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1. Introduction 
 

The heat conduction equations for the classical linear 

uncoupled and coupled thermoelasticity theories are of the 

diffusion type predicting the infinite speed of propagation 

of heat wave contrary to physical observations. To 

eliminate this paradox inherent in the classical theories, 

generalized theories of thermoelasticity were developed. 

The generalized thermoelasticity theories admit so-called 

second-sound effects, that is, they predict the finite velocity 

of propagation for the heat field. The first attempt towards 

the introduction of generalized thermoelasticity was headed 

in Lord and Shulman (1967). The Lord-Shulman theory 

introduces a new physical concept which called relaxation 

time. Since the heat conduction equation of this theory is of 

the wave-type, it automatically ensures the finite speed of 

propagation of heat wave. The second generalization was 

developed in Green and Linsay (1972). This theory contains 

two constants that act as relaxation times and modifies all 

the equations of coupled theory, not the heat conduction 

equation only. The linear viscoelasticity remains an 

important area of research. The mechanical model 

representation of linear viscoelastic behavior results was 

explored in Othman and Abbas (2012). The solution of the 

boundary value problems for linear viscoelastic materials, 

including temperature variations in both quasi-static and 

dynamic problems made great strides in the last decades, in 

Biot (1954). The solution of linear viscoelasticity problems 

with corresponding linear elastic solutions was linked in 

Bland (2016).  

The theory of elastic materials with voids is one of the 

most important generalizations of the classical theory of  
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elasticity. This theory is concerned with elastic materials 

consisting of a distribution of small pores (voids, which 

contain nothing of mechanical or energetic significance) in 

which the void volume is included among the kinematic 

variables. Practically, this theory is useful for investigating 

various types of geological and biological materials for 

which elastic theory is inadequate. The behavior of plane 

waves in a linear elastic material with voids was studied in 

Cowin (2013). The domain of influence theorem in the 

linear theory of elastic materials with voids was discussed 

in Dhaliwal and Wang (1994). The visco-elastic behavior of 

linear elastic materials with voids was studied by Singh et 

al. (2018). While a nonlinear and linear theory of thermo-

visco-elastic materials with voids was studied in Iesan 

(2015). The mathematical simulation of the mechanism of 

acoustic drying of porous materials was investigated by 

Feodorov et al. (2012). One can find some work on thermo-

elasticity with voids in the kinds of literature Othman and 

Atwa (2012), Sharma and Kumar (2016), Othman and 

Marin (2017), (Marin et al. 2017), Marin (1997), Marin 

(1999).  

Investigation of the interaction between the magnetic 

field and stress and strain in a thermoelastic solid is very 

important due to its many applications in the fields of 

geophysics and plasma physics. Especially in nuclear fields, 

the extremely high temperature and temperature gradients, 

as well as the magnetic fields originating inside nuclear 

reactors influence their design and operations. The effect of 

two-temperature and gravity on the 2-D problem of thermo-

viscoelastic material under the three-phase-lag model was 

investigated in Othman and Zidan (2015). During the 

second half of the twentieth century, great attention has 

been devoted to the study of electro magneto-thermoelastic 

coupled problems based on the generalized thermo-

elasticity and MHD by Ellahi (2013), Yousif et al. (2019), 

Fetecau et al. (2018). The initial stresses are developed in 
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the medium due to many reasons, resulting from the 

difference in temperature, the process of quenching, shot 

pinning and cold working, slow the process of creep, 

differential external of forces, gravity variations, etc. The 

Earth is supposed to be under high initial stresses. It is 

therefore of great interest to study the effect of these 

stresses on the propagation of stress waves. During the last 

five decades, considerable attenuation has been directed 

towards this phenomenon. The acoustic propagation under 

initial stresses would be fundamentally different from that 

under stress-free state was depicted in Biot (1965). Several 

problems with the theory of thermoelasticity have been 

solved by Hassan et al. (2018), Othman and Atwa (2014), 

Othman and Said (2015), Othman et al. (2015).  

The classical Fourier’s law of the heat conduction is no 

longer valid because it leads to an infinite propagation 

speed of the thermal energy. The stress wave induced by 

Pico and Femto-second laser pulses in a semi-infinite metal 

by expressing the laser pulse energy as a Fourier series was 

studied by Wang and Xu (2002). The ultra-short lasers are 

those with pulse duration ranging from nanoseconds to 

Femto-seconds. In the case of ultra-short-pulsed laser 

heating, the high-intensity energy flux and ultra-short 

duration laser beam has introduced situations, where very 

large thermal gradients or an ultra-high heating rate may 

exist on the boundaries was studied by Sun et al. (2008). 

They have proposed several models to describe the 

mechanism of heat conduction during the heating of the 

short-pulse; it has been found that the parabolic and the 

hyperbolic models are useful for modification materials as 

thin films. When a metal film is heated by a laser pulse, a 

thermoelastic wave is generated due to thermal expansion 

near the surface.  

The present work is to obtain the physical quantities in a 

homogenous, isotropic, thermo-visco-elastic material with 

voids subject to thermal loading by a laser pulse in the case 

of absence and presence of initial stress and magnetic field. 

The model is illustrated in the context of (CT) and (L-S) 

theories. The normal mode analysis is used to obtain the 

expressions for physical quantities. The distributions of 

considered variables are represented graphically. 
 

 

2. Formulation of the problem 
 

Consider a homogeneous, isotropic, thermally 

conducting viscoelastic half-space (z ≥ 0) with voids. For 

the two- dimensional problem, we assume the dynamic 

displacement vector as u=(u,0,w). All quantities considered 

will be functions of the time variable t and of the 

coordinates x and z The whole body is at a constant 

temperature T0and it is acting on throughout by a constant 

magnetic field H=(0,H0,0), which is oriented towards the 

positive direction of the y-axis. Due to the application of 

this magnetic field, their results an induced magnetic field h 

and an induced electric field E. We assume that both h and 

E are small in magnitude in accordance with the 

assumptions of the linear theory of thermo-viscoelasticity. 

The electric intensity vector is normal to both the magnetic 

intensity and the displacement vector. Thus, it has the 

components E=(E1,0,E3), the current density vector J is 

parallel to E, thus J=(J1,0,J3). 

The variation of the magnetic and electric fields for a 

finitely conducting slowly moving medium, are given by 

Maxwell’s equations as Othman and Abd-Elaziz (2017). 

 
(1) 

 
(2) 

 
(3) 

 (4) 

From Eqs. (1)-(4) we can obtain 

 

 

The basic governing equations for a linear generalized 

thermo-viscoelastic media with voids under the effect of 

initial stress and magnetic field in the absence of body 

forces are written in (Lord-Shulman 1967, Cowin 1985). 
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And the constitutive relations are given by 
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The parameters λ*, μ*, β*, A*, B* and b* are defined as 
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The plate surface is illuminated by laser pulse given by 

the heat input 
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For x−z plane, Eq. (5) gives rise to the following two 

equations  
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For simplifications we shall use the following non-

dimensional variables: 
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where,   is the characteristic frequency of the material 

and c1, c2 are the longitudinal and shear wave velocities in 

the medium, respectively.  

Using Eq. (13), then, Eqs. (11), (12), (6) and (7) become 

respectively (dropping the dashed for convenience). 
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The non-dimensional constitutive relations are given by 
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The expressions relating displacement components 

u(x,z,t) w(x,z,t) to the potentials are 
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3. Normal mode analysis 
 

The solution of the considered physical variable can be 

decomposed in terms of normal modes as the following 

form: 
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where, ω is the frequency, a is the wave number in the x −

direction and i 1= − .  

Eqs. (20)-(23) with the aid of Eq. (24) become 
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 (26) 
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where 

 

 

 

 

 

 

Eliminating T  and   between Eqs. (26)-(28) we get 

the following ordinary differential equation satisfied with
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4. The boundary conditions 
 

In order to determine the parameters Rj(j=1,2,3,4) we 

need to consider the boundary condition at z=0 as follows:  

The mechanical boundary conditions: 

 
(42) 

The thermal boundary condition: the surface of the half-

space is subjected to a thermal shock 

 (43) 

where, p1, p2 are the magnitude of the mechanical force and 

N(x,t) is known function.  

Substituting from the expressions of the variables 

considered into the boundary conditions, (42) and (43) 

respectively, we can obtain the following equations: 

 
(44) 

 
(45) 

 
(46) 

 
(47) 

where, 

 

 

 

 

Solving Eqs. (44)-(47) for Rj(j=1,2,3,4) by using the 

inverse of matrix method as follows: 

 

(48) 

 
Fig. 1 Variation of the displacement u with z in the 

presence and absence of initial stress 

 

 

Fig. 2 Variation of the stress σxz with z in the presence and 

absence of initial stress 

 

 

Fig. 3 Variation of the volume fraction field ϕ with z in the 

presence and absence of initial stress 

 
 
5. Numerical results and discussion 
 

We will present some numerical results to illustrate the 

problem. The material chosen for the purpose of 

numericalcomputation is copper, the physical data for 

which are given in Othman and Zidan (2015), in SI units:  
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Fig. 4 Variation of the displacement u with z in the 

presence and absence of magnetic field 

 

 

Fig. 5 Variation of the stress σxz with z in the presence and 

absence of magnetic field 

 

 

Fig. 6 Variation of the volume fraction field ϕ with z in the 

presence and absence of magnetic field 

 

 

The voids parameters are 

 

 

 

 

The magnetic field parameters are 

 

 

Fig. 7 Variation of the displacement u with z in two values 

of time 

 

 

Fig. 8 Variation of the stress σxz with z in two values of 

time 

 

 

Fig. 9 Variation of the volume fraction field ϕ with z in 

two values of time 
 

 

The laser pulse parameters are  

 

The comparisons were carried out for 
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distribution of the real parts of the displacement  

component and the change in the volume σxz the stress 

component u, and the change in the volume fraction field ϕ 

with distance z for (CT) and (L-S) theories with and without 

initial stress and magnetic field effect also with two values 

of time which are shown graphically in the 2-D figures 1-9. 

At the absence of the (initial stress - magnetic field) effect, 

also at t=0.2, the solid line represents the solution in the 

context of the (L-S) and the dot line represents the solution 

for the (CT), while at t=0.7, the dashed line represents the 

solution in the context of the (L-S) and the dot line with 

circles represents the solution for the (CT). Here all the 

variables are taken in non-dimensional form.  

Fig. 1 shows that the distribution of the displacement 

component u increases with the increase of the initial stress 

in the range 0<z<0.9, then conversely in the other ranges for 

the both theories. Fig. 2 explains that the distribution of the 

stress component σxz in the context of (CT), decreases with 

the increase of the initial stress. However, in the context of 

(L-S), it decreases with the increase of the initial stress in 

the range 0<z<1.1, then conversely in the other ranges. Fig. 

3 depicts that the distribution of the change in the volume 

fraction field ϕ decreases with the increase of the initial 

stress for the both theories. It explains that all the curves 

converge to zero, and the initial stress has a significant role 

on the distributions of all physical functions.  

Fig. 4 shows that the distribution of the displacement 

component u decreases with the increase of the magnetic 

field in the range 0<z<1.7 for (CT) theory and in the range 

0<z<1.9 for (L-S) theory, then conversely in the other 

ranges from the both theories. Fig. 5 explains that the 

distribution of the stress component σxz increases with the 

increase of the magnetic field for the both theories. Fig. 6 

depicts that the distribution of the change in the volume 

fraction field ϕ decreases with the increase of the magnetic 

field for the both theories. It explains that all the curves 

converge to zero, and the magnetic field has a dual role on 

the distributions of all physical functions. Fig. 7 shows that 

the distribution of the displacement component u increases 

with the increase of the time for (CT) theory. However, in 

the context of (L-S) theory, it decreases with context of (L-

S) theory, it increases with the increase of the time the 

increase of the time in the range 0.1<z<1.7, then conversely 

in the other ranges. Fig. 8 explains that the distribution of 

the stress component σxz increases with the increase of the 

time in the range 0<z<1.3 for (CT) theory, then conversely 

in the other ranges. However, in the context of (L-S) theory, 

it increases with the increase of the time. Fig. 9 shows that 

the distribution of the change in the volume fraction field ϕ 

increases with the increase of the time for the both theories. 

It explains that all the curves converge to zero, and the laser  

pulse has a significant role on the distributions of all 

physical functions. 

 

 

6. Conclusions 
 

According to the above analysis, we can conclude that:  

1. The magnetic field effect plays an important role on 

all the physical quantities.  

2. The presence and absence of the initial stress in the 

current model has a significant effect.  

3. The normal mode analysis has been used is applied to 

a wide range of problems in bthermo-viscoelasticity. 

4. The value of all physical quantities converges to zero 

with the increase of the distance and all of them are 

continuous.  

5. It noticed that the thermo-viscoelastic materials with 

voids subject to thermal loading by a laser pulse has an 

important role in the distribution of the field quantities, 

since the amplitude of these quantities is varying 

(increasing or decreasing) with the changes of the initial 

stress and the magnetic field effect. 
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CC 

 

 

Nomenclature 
 

σij Components of stress tensor 

r the beam radius 

eij Components of strain tensor 

ϕ the volume fraction field 

e=ekk Cubic dilatation 

λ, μ Lame’ constants 

u, w Displacement components 

δij Kronecker’s delta 

T Thermodynamic temperature 

Ce Specific heat at constant strain 

αt Coefficient of linear thermal expansion 

ρ Density 

K Coefficient of thermal conductivity 

p the initial stress 

τ0 the thermal relaxation time 

ε0 the electric permittivity 

μ0 the magnetic permeability 

Q the heat input of the laser pulse 

I0 the energy absorbed 

t0 the pulse rise time 
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α0, α1, α2, α3, α4 the viscoelastic parameters 

T0 Reference temperature 
0 0( ) / 1T T T−   

A1, ξ1, ξ2, B, τ, ζ, m, χ  
the material constants due to presence of 

voids  
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