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1. Introduction 
 

Polymers can be easily machined so they are useful 

materials for fabricating microactuators with lower energy 

consumption and microsensors with higher detection 

sensitivities. However, actuators and sensors made of pure 

polymers are often restricted to low speeds, small forces, 

slow frequency responses and short dynamic ranges to 

name only a few limitations (Li et al. 2003, Li et al. 2008, 

Ashrafi et al. 2006, Ramaratnam et al. 2006, Rokni et al. 

2012a, Rokni et al. 2012b). Therefore, many scientists have 

sought to develop high-strength, multifunctional polymer-

based nanocomposites by adding nanofillers into the 

polymer matrix as reinforcements to improve their 

mechanical, thermal and electrical properties and make 

them applicable in a wider range of applications. 

Functionally graded material (FGM) is a novel 

composite that has been widely used in many engineering 

fields. Nano-/micro-structural components made of FGMs 

excited great interests of researchers and engineers 

(Ebrahimi and Barati 2016a, Ebrahimi and Barati 2016b, 

Ebrahimi and Salari 2015a, Ebrahimi et al. 2015b). Some 

nonlocal models have been proposed and implemented to 

deal with mechanical responses of FG nano-structures  
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based on the mid-plane (Ebrahimi and Barati 2017a, 

Ebrahimi and Barati 2017b, Ebrahimi and Dabbagh 2017) 

and physical neutral surface (Ebrahimi and Salari 2015c). 

The smoothly graded material properties offers a smooth 

stress distribution with structures so that the remarkable 

stress mismatch that leads to interfacial failure in the 

conventional laminates can be avoided. Thus, FGM is a 

suitable composite applied in thermal enviroments. It is 

worth to mention that Ebrahimi and his co-authors devoted 

great efforts of addressing the thermal effects on 

mechanical behaviors of FG nano-materials and published a 

series of works (Ebrahimi and Salari 2016, Ebrahimi and 

Barati 2017c, Ebrahimi et al. 2017d, Ebrahimi and Hosseini 

2016, Ebrahimi and Barati 2018a, Ebrahimi et al. 2016). In 

addition, the effects of porosities within the FG-

nanomaterials on the nano-structures are also considered 

(Ebrahimi and Mokhtari 2015, Ebrahimi and Barati 2017d 

).In recent, the combination of functionally graded material 

(FGM) and polymer-based nanomaterials introduces the 

functionally graded polymer-based nanocomposites, in 

which the contents of nanofillers are dispersed within 

polymer matrix uniformly or no-uniformly. These kinds of 

nanocomposites are taken as ideal raw materials to fabricate 

microsensors and microactuators, because they preserve the 

flexibility of tailoring coming of polymer and obtained 

improved performances from nano-reinforcements. 

Graphene nanoplatelets (GNPs) are excellent candidates 

for fabricating polymer-based nanocomposites, such 

nanocomposites have been used extensively (Yang et al. 

2010, Potts et al. 2011). GNP-reinforced composites (Wang 
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et al. 2016, Song et al. 2016, Wang et al. 2019a, Mao et al. 

2019, Arefi et al. 2018, Javani et al. 2019) have also been 

introduced, in which the weight fractions of the GNPs vary 

in the thickness direction, to better utilize the superior 

mechanical properties of the carbon-based nanofiller. The 

mechanical response of the macro/nano structures in GNP-

reinforced composites have been investigated extensively 

(Karami et al. 2019, Wang et al. 2019b). However, as 

graphene is expensive and relatively hard to produce, many 

efforts have been made to find effective yet inexpensive 

ways to make and use graphene derivatives or related 

materials such as graphene oxide. Graphene oxide (GO) is a 

single-atomic layer material made by oxidation of graphite 

which is cheap and abundant (Graphene-info 2019). 

Graphene oxide is an oxidized form of graphene which is 

laced with oxygen-containing groups with a large surface 

area. Graphene oxide can be easily mixed with various 

polymers to enhance the properties of the composite 

materials like the tensile strength, elasticity, conductivity 

and others (Mahka et al. 2015). Therefore, the mechanical 

properties of a functionally graded polymer composite 

structure reinforced by graphene oxide should be 

investigated. 

This study investigated the dynamic stability of a 

functionally graded graphene oxide reinforced 

nanocomposite (FG-GORC) microbeam because beam-like 

structures are the most common structural components in 

nano/micro and macro scale engineered systems 

(Wattanasakulpong et al. 2018, Arani et al. 2018, Setoodeh 

and Rezae 2017), and these structural components may 

become instable with compressive periodic loads even if the 

load is below the critical buckling load. Thus, the dynamic 

stability of micro scale composite beams experiencing 

periodic loads needs further study. Ke et al. (2013) 

investigated the dynamic stability of functionally graded 

carbon nanotube reinforced composite beams and FGM 

microbeams using Timoshenko beam theory. Ebrahimi and 

Barati (2018b) performed a stability analysis of porous 

multi-phase nanocrystalline nonlocal beams. Mohammed 

and Cagri (2018) investigated the dynamic stability of 

functionally graded (FG) size-dependent sandwich 

microbeams subjected to parametric axial excitations based 

on nonlocal strain gradient theory. Wu et al. (2017) studied 

the dynamic stability of functionally graded multilayer 

nanocomposite beams reinforced with a low percentage of 

GNPs subjected to the combined action of a periodic axial 

force and a temperature change. Chen et al. (2019) analyzed 

the size dependent free vibration, buckling and dynamic 

stability of bi-directional functionally graded microbeams 

embedded in an elastic medium using a third order shear 

deformation theory. Saemul and Ganesan (2018) 

investigated the dynamic stability of doubly tapered 

cantilever composite beams rotating with a periodic 

rotational velocity. This literature review suggests that the 

dynamic stability of composite beams has been widely 

investigated, but few studies have focused on the dynamic 

stability of microbeams made of functionally graded 

polymer nanocomposites reinforced by GOs. Evaluating 

dynamic stability behaviors of FG-GORC microbeams has 

potential application values for developing polymer-based 

microactuators and micro robots, which is always a hot 

point and front line gambit in bioengineering, micro-

nanofabrications, and intelligent structures.   

To the authors’ knowledge, the present work is the first 

investigation of dynamic stability of a functionally graded 

polymer microbeam reinforced by graphene oxides 

subjected to a periodic axial force while resting on an 

elastic substrate. A FG-GORC microbeam is proposed 

based on the modified Halpin–Tsai model and the mixture 

rule in the first section of following part. The effective 

material properties, such as the Young's modulus, mass 

density and Poisson’s ratio, are determined. Then, in order 

to deal with small-scale effects within microstructures, a 

modified couple stress-based beam theory is developed by 

using an improved third order shear deformation theory 

(TSDT) with inclusions of couple stress tensors. The 

Mathieu-Hill equations for the dynamic stability of FG-

GORC microbeams with various boundary conditions are 

derived using Chebyshev polynomial-based Ritz method 

and solved via Bolotin's method to find principle unstable 

regions of FG-GORC microbeams resting on the elastic 

substrate. At last section, some parameter studies are 

performed to show the effects of the small scale, graphene 

oxide nanofillers, elastic substrate and boundary conditions 

on the dynamic stability of the FG-GORC microbeams. The 

present work provides an effective evaluation model for 

stability behaviors of FG-GORC microbeams, and the 

results are helpful to addressing reinforced effects of GO 

nanofillers on polymer-based microstructures. 
 
 

2. FG-GORC microbeam  
 

Fig. 1 shows a schematic of a FG-GORC microbeam 

resting on an elastic substrate and subjected to a periodic 

axial force P(t), where t is time. The length, width, and 

thickness of the beam are L, b, and h, respectively, and the 

coordinate system origin is fixed at the center of the left end 

of the beam. The beam is assumed to rest on a Winkler–

Pasternak type elastic substrate with a Winkler stiffness of 

kW and a Pasternak stiffness of kP. 

The matrix material is a polymer with graphene oxide 

randomly oriented reinforcements that are either uniformly 

or non-uniformly distributed across the thickness of the 

beam. The modified Halpin–Tsai model is used to evaluate 

the effective Young’s modulus of the GO/polymer 

nanocomposites in which the GOs are assumed to be 

circular disk-shaped fillers dispersed in the polymer matrix. 

The effective Young’s modulus of the graphene 

oxide/polymer composite, Ec, can be calculated as (Weon 

2009, Van Es 2001) 

 

 

Fig. 1 Schematic of a FG-GORC beam rests on a 

Winkler–Pasternak elastic substrate 
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0.49 0.51C L TE E E= +  (1) 

where 0.49 and 0.51 are the parameters representing the 

reinforcement efficiency of the nanofillers in the 

longitudinal and transverse directions. These values indicate 

that the GO nanofillers have almost the same reinforcement 

efficiencies in the two orthogonal directions. EL denotes the 

longitudinal modulus and ET denotes the transverse 

modulus given by (Harris 1986) 
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Substituting Eq. (2) into Eq. (1) gives 
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+
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where EM and EGO denote the Young’s moduli of the 

polymer matrix and the GO, VGO denotes the volume 

fraction of the GOs, and L and W characterize the 

geometry and size of the GO nanofillers and are defined as 

(Zhang et al. 2018) 

L W 2 GO

GO

d

t
 

 
= =  

 
 (5) 

in which dGO denotes the average diameter and tGO denotes 

the average thickness of the GO particles. The mass density,  

 

 

c, and Poisson’s ratio, vc, of the GO/polymer 

nanocomposite are calculated using the mixture rule as 

GO GO MC MV V  = +  (6a) 

GO GO MC Mv V v V v= +  (6b) 

where VM denotes the polymer matrix volume fraction and 

subscript “GO” denotes the graphene oxide, “M” denotes 

the polymer matrix and “C” denotes the GO/polymer 

nanocomposite. The GO volume fraction is given by 

( )( )
GO

GO

GO GO M GO1

g
V

g g 
=

+ −
 (7) 

where gGO denotes the total weight fraction of the GOs in 

the nanocomposite. 

As previously mentioned, the GO nanofillers are 

assumed to be either uniformly or non-uniformly dispersed 

within the polymer matrix. The current study considers four 

GO distribution patterns as listed in Table 1. 

where i (i=1, 2, 3 and 4) denote the control coefficients in 

the GO weight distribution functions with each design 

having the same total GO weight fraction. gmax denotes the 

maximum weight fraction across the thickness direction for 

each distribution.  

Unless otherwise stated, the graphene oxide dimensions are 

dGO=15 nm and tGO=0.6 nm. The graphene oxide and epoxy 

properties are GO=1.09 g/cm3, EGO=444.8 GPa, M=1.2 

g/cm3, EM=3.0 GPa, vM=0.34, and vGO=0.165 (Zhang et al. 

2018). 
 
 

3. Theory and formulations 
 

An accurate, efficient stability model was developed 

using an improved third order shear deformation theory 

with modified couple stress theory. The governing 

equations for the mechanical buckling, free vibrations and 

dynamic stability of the microbeams were derived using 

Lagrange’s equations and then discretized in matrix form 

using the Chebyshev-Ritz method. 

Table 1 Graphene oxide distribution patterns 

Distribution pattern Distribution functions i  gmax Schematic 

Uniform (UD) ( ) 1 GOg z g=   1 GOg  

 

FG-O 
( ) 2 GO

2
1

z
g z g

h

 
=  − 

 

 

2 GO2g  

   

FG-X ( ) 3 GO

z
g z g

h

 
=   

 
 4 GO2g  

   

FG-V 
( ) 4 GO

2
1

z
g z g

h

 
=  + 

 
 

1 GO2g  
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3.1 Modified couple stress theory 
 
The modified couple stress model (Yang et al. 2002) 

relates the strain energy, U, for a linear elastic material-

occupying region, , to the strain and curvature tensors as 

( )
1

2
ij ij ij ijU m d  



= +   (8) 

where i, j =1, 2, 3. ij represents the Cauchy stress tensor, ij 

represents the classical strain tensor, mij is the deviatoric 

part of the couple stress tensor and ij is the symmetric 

curvature tensor. The strain and curvature tensors are 

defined as 

( ), ,

1

2
ij i j i iu u = +  (9a) 

( ), ,

1

2
ij i j i i  = +  (9b) 

where ui,j are the displacement vector components and i are 

the rotation vector components 

,

1

2
i ijk k je u =  (10) 

where eijk is the permutation symbol. The Cauchy stress 

tensor, ij, and the couple stress tensor, mij, are given by 

2ij kk ij ij   = +  (11a) 

22ij ijm l =  (11b) 

where λ and μ are the Láme’s constants and ij is the 

Kronecker delta. The Láme’s constants are given by 

( )
( ) ( )

( ) ( )1 1 2

z E z
z

z z




 
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( )2 1

E z
z

z



=
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(12b) 

The symbol l in Eq. (11(b)) is a material length scale 

parameter, which is equal to the square root of the ratio of 

the modulus of curvature to the modulus of shear and is 

physically a property measuring the effect of the couple 

stress (Mindlin 1963, Park and Gao 2006). This parameter 

can be determined from torsion tests of slim cylinders of 

various diameters (Chong et al. 2001) or bending tests of 

thin beams of various thicknesses (Park and Gao 2006). 

Measurements in the literature show that the material length 

scale parameter is 17.6 m for homogeneous epoxy beams 

(Lam et al 2003). Due to lack of information for the 

material length scale parameter of FG-GORCs, l=17.6 m 

is also used in the present work. 
 
 

3.2 Third order shear deformation theory 
 

The improved third-order shear deformation (TSDT) 

was originally proposed by Shi (2007) based on a 

kinematics of displacements analysis and has been proved 

to be more reliable and accurate than other theories (Shi 

2007, Wattanasakulpong et al. 2011) because the 

kinematics of displacements theory is derived from 

elasticity theory rather than the displacement theories used 

in other approaches. The displacement field given by this 

third-order shear deformation theory (TSDT) can be 

expressed as (Shi 2007, Wattanasakulpong et al. 2011). 

( ) ( )

( )

3 3 0
0 2 2

0

( , )5 4 1 5
, ,

4 43 3

0

,

x x

y

z

w x t
u u x t z z x t z z

xh h

u

u w x t


    

= + − + −    
   


=


=



 
(13) 

where ux, uy and uz are the x, y and z components of the 

displacement field at the prescribed point (x,y,z) on a beam 

cross section at time t, u0 and w0 define the generalized 

displacements at the mid-plane of the beam in the x and z 

directions and x denotes the beam rotation. The non-zero 

strains and the non-zero components of the symmetric part 

of the curvature tensor can be expressed from Eqs. (9) and 

(10) as 
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(14) 

The classical stress and the couple stress tensor are 
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(15) 

where Q11(z) and Q55(z) are the elastic constants which vary 

continuously through the beam thickness 
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(16) 

The strain energy, U, of the beam is given as 

( )
/2

0 /2
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2 2 d d

2
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h
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Substituting Eqs. (13)-(16) into Eq. (17) gives the strain 

energy expression as a function of the material stiffness and 

strain components 
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where A11, B11, D11, F11, H11, A55, D55, F55, M55, N55 and S55 

are the material stiffness constants defined as 
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The kinetic energy of FG-GORC microbeam is 
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where  (z) is the mass density of the beam which varies in 

the thickness direction. 

Substituting Eq. (13) into Eq. (20) gives the kinetic 

energy as 
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The work done by the axial force, P(t), is 
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(22) 

 

The lower surface of the FG-GORC microbeam is 

assumed to rest on a Winkler–Pasternak elastic substrate 

that has two elastic stiffness parameters, kW and kP. The 

work done by the elastic substrate is 

2

sub 2

0

d

L

W P

w
W k w k w x

x

  
= − −  

  
  (23) 

The total energy functional, Π, is then 

axial subU T W W = − − −  (24) 

 

3.3 Solution method 
  

The Ritz method is an effective tool for analyzing the 

structural behavior of beams. Since the functions depend 

only on the essential type of boundary conditions (Reddy 

2003), various functions can be used as admissible 

functions. The present work uses Chebyshev polynomials as 

the admissible functions. 

Each of the displacement amplitude functions in Eq. 

(13) can be written as three Chebyshev polynomials 

multiplied by a boundary function, which ensures that the 

displacement component satisfies the essential geometric 

boundary conditions 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

1

0

1

1

( , )

( , )

( , )

N

u i i

i

N

w i i

i

N

x i i

i

u x t B x U t P x

w x t B x W t P x

x t B x V t P x

=

=

=


=




=



=








 (25) 

B (x) (=u, w and ) are the boundary functions. Pi(x) 

is the ith Chebyshev polynomial of the first kind, which is 

commonly known as "the most optimal expansion" (Chen 

and Zhang 2017, Liang et al. 2018) and is defined in the 

interval [−1, 1] as 

( ) ( )
2

cos 1 arccos 1 , 1,2,3...i

x
P x i i

L

  
= − − =  

  
 (26) 

The recursive relationship is 

( )

( )

( ) ( ) ( )

0

1

1 1

1

2i i i

P

P

P P P



 

   + −

=


=


= −

 (27) 
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Chebyshev polynomials have two distinct advantages as 

admissible functions for each displacement component (Fox 

and Parker 1968, Zhou et al. 2006). One is that Pi(x) is a 

complete, orthogonal series in the interval [−1, 1] and has 

more rapid convergence and better numerical stability in 

computations than other polynomials. The other advantage 

is that Pi(x) can be expressed as simple cosine functions as 

shown in Eq. (26) which reduces the coding effort. The 

boundary functions B (x) (=u, w and ) corresponding to 

u, w and x are given by 

( ) 1

L R
x x

B x
L L

 



   
= −   
   

 (28) 

where L and R are indices from the essential geometric 

boundary conditions: 

1) Hinged-Hinged (H-H) 

x=0: u0=0; w=0; x≠0 

x=L: u0=0; w=0; x≠0  

2) Clamped-Clamped (C-C) 

x=0: u0=0; w=0;
d

0
d

w

x
= ; x≠0 

x=L: u0=0; w=0; 
d

0
d

w

x
= ; x≠0  

3) Clamped-Hinged (C-H) 

x=0: u0=0; w=0;
d

0
d

w

x
= ; x =0 

x=L: u0=0; w=0; x≠0  

4) Clamped-Free (C-F) 

x=0: u0=0; w=0;
d

0
d

w

x
= ; x =0 

x=L: u0≠0; w≠0;
d

0
d

w

x
 ; x≠0  

Table 2 lists the indices for the various boundary 

conditions. 

Lagrange’s equations are used to derive the governing 

equations for the vibration and dynamic stability of the FG-

GORC microbeams 

0
i i

d

dt q q

  
+ = 

  
 (29) 

where qi represents the unknown coefficients, Ui(t), 

Wi(t)and Vi(t), and the over-dot denotes the partial 

derivative with respect to time. The equation of motion is 

then 

      ( )  sub axial
0P t+ − − =M q K K K q  (30) 

 

 

Table 2 Various boundary conditions indices 

Boundary 

conditions  
Lu L Lw Ru R Rw 

H-H 1 0 1 1 0 1 

C-C 1 1 2 1 1 2 

C-H 1 1 2 1 0 1 

C-F 1 1 2 0 0 0 

where [M] denotes the mass matrix, [K] denotes the 

structural stiffness matrix, [K]sub is the additional stiffness 

matrix generated by the elastic foundation, and [K]axial is the 

geometric stiffness matrix produced by the axial force. 

If the axial force is time-independent and neglecting the 

inertia term in Eq. (30) leads to the equation for the static 

buckling 

       crsub axial
0crP− − =K K K q  (31) 

where Pcr represents the critical buckling load for the 

microbeam and qcr denotes the eigenvector from the 

displacement functions that represents the buckling mode 

shapes of the structures. 

For free vibrations of the microbeam resting on the 

elastic substrate, the unknown coefficients 
( ), ,n n nU W V

 

can be written in a harmonic form as: 

( ) ( ), , , , ni t
n n n n n nU W V U W V e


=

, 1i = − , where n denotes 

the vibration frequencies. In addition, the axial force is 

removed in the vibration analysis. Thus, the governing 

equation for the free vibrations of the beam derived from 

Eq. (30) is 

   ( )   2

vibsub
0− − =K K M q  (32) 

where qvib denotes the eigenvectors from the displacement 

functions that represent the modal shapes of the structures. 

For the dynamic stability, the periodic axial force can be 

expressed as 

( ) ( )coss dP t P P t= +  (33) 

where Ps and Pd are the static and dynamic force 

components and  is the excitation frequency of the 

periodic axial force. Substituting Eq. (33) into Eq. (30) 

gives a Mathieu-Hill type equation for the dynamic stability 

of FG-GORC microbeams subjected to a periodic axial 

force while resting on the elastic substrate 

      ( )   sub axial
cos 0s dP P t+ − − + =  M q K K K q  (34) 

The instabilities occur only within certain regions of the 

frequency-driving amplitude plane. The boundaries of the 

unstable regions on this plane represent the periodic 

solutions of the equations of motion. The unstable region is 

separated from the stable region by periodic solutions with 

periods of T0 and 2T0, where T0 = 2π/. The solutions with 

period 2T have greater practical importance because they 

are associated with the principle unstable regions that are 

usually much larger than the secondary unstable regions 

defined by the solutions with period T0. The periodic 

solutions with period 2T0 can be found using Bolotin’s first 

approximation (Bolotin 1964) as a first order 

approximation of the equations. The periodic solution of 

Eq. (30) with period 2T0 takes the form of a trigonometric 

series 

1,3,

sin cos
2 2

k k

k

k t k t 

=

 
= + 

 
q a b  (35) 
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where ak and bk are arbitrary constant vectors. The solution 

of the first order approximation with k=1  provides 

acceptable accuracy and conservative results of the first 

unstable region, especially for periodic axial loading with 

one excitation frequency (Bolotin 1964, Xin et al. 2011). 

Thus, the fundamental unstable region is sought.  

Differentiating a one-term solution twice with respect to 

time t gives 

2 2

1 1sin cos
4 2 4 2

t t   
= − −q a b  (36) 

Substituting the
q

 and 
q

 into Eq. (30), simplifying the 

trigonometric relations and then comparing the coefficients 

of 

sin
2

t

and 

cos
2

t

gives two algebraic matrix 

equations for a1 and b1 

       
2

1sub axial
0

2 4

d

s

P
P

  
− − − − =  

  
K K K M a  (37a) 

       
2

1sub axial
0

2 4

d

s

P
P

  
− − + − =  

  
K K K M b  (37b) 

The following relations were used to simplify the 

trigonometric relations 

1 3
cos cos cos cos

2 2 2 2

t t t
t

  


 
= + 

 
 (38a) 

 

 
 

 

 

1 3
cos cos sin sin

2 2 2 2

t t t
t

  


 
= − + 

 
 (38b) 

The excitation frequencies, , can be determined from 

Eq. (37) for a given dynamic force Pd using standard 

eigenvalue algorithms. The variation of the eigenvalue  

with respect to Pd can be plotted with the - Pd plane 

showing the unstable regions for the FG-GORC 

microbeams subjected to a periodic axial load while resting 

on the elastic substrate. The intersection at Pd =0 represents 

the origin of the principle unstable region. 
 

 

4. Convergence and validation studies 
 

The validity and accuracy of the model were verified by 

comparing the results for several numerical examples with 

data in the literature.  

Increasing N in Eq. (25) leads to results that are more 

accurate but will require more computational time; thus, a 

suitable value of N needs to be determined for a balance 

between the accuracy and the computational complexity in 

the solution procedure. A simply-supported isotropic beam 

with Poisson’s ratio of 0.3 (=0.3) is considered as an 

illustration for the convergence and validation. The 

dimensionless critical buckling load ( cr
cr

P
P

EA
= ) of the 

beam without an elastic foundation and the first three 

dimensionless natural frequencies ( 2 2
ii i

A
L

EI


 = ) of the 

beam resting on the elastic foundation were calculated and  

Table 3 Convergence and validation for free vibration of an isotropic beam resting on an elastic foundation (L/h=15) 

N 
(kW, kP/2)=(0, 0)  (kW, kP/2)=(102, 0) (kW, kP/2)=(102, 1) 

crP  1st order 2nd order 3rd order  1st order 2nd order 3rd order 1st order 2nd order 3rd order 

5 0.36161 3.1300 6.2065 9.2428  3.7399 6.3072 9.2735 4.1362 6.6600 9.5325 

6 0.36142 3.1299 6.1940 9.2104  3.7398 6.2953 9.2414 4.1361 6.6496 9.5022 

7 0.36142 3.1299 6.1940 9.1413  3.7398 6.2953 9.1730 4.1361 6.6495 9.4378 

8 0.36142 3.1299 6.1939 9.1404  3.7398 6.2952 9.1721 4.1361 6.6495 9.4369 

9 0.36142 3.1299 6.1939 9.1393  3.7398 6.2952 9.1711 4.1361 6.6495 9.4360 

10 0.36142 3.1299 6.1939 9.1393  3.7398 6.2952 9.1711 4.1361 6.6495 9.4360 

Chen (2004)  3.1302472  3.7389477 4.1347188 

Table 4 Critical buckling loads of the functionally graded microbeams 

L/h E2/E1 
C-F H-H C-C 

Ke et al.(2009) Present Ke et al.(2009) Present Ke et al.(2009) Present 

6 

0.2 0.002518 0.002460 0.010851 0.010815 0.03111 0.03085 

1.0 0.005740 0.005597 0.021117 0.021120 0.06884 0.06891 

5.0 0.012588 0.012300 0.054256 0.054076 0.15554 0.15425 

16 

0.2 0.0003526 0.0003515 0.001636 0.001635 0.005418 0.005410 

1.0 0.0008015 0.0008009 0.003176 0.003176 0.01227 0.01229 

5.0 0.001762 0.001757 0.008179 0.008175 0.02709 0.02705 
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compared with those from Chen’s work (2004). The 

comparisons in Table 3 show excellent agreement. In 

addition, N=7 was found to be large enough to obtain 

accurate results for Eq. (25).   

The dimensionless critical buckling loads of a 

functionally graded microbeam with the materials 

properties following an exponential variation through the 

thickness direction are compared with those of Ke et al. 

(2009) in Table 4 for three boundary conditions. The beam 

thickness h=0.1 m, the slenderness ratio L/h=6 or 16, the 

Young’s modulus ratio E2/E1= 0.2, 1.0 or 5.0, 

E1 = 70 GPa, and ν1 = 0.33. The present results agree very 

well with the results of Ke et al. (2009) 

The size effect on the vibration behavior of the 

functionally graded microbeam was also examined using 

the present model. The functionally graded microbeam was 

made of SiC (Ec=427 GPa, ρc=3100 kg/m3, υc=0.17) and Al 

(Em=70 GPa, ρm=2702 kg/m3, υm=0.3). The length scale 

paramter, l, was set to 15 m. The elastic properties of the 

functionally graded microbeam were evaluated using 
 
 

 

 

 

( ) ( )
1

2

k

c m m
z

M z M M M
h

 
= − + + 

 
 (39) 

where M represents the mechanical properties (E, ρ, υ) of 

the two constituents of the functionally graded microbeam. 

The subscript, , represent ‘c’ and ’m’ for the ceramic and 

the metal. k is the power-law index. Table 5 compares the 

dimensionless fundamental frequencies (
2

m

m

L

h E


 = ) of 

the functionally graded microbeam subjected to various 

boundary conditions (BCs) calculated using the present 

method to the results of Luan et al. (2018) which were 

based on higher-order beam deformation theories. The 

present results again agree well with the previous data for 

microbeams. 

Tables 6 and 7 compares the predicted dimensionless 

critical buckling loads and fundamental frequencies of 22-

layered FG-GORC laminated microbeams with the results  

Table 5 Size effect on the dimensionless fundamental frequencies for SiC/Al beams (L/h=5) 

BCs h/l 

k=0 k=1 k=10 

Trinh et al. 

(2018) 

Present Trinh et al. 

(2018) 

Present Trinh et al. 

(2018) 

Present 

HH 

1 15.7140 15.7140 12.1506 12.1507 8.1733 8.1734 

5 6.8405 6.8405 5.2905 5.2905 3.9046 3.9046 

∞ 6.2009 6.2008 4.7944 4.7943 3.6022 3.6022 

CC 

1 33.5290 33.5321 25.7024 25.7056 17.4627 17.4672 

5 13.8093 13.8112 10.2076 10.2104 7.3016 7.3027 

∞ 12.2556 12.2713 8.9576 8.9692 6.3403 6.3614 

CH 

1 18.1099 18.1099 14.2757 14.2677 9.4339 9.4285 

5 10.2151 10.1005 7.4889 7.4897 5.4437 5.4197 

∞ 9.1925 9.1739 6.6568 6.6641 4.9064 4.8755 

CF 

1 5.6973 5.6986 4.3504 4.3519 2.9127 2.9135 

5 2.5043 2.5051 1.8236 1.8243 1.3667 1.3678 

∞ 2.2769 2.2762 1.6362 1.6360 1.2604 1.2599 

Table 6 Dimensionless critical buckling loads for FG-GORC beams (Hinged-Hinged) 

L/h 

FGX FGO UD 

Zhang et al. 

(2018) 
Present 

Zhang et al. 

(2018) 
Present 

Zhang et al. 

(2018) 
Present 

10 0.0116 0.0115 0.0086 0.0086 0.0101 0.0101 

15 0.0052 0.0052 0.0039 0.0039 0.0046 0.0046 

20 0.0030 0.0030 0.0022 0.0022 0.0026 0.0026 

Table 7 Dimensionless fundamental frequencies of FG-GORC beams (Hinged-Hinged) 

L/h 

FGX FGO UD 

Zhang et al. 

(2018) 
Present 

Zhang et al. 

(2018) 
Present 

Zhang et al. 

(2018) 
Present 

10 0.3379 0.3363 0.2921 0.2910 0.3159 0.3147 

15 0.2271 0.2267 0.1959 0.1955 0.2121 0.2118 

20 0.1708 0.1707 0.1473 0.1471 0.1595 0.1594 
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of Zhang et al. (2018). The multilayer beam with 22 or 

more layers is an excellent approximation of an ideal 

functionally graded beam structure with a continuous, 

smooth variation of both the material composition and the 

properties. The total GO weight fraction was gGO=0.3% and 

the functionally graded material properties of the beam 

were controlled by the volume variation of GOs in each 

layer. Three types of GO distributions were considered. 

Tables 6 and 7 show a good agreement between the results. 
 
 

5. Numerical examples and discussion 
 

The model is used here to investigate the dynamic 

stability characteristics of functionally graded graphene 

oxide reinforced composite (FG-GORC) microbeams 

subjected to a periodic axial force while resting on an 

elastic substrate. Some dimensionless parameters are 

introduced to facilitate the presentation: 

Dimensionless excitation frequency: 

M

M

L
E


 =  

Dimensionless elastic constants of the two-parameter 

substrate: 

4
w

W
M

k L
K

E I
= , 

4
p

P
M

k L
K

E I
=  

 

 

where I is defined as 
3

12

bh
I =  and EM and M are the 

Young’s modulus and mass density of the pure polymer 

matrix. 
The dynamic stability of FG-GORC microbeams with a 

periodic axial force was investigated for a wide range of 
parameters. The variations of the principle unstable regions, 
as indicated by the ratio of the dynamic axial force, Pd, to 
the critical buckling load, Pcr, are given as functions of the 
dimensionless excitation frequency, . Fig. 2 shows the 
effect of the dimensionless length, h/l, on the unstable 
region for C-C FG-GORC microbeams with the various GO 
distribution patterns for a microbeam with slenderness ratio 
of 10. Increasing h/l shifts the unstable region origin to 
lower excitation frequencies and reduces the width of the 
unstable region. In addition, the results show that the 
unstable region is significantly affected for h/l less than 8, 
which indicates that the size has more influence on the 
unstable region size for thin microbeams than for thick 
ones. That is because as h/l increases the proportion of 
additional structural stiffness due to small scale in total 
structural stiffness [K] descends gradually and become 
invisible when h/l ≥8. The effects of the boundary 
conditions on the dynamic stability of the FG-GORC 
microbeams are shown in Fig. 3. The clamped-clamped end 
supports again produce the highest excitation frequencies 
and widest unstable regions for the composite microbeams 
while the clamped-free ends generate the lowest  and the 
narrowest unstable regions.  

  
(a) FG-X, Ps/Pcr=0.1 (b) UD, Ps/Pcr=0.5 

  
(c) FG-V, Ps/Pcr=0.6 (d) FG-O, Ps/Pcr=0.8 

Fig. 2 Effects of the microbeam size on the unstable region of the FG-GORC microbeam 
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The physical reason for this result is that the clamped-

clamped ends provide the most rigorous boundary restrains 

and produce greatest stiffness of the system. Conversely, the 

clamped-free ends lead to the smallest stiffness. 

Fig. 4 shows the principal unstable regions for the FG-

GORC microbeams for various weight fractions. One can 

observe that additions of GO nanofillers broaden the 

unstable regions and increase the critical excitation 

frequencies of the axial load. It is a predictable result since 

GO nanofillers have extremely high modulus of elasticity 

compared to polymer matrix, a small amount of GOs can 

provide remarkable improvements to stiffness and hardness 

of microbeams,, resulting in higher vibration frequencies. 

The influence of GO distribution patterns on the dynamic 

stability of the FG-GORC microbeams is shown in Fig. 5. It 

is seen that the FG-X distribution pattern gives the highest 

origin and the widest unstable region. The results also show 

that the composite microbeam with the FG-X distribution 

pattern becomes unstable at higher excitation frequencies 

than the beams with the other distribution patterns since 

microbeams with the FG-X distribution have much higher 

bending resistance to bending deformation. This result 

demonstrates that the FG-X GO distribution in which the 

top and bottom surfaces have the highest GO nanofiller 

content has the highest resistance to bending because such  

 
 

patterns have more GO particles in the top and bottom 

layers with the highest normal bending stresses which 

produces the best reinforcement. 

The effects of the GO shape as indicated by the particle 

diameter-to-thickness ratio (dGO/tGO) on the dynamic 

stability of the FG-GORC microbeams are shown in Fig. 6. 

In these cases, the GO particle thickness was fixed. The 

results show that dGO/tGO greatly influences the dynamic 

stability of FG-GORC microbeams with larger dGO/tGO 

moving the unstable region origin to higher excitation 

frequencies and increasing the unstable region width. The 

curves become much closer at higher dGO/tGO which 

suggests that the effect of dGO/tGO on the dynamic stability 

of FG-GORC microbeams is much less at larger diameter-

to-thickness ratios. In other words, larger sized GOs are 

better reinforcing nanofillers than their counterparts with a 

smaller size, because larger sized nanofillers can provide 

larger contact surface with polymer matrix and better load 

transfer from matrix to GOs, being generally beneficial in 

improving the mechanical properties of the composites. The 

effects of Winkler and Pasternak foundations on the 

dynamic stability of FG-GORC microbeams are shown 

in Figs. 7(a) and 7(b). It is observed that the unstable region 

not only becomes wider but also moves to the right as both 

KW and KP increase. This is because increasing either of the 

Winkler and Pasternak foundation parameters increases the 

  
(a) FG-X h/l=1 (b) FG-O h/l=5 

Fig. 3 Effects of the boundary conditions on the unstable region of the FG-GORC microbeam 

  
(a) C-H, UD (b)C-H, FG-V 

Fig. 4 Effects of the GO weight fraction on the dynamic stability of FG-GORC microbeams 
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system stiffness, which then increases the critical 

frequencies. 

In addition, From Fig. 7 it is found that with the same 

increments, the improvement of excitation frequencies 

resulting from KW is less than that from KP, and the 

variation of width of unstable regions due to KW varying is 

not so evident compared with that due to KP varying. This 

phenomenon indicates that the location and size of the 

unstable region are not sensitive to the Winkler foundation 

with the unstable region only moving slightly to the right as 

KW increases, and the Pasternak elastic foundation has a 

much larger effect on the dynamic stability of the composite 

microbeam. 

 

 

6. Conclusions 
 

The current study investigated the dynamic stability of a 

FG-GORC microbeam subjected to a periodic axial force 

while resting on an elastic substrate. The GO nanofiller 

weight fraction was assumed to be graded across the 

microbeam thickness. The effective Young's modulus of the 

functionally graded GO reinforced composite (FG-GORC) 

was determined using the modified Halpin–Tsai model,  

 

 

 

while the mixture rule was used to evaluate the effective 

Poisson's ratio and mass density. 

A third order shear deformation theory (TSDT) model 

was used in conjunction with a modified couple stress 

theory to develop an accurate, efficient model to predict the 

dynamic stability of this composite microbeam. The 

Chebyshev polynomial-based Ritz method was used to 

describe the various immovable boundary conditions of the 

beam. Lagrange’s equations were used to derive the 

Mathieu-Hill equations for the dynamic stability of the FG-

GORC microbeam which were then solved using Bolotin's 

method. The solution then gave the principal unstable 

region of the FG-GORC microbeam. 
(1) A parametric study showed the effects of the GO 

particles including their weight fraction, distribution 
pattern, geometric parameters, and size and the effects 
of the elastic substrate on the dynamic stability of the 
microbeam. The main conclusions are: 

(2) Adding even a small GO nanofiller mass fraction   
significantly improves the polymer composite beam 
stiffness that broadens the unstable regions of the FG-
GORC microbeams and increases the allowable 
excitation frequencies of the periodic axial load. The 
effects are greater with more GO nanofiller near the top 
and bottom surfaces of the beam.  

  
(a) C-C (b) C-H 

Fig. 5 Effects of the GO distribution on the dynamic stability of FG-GORC microbeams 

  
(a) C-C (b) H-H 

Fig. 6 Effects of the particle diameter-to-thickness ratio (dGO/tGO) on the principal unstable region of the FG-GORC 

microbeams 
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(3) The microbeam size significantly affects the dynamic 

stability of thin FG-GORC microbeams with less effect 

for thick microbeams. Reducing the dimensionless 

length scale, h/l, significantly increases the critical 

buckling loads and fundamental frequencies of FG-

GORC microbeams. 

(4) The GO particle diameter-to-thickness ratio also 

strongly influences the dynamic stability behaviors of 

FG-GORC microbeams for diameter-to-thickness ratios 

less than 400. Increasing the diameter-to-thickness ratio 

shifts the unstable region origin to higher excitation 

frequencies and increases the unstable region width. 

Increase in the elastic stiffness of the foundation 

increases the critical excitation frequency and increases the 

unstable region width. The Pasternak elastic foundation has 

a greater impact on the mechanical behavior of the FG-

GORC microbeam than the Winkler foundation. 
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