack behavior, a “smeared” cracking model 

was applied. The biaxial assumption was adopted in this 

model (Zhu and Dong 1985). 

When a crack appears in one direction, the 

corresponding Young’s modulus E1 becomes zero. Cracks 

appear perpendicular to the primary stress of the element 

(shown in the diagram of Fig. 4). The stress transformation 

matrix is as follows: 

   

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(44) 

In the element being analyzed, the boundary condition is 

satisfied even if a crack appears. When cracks appear in the 

element, the stress will redistribute and may cause 

variations of the node force. When a crack appears in both 

directions (as shown in Fig. 4), Young’s modulus E2 

becomes zero, and the equivalent modulus matrix is: 

















=

000

000

000

D

 

(45) 

 

3.2 Constitutive model of steel bars 
 

The bilinear model was adopted as the stress-strain 

constitutive relationship of the longitudinal steel bars (Fig. 

5) according to the stress-strain curve of the tested steel bar 

(Zhang et al. 2014). The tested Young’s modulus value was 

taken as the initial Young's modulus of steel (E1), and the 

modulus value after yielding was taken as 1% of the initial 

value (E2). The yield point of the bilinear model was 

 

(a) Stress state in 

an element 

(b) One-

direction 

crack 

(c) Two-direction 

crack 

Fig. 4 Element crack diagrams 

 

 
Fig. 5 Stress-strain relationship of steel bar 

 

 

assigned as the yield stress and strain of the tested steel bar. 

The tested steel bar broke rapidly after reaching the peak 

strength value. Therefore, the Young’s modulus and stress 

were set as zero after the steel bar reached the ultimate 

strain. The ultimate strain was assigned as the strain at the 

maximum stress 𝜎𝑢, which can be expressed as 

2/)( Eyuyu  −+=  (46) 

Actually, the longitudinal steel bars in the shear walls 

did not break even though the drift angle reached 1/120, 

which is the critical drift angle of collapse in the China 

seismic design code (GB 50011-2010, 2010). The steel bar 

did not reach the ultimate state in the simulation work 

either.  
 
 

4. Advantages 
 

In the continuum-based traditional finite-element theory, 

the global stiffness matrix needs to be calculated, e.g., using 

the immediate integration method and the mode 

superposition method (Bathe and Wilson 1976), in order to 

obtain the internal forces of the structural element. 

Therefore, the large stiffness matrix needs to be re-

calculated for the nonlinear displacement at each time, 

which requires significant computational overhead. 

Furthermore, the ill-condition of the stiffness matrix may 

cause serious errors. For large deformation problems, the 

equilibrium condition depends on the configuration after 

deformation, and the iteration is involved in solution, which 

makes the solving process complex (Wang and Shao, 1997). 

In this study, the advantages of the four-node element based 

on vector mechanics in the simulation of structural behavior 

are discussed. 

m1
m2

m3 m4

s 1

s 1

s 2 s 2

m1
m2

m3 m4

m1
m2

m3 m4E1=0 E1=0; E2=0E1=0 E1=0; E2=0
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(1) Independent equation of motion 
The presence of independent particles is one of the 

important characteristics of vector mechanics. A continuous 

object component is decomposed into a finite number of 

particles. The component mass is concentrated on the 

particles, and the motion of the particles is balanced 

according to Newton’s law. Each mass has its own 

kinematic equation, thus providing an iterative position. 

Compared with the large system equation of motion, it is 

easy to obtain the individual displacement for independent 

particles. The probability of ill-condition in the global 

stiffness matrix for nonlinear problems is substantially 

reduced. In this four-node element, the solution of internal 

forces depends on the motion of four particles. For the 

simulation of concrete nonlinearity, the variations in 

material properties and large deformation are addressed 

using the independent particle motion equation. 

 

(2) Separation of rigid body motion 

The virtual inverse motion in vector mechanics is 

developed to obtain the pure deformation of the particles 

(Ting, et.al., 2012; Duan, et.al., 2017). The rigid body 

translation and rotation in the virtual inverse motion method 

can be separated from the deformation, and the internal 

force is obtained from the pure deformation. The 

conversion matrix of the rigid body motion can be used to 

calculate the pure deformation, after which the actual 

position is obtained. Compared with the traditional FEM, 

the stiffness matrix and internal force expression can be 

greatly simplified, and has a significant advantage in 

calculation efficiency (Ting et al. 2004b). The process of 

the calculation for the strain can also be simplified by the 

separated rigid body motion.  

 
(3) Unified analysis process 
Generally, to obtain the internal force and deformation, 

three main concepts are used (Ting, et. al. 2012): ① 

particle description; ② path element (segmented motion 

along path); and ③ virtual inverse motion. Two main 

iteration cycles are concerned in the calculation. One is 

evaluation of the internal forces using the virtual inverse 

motion on the deformed element, and the other is 

computation of the nodal displacements using Eq. (1) (Ting, 

et. al. 2012; Duan, et. al., 2017). The flow chart of the main 

cycle of the program is shown in Fig. 6. Given the position 

of the two former steps, and the former external and internal 

forces, by applying Eq. (2), the position of the current time  

 

 

step can be obtained. Combined with the virtual inversed 

motion, the element stress and strain can be computed. The 

internal force can also be derived by applying the virtual 

work principle. Using the newly obtained information, the 

next cycle can be started. 

Vector mechanics provides a unified analysis framework 

that is concise and systematic. The spatial variation and 

geometrical transformation can be processed efficiently by 

the particle description, virtual inverse motion, and path 

element (Ting et. al., 2004a) in order to reach the solution 

of the whole deformation and damage. Actually, the particle 

description and path element enable the continuous 

deformation and characteristic changing of the simulated 

object to conduct the corresponding simulation. The 

calculation process is not limited by geometric 

nonlinearities, even though there is a discontinuous 

behavior. Cracking, crushing, and collapse always induce 

instability or in-convergence of calculations for general 

continuum-based finite-element theory. For this reason, the 

spatial motion, geometric transform, and material character 

changing of the individual element or integral structure can 

be processed in this generalized framework.  

In this paper, the plane element deformation problem of 

shear walls is simulated by the developed vector mechanics-

based four-node planar element, which takes the advantage 

of the VFIFE method.  
 
 

5. Simulation verification 
 

5.1 Experiment for comparison 
 

A group of experiments on RC shear walls with 

dimensions of 2000 mm × 1000 mm × 125 mm was 

performed to verify the effectiveness of the four-node 

planar element for a static problem. The experiments were 

conducted in the National State Key Laboratory of Civil 

Engineering at the Tongji University (Zhang et al. 2007), as 

shown in Fig. 7. Embedded columns were designed 

according to the Chinese Seismic Design Code (GB 50011-

2010).  

Four shear wall specimens with different vertical loads 

or concrete strengths tested under a low-cyclical load were 

simulated. The vertical load and the horizontal load were 

exerted by a hydraulic jack on the top beam, and the 

actuator was controlled by the displacement. The 

compressive strengths of the concrete were determined to 

be 30.8 MPa and 20.7 MPa. The diagram of the shear wall 

SW-A, which is similar to that of other specimens, is shown  

 

Fig. 6 Flow chart showing calculation 

Eq. (2) Parallel particle calculation Eq. (2) 
𝑥(𝑛−2), 𝑥(𝑛−1), 𝑃𝑒𝑥𝑡

(𝑛−1)
, 𝑃𝑖𝑛𝑡

(𝑛−1)
 

𝑥(𝑛+1) 
𝑥(𝑛) 

Shape function 

Geometry matrix 

Constitutive model 
Virtual work 

principle 

𝑃𝑒𝑥𝑡
(𝑛) 

𝑃𝑖𝑛𝑡
(𝑛) 𝜀(𝑛) 

𝜎(𝑛) 

Virtual inversed 

motion 
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in detail in Fig. 7. The specimen parameters and loading 

scheme are listed in Table 1. 

 

5.2 Modeling of the RC shear walls 
 
5.2.1 Model construction 
The shear walls were modeled according to the test 

specimens, as shown in Fig. 8 using the planar element. The 

mass of the shear wall is assigned to the nodes (Ting et al., 

2004a). Each rectangle is modeled using the four-node 

planar element, which is connected to the surrounding 

elements, and satisfies the deformation coordination 

condition. The number of elements varies with the size of 

specimens, which impacts the effectiveness of the 

simulation results. The shear wall was divided into 

boundary columns and core walls according to the different 

restraining conditions. In this study, the concrete member 

was modeled by four-node planar element, and the 

reinforcement was described using a two-node fiber 

element. As shown in Fig. 8, there are 198 nodes, 170 four-

node planar elements, and 367 fiber elements in the RC 

shear wall model. The bottom of the model were completely 

restrained, corresponding to experimental boundary 

conditions. The sliding and buckling effects were not 

considered because those were not clearly observed during 

the tests. 

 

 

 
Fig. 8 Simulation model (unit: mm) 

 

 

5.2.2 Material properties 
The properties of concrete and steel bars were assigned 

according to the experimental results and are listed in 

Tables 2 and 3. In the constitutive model, introduced in 

Section 3, the strength and ultimate strain of the confined 

concrete within the boundary column (as shown in Fig. 8)  

Horizontal 

load

Boundary 

column

Vertical load

2
0

0
0

1000

Steel bars

Restraint

Core wall

 

 

(a) Reinforcement diagram (b) Shear wall in test 

Fig. 7 Reinforcement and dimensions of shear wall SW-A (unit: mm) 

Note: Steel type of HPB is listed as “ϕ,” and HRB as “ .” 

 

Table 1 Parameters and loading of experimental shear walls 

Label of 

specimen 

Size of specimen 

(mm) 

Aspect 

ratio 

Compressive strength 

of concrete 

(MPa) 

Length of 

constraint area 

(mm) 

Vertical load 

(kN) 

Boundary longitudinal 

reinforcement 
Stirrup 

SW-A 
2000 × 1000 × 

125 
2 20.7 200 246 6 10 ϕ 6@80 

SW-B 
2000 × 1000 × 

125 
2 20.7 200 493 6 10 ϕ 6@80 

SW-C 
2000 × 1000 × 

125 
2 20.7 200 739 6 10 ϕ 6@80 

SW-D 
2000 × 1000 × 

125 
2 30.8 200 1380 6 10 ϕ 6@80 

Loading 

beam 

Foundation 
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Table 2 Properties of the boundary longitudinal steel bars 

Steel type 10 

Area (mm²) 63.62 

Yield strength (MPa) 379.00 

Ultimate strength (MPa) 554.00 

Modulus of Elasticity 

E1 (105N/mm2) 
1.812 

Yield strain 0.002092 

Post-yield stiffness E2 0.01E1 

 

 

were assigned as 1.1 times those of the unconfined concrete 

(Zhang, 2007); thereby, the concrete constraint effect was 

considered. 

The concrete and steel bar share the same nodes at the 

crossing points. Concrete cracking and crushing were 

considered using the reduced Young’s modulus, and the 

steel bars were simulated as a bilinear model until they 

attained the ultimate state, as described in Section 3. The 

concrete and steel bar density were set to 2.5 × 104 kN/m3 

and 7.8 × 104 kN/m3, respectively.  
 

5.2.3 Loading sequences 
The large deformation process was simulated subject to 

a pushover load in order to test the stability and accuracy of 

the developed model. Previous studies reported that the 

force-displacement curves of RC shear walls subjected to a 

pushover load are close to the skeleton curve from a low-

reversed cyclical experiment (Dong and Lu 2007). The 

error between monotonic loading specimens with cyclical 

loading specimen is within 1.5% before reaching the peak 

strength value, and after that, the error is within 2.5% 

(Dong and Lu 2007). The experiments conducted by Zhang 

et. al. (2019) and Lefas et al. (1990) also demonstrate 

similar results that simplify and show the adaptability of the 

equation of motion in the vector mechanics for a static 

problem. The simulated lateral load-displacement was then 

compared with those of the static cyclical experiment. 

The top beam was set as a rigid body, and the bottom 

foundation was described as a fixed restraint. In the 

simulations, the vertical and horizontal loads were added to 

the top beam of the specimens uniformly. Two loading 

sequences were examined; they involved the vertical and 

horizontal displacement loading. The vertical loads are 

listed in Table 1 and were increased gradually in 10 s, 

which remained utill the final simulation. After an interval 

of 5 s to eliminate the dynamic response, the horizontal 

displacement load was applied gradually over the next 100 s 

until the top horizontal displacement reached 30 mm (Fig. 

9). In total, the entire loading sequence lasted 120 s. The 

time step for the analysis was set as 10-4 s-1, and the results 

were recorded every 0.1 s. The damping coefficient of the 

shear walls was set to a large value (1.0 × 104 s-1) to 

eliminate the damping effect, in order to reach a static 

loading effect. 
 

5.3 Computational resources 
 

The four-node planar element and the corresponding 

program were compiled using the Intel Visual Fortran 15.0 

Table 3 Properties of the concrete of the simulated model 

Label of 

specimen 

Compressive 

strength 

(MPa) 

Compressive 

strength of 

confined 

concrete 

(MPa) 

Ultimate 

compressive 

strain  

Ultimate 

compressive 

strain of 

confined 

concrete 

SW-A 20.7 22.7 

0.0033 0.00363 
SW-B 20.7 22.7 

SW-C 20.7 22.7 

SW-D 30.8 33.9 

 

Table 4 Laptop configuration 

Items Description 

Host LENNOVO 81BS 

Cache 8 MB 

Memory 8 GB 

CPU Clock Speed 1.80 GHz 

CPU Core i7-8550U 

Hard Disk Drive Solid-state disk (256 GB) 

 

 

compiler. The model was run on a laptop whose computer 

configuration is described in Table 4. The calculation time 

for modeling the RC model described above was 7620 s. 

Meanwhile, the required computational resources are: CPU 

utilization: 11.0%—21.3%; Memory usage: 6.2 MB; Data 

storage: 339 MB for 1,200,000 analysis steps. 

From Fig. 9, it can be observed that the simulated 

deformation of the RC shear walls under the above 

conditions behaves as expected, even when the drift angle is 

over 1/120, which is the collapse criteria specified by the 

seismic design code (GB50011-2011).
 

 

5.4 Simulation results and verification 
 
5.4.1 Plan for static analysis 
As mentioned above, the equation of motion was 

adopted to determine the dynamic behavior of a structure in 

vector mechanics. However, to eliminate the dynamic 

impact in static problems, a simplified approach is to load 

using a slow and uniform speed, and to assign an extremely 

large damping ratio. Thus, the structural responses will 

eventually converge to a stable value, which is considered 

as the actual static solution.  

Based on this concept, the static solution is obtained, 

which disregards energy dissipation. This simplified method 

is achieved by adding a virtual damping force to each 

motion equation (Eq. (1)), resulting in:
  

   

du

d

dv

f ud
f m

f vdt


   
= = −   

    

(47) 

There are two factors that impact the computed results 

in Eq. (47), including the damping factor 𝜉 and x . The 

damping factor 𝜉 does not represent a real damping, but a 

virtual damping for the calculation of the responses of static 

loading. A relatively large damping factor can eliminate the 
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(a) Skeleton curves 

 

(b) Influence of loading time 

Fig. 10 Loading time analysis 
 

 

vibration, and x  is required to be extremely small in order 

to eliminate the damping force. Therefore, the loading time 

is designed to be long according to a specific requirement. 

The integral time step can be a small value in order to 

realize that process. 
 

5.4.2 Loadings for simulation anaysis 
Taking SW-A as an example, the deformation and the 

lateral loading process are shown in Fig. 9 (a) and (b). As 

described in Section 5.2.3, the vertical load was first 

applied, followed by the increasing lateral load. The  

 

 

position of a particle during the loading process is 

represented by the deformation diagram of the RC shear 

wall (Fig. 9a). Under the vertical load, the specimen was 

first compressed; as the lateral load increased, the specimen 

then gradually bent to one side. The lateral deformation 

increased until the loading procedure stopped when the 

specimen was experimentally failed. The drift angles when 

the specimens failed are observed over the limitation of 

1/120, which is specified as critical collapse criticize of 

Chinese seismic code. 
 

5.4.3 Discussion on simulation parameters  
As shown in Figs. 10-12, the simulated behavior agrees 

fairly well with experimental observations. The effect of the 

simulation parameters on damping factors and loading 

speed were evaluated based on this simulation model. In 

addition, the meshing quality is a critical factor that may 

impact the simulated response results of the finite-element 

analysis. Accordingly, simulations were then performed on 

the loading speed, damping factor, and mesh quality of 

elements.  
 

(1) Loading speed 
Four kinds of loading time span were examined: 50 s, 

100 s, 200 s, and 300 s, corresponding to different loading 

speeds. The lateral load was controlled by the lateral drift 

angle (lateral displacement relative to the story height), and 

the target lateral drift angle was set to about 1/100 

according to the experimental tests.  

Fig. 10(a) shows the lateral force -top lateral 

displacement curves simulated for four different loading 

specimens along with of the tested specimens. The 

influence of the loading time on the determination 

coefficient R2 [R2 = 1 - SSE (sum of squares error)/SST (sum 

of squares in total)] and correlation coefficient (r) is shown 

in Fig. 10(b). It can be observed that the simulated results 

are enhanced when the loading time was long (loading 

speed was slow). Both these coefficients, R2 and r, for the 

loading time of 100 s were higher than those for a loading 

time of 50 s, and they remained relatively stable. In other 

words, the simulation results converged to a static solution  
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(a) Deformation of SW-A (b) Loading process 

Fig. 9 Shear wall deformation and loading sequence modeled using the vector mechanics 
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Fig. 11 Influence of the virtual damping factor 

 

 

when the loading time exceeded 100 s. Accordingly, the 

loading time of 100 s was adopted for subsequent analyses. 

 

(2) Virtual damping factor 
Different virtual damping factors were evaluated to find 

a value that kept the simulation system stable, and 

converged to the static solution. With reference to the 

example (Ting, 2012), the initial damping factor was set to 

1.0 × 104 s-1, which represents in C1 and C2 in Eq. (2) as 

1.333 and 0.333, respectively. Then, the damping factor 

values that were analyzed ranged from 0.1–1.0 × 104 s-1 

with increments of 0.1 × 104 s-1. Each increment was tested 

under three lateral loading speeds (i.e., lateral loading times 

of 50 s, 100 s, and 200 s after vertical loading). 

The determination coefficient and virtual damping 

factor relationship are presented in Fig. 11. As shown in the 

figure, the error (√1 − 𝑅2) in simulation is enhanced when 

the virtual damping factor increases, after which the 

improvement becomes gradual and maintains a constant 

value at about 0.9 when the damping factor exceeds 1.0 × 

104 s-1. Fig. 11 also indicates that the loading speed does not 

significantly influence the determination coefficient (R) 

when it exceeds 100 s. Consequently, the virtual damping 

factor was set to 1.0 × 104 s-1 in subsequent analyses. 

 

(3) Meshing quality 
The simulation accuracy generally depends on the 

meshing quality in FEMA, which was also analyzed in this 

study. Four types of meshing quality were used, resulting in 

143, 198, 363, and 627 nodes, which were subject to a 

loading speed of 100 s and a virtual damping factor of 1.0 × 

104 s-1. Fig. 12(a) shows the lateral force-top horizontal 

displacement skeleton curves of the calculation results. Fig. 

12(b) shows the determination coefficient and correlation 

coefficient. Fig. 12 indicates that the correlation coefficient 

of the fine meshed specimen (with larger number of nodes) 

is higher than those with lower nodes when compared with 

the experimental results. Meanwhile, the increase is not as 

obvious us when the number of nodes exceeds 198, as 

shown in Fig. 12(b). Since the computation time 

substantially increases with meshing quality, a mesh with 

198 nodes was used for subsequent analysis.  

Table 5 Error analysis of the skeleton curves 

Label of specimen 
Coefficient of 

determination 
Correlation coefficient 

SW-A 0.9204 0.9630 

SW-B 0.9337 0.9751 

SW-C 0.8393 0.9569 

SW-D 0.9530 0.9829 

 

 
(a) Skeleton curves 

 
(b) Correlations 

Fig. 12 Influence of node quantity on the load-

displacement relationship 

 

 

6. Simulation results and discussion 
 

As discussed above, the loading speed of 100 s, 

damping factor of 1.0 × 104 s-1, and a mesh with 198 nodes 

were adopted in the static push-over analysis for the RC 

shear walls with different design or loading conditions 

(Zhang et al. 2007). The lateral force-displacement 

behavior was analyzed from the initial state of zero-

deformation and zero-speed, and it was then terminated 

after it was near collapse according to the experiment 

results. The vertical load was added to the top beam, which 

is the same as the process introduced in Section 5. Then, the 

lateral load was added uniformly at the top beam after 100 s.  

 

6.1 Lateral force-displacement curves  
 

The lateral force-top displacement curves of the four RC 

shear walls, including the simulated results (marked as 

Planar E.) and the experimental results (Experiment), are 

shown in Figs. 13(a)–13(d). The errors of the simulated 

results for each specimen compared with the experimental 

results are listed in Table 5. It can be observed that the 

coefficients of determination of the four specimens (SW-A, 

SW-B, SW-C, and SW-D) were 0.9204, 0.9337, 0.8393, 
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(a) SW-A 

  
(b) SW-B 

  
(c) SW-C 

   
(d) SW-D 

Fig. 13 Skeleton curves of the shear walls 

 

 

and 0.9530, respectively, and the correlation coefficients 

ranged from 0.9569 to 0.9829, which indicates that the 

lateral force-top horizontal displacement curves simulated 

by the four-node planar elements correlated well with the 

experimental observations. The lateral load-displacement 

curves in Fig. (13) also demonstrated that the initial 

stiffness values of the simulated results are larger than those 

of the experiment results although the peak lateral force is 

almost the same. The larger initial stiffness in this analysis 

is considered to be related to the idealized assumptions, i.e., 

no steel sliding and no defect in the cast.  

Table 6 Error analysis of the simulated maximum moment-

curvature relationship 

Label of 

specimen 

Coefficient of 

determination R2 

Correlation 

coefficient r 

SW-A 0.8946 0.9534 

SW-B 0.9421 0.9903 

SW-C 0.7526 0.8990 

SW-D 0.9637 0.9986 
 

 

6.2 Curvature development along height 
 

For shear walls, the bending resistance capacity is an 

important index of seismic performance. With the 

traditional FEM, it is difficult to simulate the large flexural 

behavior owing to the assumption of a small deformation 

when evaluating the curvature development. The curvature 

development was analyzed and compared with the 

experimental results in this study. Figs. 14–17 show the 

curvature distributions along the height of the four shear 

walls subject to different drift levels. The inter-story drift 

angles of 1/1000, 1/800, 1/400, and 1/120 were selected 

(specimen SW-D did not reach 1/120, but reached the 

ultimate state at a drift angle of 1/250). These four drift 

angles were considered as the deformation limitations of 

seismic resistance levels corresponding to the performance 

states of “Immediate Occupancy,” “Repair,” “Life Safety,” 

and “Collapse,” respectively (Thomsen, et.al., 2004). The 

curvature was obtained from the strain gages along the steel 

bars on both sides of the shear walls, and was basically 

linearly distributed before the drift angle reached 1/400, 

after which the curvature at the lower part of the wall 

increased rapidly. This rapid increase generally causes the 

unstable computation or non-convergence for the traditional 

finite-element approach. 

Figs. 14–17 show that the correlation coefficients (r) 

exceed 0.9 in all cases, and the coefficients of determination 

(R2) are also fairly close to 1.0, even at the stage of large 

deflection. This demonstrates the accuracy of the simulation 

results on the curvature development, even in the stage with 

the rapidly increase.  
 

6.3 Maximum curvature vs. moment 
 

Generally, the maximum curvature of the bottom section 

development shows the failure development of the bending 

element. The maximum moment-curvature curves of the 

four RC shear walls at the bottom are shown in Figs. 18(a)-

(d). Table 6 shows the degrees to which the simulated 

maximum moment-curvature relationship agreed with the 

experimental observations. 

As observed in Fig. 18, the simulated maximum 

moment-curvature relationship closely matched the 

experimental observations. Data in Table 6 show that the 

coefficients of determination are 0.8946, 0.9421, 0.7526, 

and 0.9637 for walls SW-A, SW-B, SW-C, and SW-D, 

respectively. Owing to the limitation of the experimental 

data, the error of SW-C is slightly higher than that for other 

specimens. The errors are considered to be caused by 

specimen construction and the testing system. Basically, the 

simulated and tested maximum moment-curves are very 

similar. 
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(a) 1/1000 

 
(b) 1/800 

 
(c) 1/400 

 
(d) 1/120 

  
Fig. 14 Curvature along height for different drift angle: SW-A 

    

 
(a) 1/1000 

 
(b) 1/800 

 
(c) 1/400 

 
(d) 1/120 

 

 
Fig. 15 Curvature along the height for different drift angles: SW-B 

 

 
(a) 1/1000 

 
(b) 1/800 

 
(c) 1/400 

 
(d) 1/250 

  
Fig. 16 Curvature along the height for different drift angles: SW-C 

    

 
(a) 1/1000 

 
(b) 1/800 

 
(c) 1/400 

 
(d) 1/250 

 
Fig. 17 Curvature along the height for different drift angles: SW-D 

 

0

400

800

1200

1600

2000

0 0.0025 0.005

0

400

800

1200

1600

2000

0 0.0025 0.005

φ
0

400

800

1200

1600

2000

0 0.0025 0.005

φ 0

400

800

1200

1600

2000

0 0.025 0.05

φ

Vector Experiment

0

400

800

1200

1600

2000

0 0.00125 0.0025

0

400

800

1200

1600

2000

0 0.0025 0.005

0

400

800

1200

1600

2000

0 0.004 0.008

0

400

800

1200

1600

2000

0 0.01 0.02

Vector Experiment

0

400

800

1200

1600

2000

0 0.001 0.002

φ 0

400

800

1200

1600

2000

0 0.001 0.002

0

400

800

1200

1600

2000

0 0.004 0.008

φ
0

400

800

1200

1600

2000

0 0.01 0.02 0.03

φ

0

400

800

1200

1600

2000

0 0.002 0.004

0

400

800

1200

1600

2000

0 0.005 0.01

0

400

800

1200

1600

2000

0 0.01 0.02

0

400

800

1200

1600

2000

0 0.01 0.02

Vector Experiment

H 

φ 

r=0.9827 

R2=0.8141 

 

Planar E. 

 

r=0.9434 

R2=0.8427 

 

r=0.9187 

R2=0.8756 

r=0.9903 

R2=0.8634 

H 

r=0.9285 

R2=0.8223 

H 

φ 

H 

φ 

H 

φ φ

 
Planar E. 

 

H 

r=0.9196 

R2=0.7672 

H 

r=0.9082 

R2=0.8048 

r=0.9565 

R2=0.8305 

φ 

H 

r=0.9441 

R2=0.8823 

 

r=0.9885 

R2=0.9469 

r=0.9900 

R2=0.9454 

 

H H H H 

r=0.9973 

R2=0.9065 

 

H 

r=0.9959 

R2=0.8160 

r=0.9984 

R2=0.9037 

 

 

r=0.9966 

R2=0.7883 

 

r=0.9887 

R2=0.7938 

 

Planar E. 

 

H H H 

φ φ φ φ 

13



 

Hongmei Zhang, Yufei Shan, Yuanfeng Duan, Chung Bang Yun and Song Liu 

 

 
 
6.4 Maximum curvature vs. top displacement 
 

The maximum curvatures developed as the displacement 

increased are analyzed and shown in Figs. 19(a)-(d). The 

 

 

maximum curvature was obtained from the strain gages on 

the outside steel bars at the bottom section of the shear 

walls. In these experiments, for the specimens with a 

flexure domain pattern, the maximum curvature occurred at  

 

 

(a) SW-A (b) SW-B 

 

 

(c) SW-C (d) SW-D 

Fig. 18 Maximum moment-curvature curves at the bottom 

 
 

(a) SW-A (b) SW-B 

  
(c) SW-C (d) SW-D 

Fig. 19 Maximum curvature-displacement curves 
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Table 7 Error analysis of the simulated maximum 

curvature–displacement relationship 

Label of specimen 
Coefficient of 

determination R2 

Correlation 

coefficient r 

SW-A 0.9661 0.9832 

SW-B 0.9255 0.9892 

SW-C 0.8926 0.9751 

SW-D 0.9832 0.9986 
 

 

the bottom section of the walls, which was similar to the 

results presented in Section 6.2. The displacement shown in 

Fig. 19 was the lateral displacement at the top of the shear 

wall when the bottom section of the wall reached the 

maximum curvature. Table 7 shows the error analysis of the 

simulation efficiency.  

Fig. 19 and Table 7 also demonstrate the close results of 

the maximum curvature development to the tested results.  
 

6.5 Energy dissipation  
 

Figs. 20(a)–(d) show the simulated and tested energy 

dissipation -top displacement curves of the four shear 

 

 
 

walls. The energy dissipation is obtained from the integral 

of the lateral force-top displacement curves. Both the 

simulated and tested energy dissipation values increase as 

the lateral displacement increases. The growth gradient is 

first gradual, and then increases rapidly and then tends to be 

relatively constant. For comparison, Table 8 shows the 

comparison results between simulations and experiments. 

Fig. 20 and Table 8 show that the coefficients of 

determination are 0.9953, 0.9909, 0.9559, and 0.9979 for 

walls SW-A, SW-B, SW-C, and SW-D, respectively. The 

correlation coefficients are all above 0.99. The error of the 

total dissipation of energy ((simulated results-tested 

results)/ tested results) are all smaller than 10%, which 

indicates that the simulation results of the planar element 

model agrees well with the experimental data. 

 

6.6 Crack distribution  
 

Besides the deformation performance, concrete damage, 

including cracking and crushing are also important in the 

evaluation of seismic performance. In this study, concrete 

cracks are assumed to be uniformly distributed in the  

  

(a) SW-A (b) SW-B 

  
(c) SW-C (d) SW-D 

Fig. 20 Dissipation of energy 

Table 8 Error analysis of the simulated dissipation of energy-top horizontal displacement curves 

Label Coefficient of determination R2 Correlation coefficient r 
Total dissipation of energy 

- experiment J 

Total dissipation of energy –

planar element on VM J 
Error 

SW-A 0.9953 0.9990 3582.73 3485.42 2.72% 

SW-B 0.9909 0.9994 4068.81 4139.48 1.74% 

SW-C 0.9559 0.9991 3978.80 4301.39 8.11% 

SW-D 0.9979 0.9996 1494.68 1478.67 -1.07% 
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(a) SW-A 
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(b) SW-B 

1/1000 1/800 1/400 1/120 
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(d) SW-D 

Fig. 21 Simulated crack distribution for various drift angles in shear walls 
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element when the tensile strain exceeded the critical value 

(4𝜀it) in the simulation of the RC shear walls. Then, the 

planar element was considered to be cracked from that time. 

Similarly, concrete crushing occurred when the compressive 

strain exceeded 4 𝜀ic ; thereafter, the concrete stress 

maintained a constant value of 0.2𝜎ic when the element was 

compressed. Although the mentioned cracking and crushing 

constitutive model are simplified, it can also provide a 

solution to solve the simulation and evaluation for this kind 

of damage problem.  

Figs. 21(a)–(d) show that when the lateral drift angle 

varies from 1/1000 to 1/120, the distribution of cracks 

increased and gradually extended to the upper and inner 

parts of the shear walls. Figs. 21(a)–(c) show that the crack 

distribution decreased as the axial ratio (ratio of vertical 

load to the section strength) increased, which is in 

accordance with experimental findings (Zhang 2007).  

Figs. 21(c)–(d) show that when the shear walls had 

thesame axial ratio but different values of concrete strength, 

fewer cracks developed in the shear wall with higher 

concrete strength. In addition, there were fewer cracks in 

the elements near to the already-cracked element, which 

was attributed to local stress release. The concrete cracking 

and crushing simulation also provides evidence of the 

influence of the axial ratio and concrete strength. The crack 

development results obtained from the developed program 

indicate that the damage simulation of concrete cracking 

and crushing was in good agreement with the actual 

behavior of experimental shear walls. The strain distribution 

and development simulated by the planar element 

accurately shows the damage evolution. Furthermore, the 

analysis of fracture behavior, such as concrete cracking and 

crushing, steel bar buckling, and even the collapse of a 

structural member can be carried out by the four-node 

planar element model simulation platform, with a 

corresponding constitutive model and refined time step. 

However, the accurate simulation on the cracking 

mechanics are still deserved further verification considering 

cracking pattern, cracking mode, and interaction of concrete 

and steel bars. 
 

 

7. Conclusions 
 

In this paper, the concrete damage involving a large 

deformation of RC shear walls was effectively simulated by 

the vector mechanics using the four-node planar element 

framework. The simulated responses are found to be in 

good agreement with experimental results. In summary, the 

following conclusions are made: 

(1) The large deformation behavior is successfully 

solved by the developed four-node element based on vector 

mechanics using as well as the corresponding composed 

biaxial material constitutive model and damage model; 

(2) The static response can be obtained by solving the 

equation of motion in this vector mechanics-based 

procedure. Low speed, large damping factor, and a 

reasonable meshing scheme can be found to have stable and 

acceptable static response results; 

(3) Concrete cracking and crushing in the ultimate stage 

are also expected to achieve close simulation results to the 

experiment results using the simplified damage behavior 

simulations. 

This study provides a framework to analyze the entire 

damage process of concrete structures, including large 

deformation, material nonlinearity, and predictions of the 

structural behavior when suffering from property 

degradation and sudden disaster. Future works will 

investigate the seismic behavior evaluation for common 3D 

elements or structures, the development of multiple kinds of 

material constitutive modules, including damage criteria, 

concrete cracking or crushing, and the interaction between 

reinforcement and concrete. 
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