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1. Introduction 
 

The creation of composite materials with high-strength 

and reliability is achieved by reinforcing the binder with 

rigid and high-strength component (fiber). At the design 

stage of a new composite, it is necessary to take into 

account that at different parts of a composite, there may 

arise cracks.  

We consider a composite consisting of elastic medium 

(matrix) and inclusions (fibers) made of different elastic 

material and distributed in it. The fracture process of such 

composite materials is determined from interaction of a 

fiber and binder. Fibers made of another material 

(reinforcing elements) compose by weight a relatively small 

part and significantly effect on its strength. As a rule, the 

constructions made of composites work under complex 

stress state. There is a great amount of works, (Li et al. 

2005, Lü et al. 2007, Mishnaevsky and Brøndsted 2009, 

Chaudhuri 2011, Távara et al. 2011, Greco et al. 2013, Lü 

et al. 2011, Liu et al. 2012, Brighenti et al. 2013, Ko and Ju 

2013, Bouhala et al. 2013, Mirsalimov and Hasanov 

2014a,b, Hao et al. 2015, Mirsalimov and Hasanov 2015, 

Ibraheem et al. 2015, Mokhtari et al. 2015, Afshar et al. 

2015, Usal 2015, Ju and Wu 2016, Le et al. 2016, 

Mirsalimov and Askarov 2016, Cameselle-Molares et al. 

2017, Woo 2017, Babaei and Farrokhabadi 2017, Bakhshan 

et al. 2018, Aveiga and Ribeiro 2018) and others devoted to 

fracture of a composite. In the work (Li et al. 2005) a  
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cohesive-zone model for a fiber-reinforced polymer–matrix 

composite is proposed. The analytical solution of an 

asymmetrical propagation crack of composite materials 

under the action of variable moving loads and unit-step 

moving loads is presented in the paper (Lü et al. 2007). An 

overview of methods of the mathematical modeling of 

deformation, damage and fracture in fiber reinforced 

composites is given in the paper (Mishnaevsky and 

Brøndsted 2009). In the study (Chaudhuri 2011) the three-

dimensional asymptotic stress field in the vicinity of the 

front of a semi-infinite through-thickness crack weakening 

an infinite transversely isotropic unidirectional fiber 

reinforced composite plate, of finite thickness and subjected 

to far-field mode I/II loadings, is obtained. The 

eigenfunction expansion technique is used. In the work 

(Távara et al. 2011) the behavior of the fiber–matrix 

interface under transverse tension is investigated using a 

new linear elastic–brittle interface model. In the study 

(Greco et al. 2013), a numerical multi-scale failure analysis 

of locally periodic fiber-reinforced composites is 

conducted. In the research (Lü et al. 2011) an asymmetrical 

dynamic crack model of bridging fiber pull-out of 

composite materials is proposed for analyzing the 

distributions stress and displacement under the loading 

conditions of an applied nonhomogenous stress and the 

traction forces. The study (Liu et al. 2012) adopts the 

acoustic emission technique to study the failure 

mechanisms and damage evolution of carbon fiber/epoxy 

composite laminates. In the work (Brighenti et al. 2013) 

two computational models for the simulation of the 

cracking behavior of fiber-reinforced brittle–matrix 

composites – based on a continuous finite element approach 

and on a lattice approach, respectively – are presented. 
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Abstract.  We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is 

assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a 

composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy 

type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. 

The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. 

We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with 

interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture 

zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the 

suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) 

and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which 

crack nucleation and crack growth occurs. 
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Composites are investigated using the extended finite 

element method and the cohesive zone model in the work 

(Bouhala et al. 2013). In the paper (Mirsalimov and 

Hasanov 2014a), an elastic plane with a periodic system of 

circular filled holes and two periodic systems of rectilinear 

cracks with bonds between faces at the tip regions is 

considered. The holes are filled with elastic plugs with the 

surface was covered by a homogenous cylindrical film. In 

the study (Ko and Ju 2013), a micromechanical multi-level 

elastoplastic evolutionary damage framework is presented 

to predict the overall transverse mechanical behavior and 

damage evolutions of cylindrical fiber-reinforced ductile 

composites. In the work (Mirsalimov and Hasanov 2014b), 

a plane problem of fracture mechanics for an isotropic 

medium with a periodic system of round holes filled with 

absolutely rigid inclusions soldered along the contour and 

rectilinear cracks with interfacial bonds at the end zones 

collinear to the coordinate axes of unequal length under 

transverse shear is considered. In the paper (Hao et al. 

2015) the stress singularity of the matrix crack 

perpendicular to the fiber bundles is investigated by the 

method of optical caustics. A model of cracks nucleation in 

composite with periodic structures is given in the research 

(Mirsalimov and Hasanov 2015). The model is based on the 

analysis of the cracking zone. In the publication (Ibraheem 

et al. 2015) an experimental investigation is conducted to 

examine the behavior and cracking of steel fiber reinforced 

concrete beams subjected to combined torsion, bending, and 

shear. In the article (Mokhtari et al. 2015), the compression 

failure of thermoplastic composites made of 

jute/polypropylene was studied by experimental and 

numerical investigations. It was found that the loading 

conditions laminates and the fibers orientation affect the 

compression failure load of the thermoplastic composites. 
The extended finite element method is generalized to study 

the fiber bridging phenomenon in fracture analysis of 

unidirectional composites by Afshar et al. (2015). In the 

paper (Usal 2015) a continuum damage model is developed 

for the linear viscoelastic behavior of composites with 

microcracks consisting of an isotropic matrix reinforced by 

two arbitrarily independent and inextensible fiber families. 

In the work (Ju and Wu 2016) a computational stochastic 

micromechanics-based framework is presented to study the 

overall mechanical behavior of longitudinal continuous 

fiber-reinforced composites considering progressive fiber 

breaking evolution. Two stochastic risk-competing models 

are presented to simulate the fiber breaking evolution in an 

inhomogeneous fashion considering the local load sharing 

mechanisms. The overall stress–strain responses and the 

fiber breaking evolution are satisfactorily predicted, and 

validations are performed and compared with experimental 

data. The paper (Le et al. 2016) presents a 3D simulation of 

damages and cracks growth in fibrous composite material 

using Discrete Element Method. In the work (Mirsalimov 

and Askarov 2016) a thin elastic isotropic binder with 

inclusions of another material and rectilinear cracks 

arbitrarily placed near the inclusion is considered. The 

matrix (binder) subjected to bending. To determine the 

optimum form of inclusion which minimizes the stress 

intensity factors (moments) near crack tips a fracture 

mechanics problem is solved. A quasi-static progressive 

damage model for prediction of the fracture behavior and 

strength of adhesively bonded fiber-reinforced polymer 

joints is introduced in the paper (Cameselle-Molares et al. 

2017). The fracture behavior of plain weave textile 

composite was studied numerically by finite element 

analysis and cohesive zone modeling in the work (Woo 

2017). The study (Babaei and Farrokhabadi 2017) focuses 

on a computational constitutive model which predicts the 

matrix cracking evolution and fiber breakage in cross-ply 

composite laminates with open hole under in-plane loading. 

The work (Bakhshan et al. 2018) aims to obtain failure 

loads for open-hole unidirectional composite plates under 

tensile loading. For this purpose, a user-defined material 

model in the finite element analysis package is developed to 

predict the failure load of the open-hole composite 

laminates. A good agreement between experimental results 

and numerical predictions is observed. The work (Aveiga 

and Ribeiro 2018) aims at the development of a 

delamination propagation model to estimate a progressive 

interlaminar delamination failure in fiber reinforced 

composite materials and to allow the prediction of 

material’s degradation. Also works on the shear and 

bending of the composite plates (Mahi et al. 2015, Draiche 

et al. 2016, Kaci et al. 2018) should be noted. 

Development of a design model permitting to predict the 

stress-strain state at the prefracture stage (crack nucleation) 

in a composite is of great importance.  

In contrast to all above-listed works, this article provides 

a new solution methodology for the problems of the 

nucleation and propagation of cracks in a fibrous 

composite. The computational model proposed in present 

work makes it possible to find in the process of solving the 

problem of fracture mechanics the size and location of the 

zones of damages (prefracture zones) depending on the 

geometric and mechanical characteristics of the fibrous 

composite and the applied external load. One original 

feature of the present work is that the solution is not based 

on the finite element solution but relies on discretization of 

a system of singular integral equations. This approach is 

most appealing and convenient for practical use in 

engineering calculations.  

In connection with the known observations of physical 

process of fracture, we take the following natural 

succession of analysis of the process of nucleation and 

propagation of a bridged crack in the composite. a) studying 

prefracture zone appearance in a composite and formation 

of arbitrary size cracks with interfacial bonds b) analysis of 

crack propagation at the end zones. The goal of this work is 

to develop a mathematical model for a composite body “a 

binder-fiber” allowing calculation of critical external loads 

under which initiation and growth of a crack with bonds in 

the end zone, happens.  
 
 

2. Problem statement  
 

Let an unbounded body made of elastic isotropic 

medium (matrix) and the fibers distributed in it under the 

plane deformation conditions be subjected to stretching by 
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mean stresses (stretching at infinity) 
= xx  , 

= yy  , 

= xyxy  .  

As the composite is loaded, the prefracture zones will 

appear in the binder. The prefracture zones are simulated as 

areas of weakened interparticle bonds of the material 

(Mirsalimov 2007, Mirsalimov and Kalantarly 2015a, b, 

Mirsalimov and Hasanov 2014). Interaction of prefracture 

zone faces is simulated by introducing between their faces 

the bonds with the given diagram of deformation 

(Mirsalimov 2007, Mirsalimov and Kalantarly 2015a, b, 

Mirsalimov and Hasanov 2014).  

The physical nature of such bonds, location and sizes of 

prefracture zones depend on the form of the material.  

As the mentioned zones (the layers of the overstrained 

material) are small compared with the remaining part of the 

binder of the composite, we can mentally remove them and 

replace by cuts whose surfaces interact between themselves 

by some law corresponding to the action of the removed 

material. Account of these effects in problems of nonlinear 

fracture mechanics is an important and very difficult issue.  

In the case under consideration, appearance of cracks is 

a process of passage of prefracture zone to the domain of 

broken bonds between the surfaces of the material of the 

binder (Mirsalimov 2007). In this case, location and the size 

of prefracture zone are not known in advance and should be 

determined in the process of solving the fracture mechanics 

problem.  

The investigations (Mirsalimov 1987, Panasyuk 1991, 

Rusinko and Rusinko 2011) of appearance of domains with 

violated structure of the material, show that at the initial 

stage of embedding, the prefracture zone is a narrow-

elongated layer, and then as the load increases, there 

suddenly appears a secondary system of zones containing a 

material with partially violated bonds.  

Analysis of interaction of the binder and fibers is carried 

out on the basis of a model with one fiber. The remaining 

fibers are “smeared”, and the material outside of the 

isolated fiber appears to be uniform and isotropic with 

corresponding effective elastic constants (according to the 

rule of “mixtures”) (Mirsalimov and Askarov 2016, 

Mirsalimov 2018). With such approach, the interaction of 

other “smeared” fibers and prefracture zones is realized by 

the corresponding effective elastic constants. Herewith, 

there are no restrictions on configuration and relative sizes 

of fibers and prefracture zones. It is assumed that the 

prefracture zones do not intersect between themselves and 

fiber.  

The origin of the system of coordinates is compatible 

with geometrical center of fibers (Fig. 1). It is accepted that 

an elastic fiber from another material is inserted into the 

circular hole of the binder.  

It is assumed that rigid adhesion of different materials 

holds everywhere on the conjunction boundary L 

( )exp(  iR= ). At the center of rectilinear prefracture 

zones we locate the origin of local systems of coordinates 

xkOkyk whose axes xk coincide with the prefracture zone 

lines and make the angles αk with the axis x (Fig. 1).  

The prefracture zone faces interact so that this 

interaction (bonds between faces) restrains nucleation of a 

 

Fig. 1 Calculation scheme of the fracture mechanics 

problem for case of arbitrary number of prefracture zones 

in a fibrous composite 

 

 

crack. For mathematical description of interaction of the 

prefracture zone faces, it is considered that between them 

there are bonds with the given deformation law.  

Under the action of external tensile loads on the 

composite, in the bonds connecting the prefracture bands 

faces there will arise normal 
kyq  and tangential 

kk yxq  

forces. Consequently, normal and tangential stresses 

numerically equal to ( )ky xq
k

 and ( )kyx xq
kk

 will be 

applied to prefracture zone faces. The values of these 

stresses are unknown in advance and should be determined 

in the process of solving the boundary value problem of 

fracture mechanics.  

In the problem under consideration, the boundary 

conditions are of the form 

00
  rrrr ii −=−   on L 

00
 ivvivv rr −=−  

(1) 

kk yy q= ,     
kkkk yxyx q=     

(k = 1,2,…,N)   on the prefracture zone faces 

(2) 

Here r ,  r , 
0
r , 0

 r  are stress tensor 

components in the binder and fiber, respectively; rv , v , 

0
rv , 0

v  are radial and tangential of the vector 

displacements components in the binder and fiber, 

respectively; i2 = ‒1; N is the number of prefracture zones 

in the binder.  

Conditions (1)-(2) should be complemented by a 

relation that connects the opening of prefracture zone faces 

and forces in binders. Without loss of generality, we 

represent this relation in the form 
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( ) ( )=−−− −+−+
kkkk uuivv

 ( ) ( ) ( ) ( )kyxkkxkykky xqxixqx
kkk

 ,, −=  

(k = 1,2,…,N) 

(3) 

The functions ( )kky x ,  and ( )kkx x ,  are 

effective compliances of bonds dependent on their tension; 

22

kkk yxyk qq +=  is the modulus of force vector in bonds, 

( )−+ − kk vv  and ( )−+ − kk uu  are normal and tangential 

component of the opening of the faces of the k-th 

prefracture zone, respectively.  

Under constant values Πy, Πx in (3) we have linear law 

of deformation. In the general case, the deformation law is 

nonlinear and given (Mirsalimov 2007).  

To determine the values of external tensile load under 

which crack nucleation happens, the problem statement 

should be complemented by the condition (criterion) of 

appearance of a crack (rupture of interparticle bonds of the 

material). As such a condition we accept the criterion of 

critical opening of the prefracture zone faces 

( ) ( ) crkkkk uuivv =−−− −+−+   (k = 1,2,…,N) (4) 

where cr  is the characteristics of the resistance of the 

binder's material to crack nucleation.  

This additional condition allows to determine the 

parameters of the composite, under which the crack appears 

in the binder.  

 

 

3. Case of a single prefracture zone 
 

Assume that the binder has one rectilinear prefracture 

zone (Fig. 2).  

 

 
Fig. 2 Calculation scheme of the fracture mechanics 

problem for case of a single prefracture zone in a fibrous 

composite 

The stress tensor components x , y , xy  and 

displacement vector components u, v in the plane problem 

of elasticity theory may be represented by the analytic 

functions )(z , )(z  and Kolosov-Muskhelishvili 

formulas (Muskhelishvili 1977)  

 )()(2 zzryx   +=+=+

 
=+− xyxy i 2

 
 )()(2)2( 2 zzzei i

rr  
 +=+−= −

 
( ) )()()(2 zzzzкivu  −−=+  

 

where  is the shear modulus; κ is the Muskhelishvili’s 

constant: vк 43−=  for plane strain and 

)1()3( vvк +−=  for plane stress; ν is the Poisson ratio. 

By means of these formulas, on the interface of media L 

we have  

)()()()()()( 000 zzzzzzzz  ++=++  

( Lz ) 
(5) 

 )()()()()()( 0000
0

zzzzzzzz 



 −−=−−  (6) 

where κ, μ and κ0, μ0 are elastic constants of the material of 

the binder and fiber, respectively; )(z , )(z  and 

)(0 z , )(0 z  are analytic functions for the binder and 

fiber, respectively. 

On the faces of rectilinear prefracture zone we have the 

boundary condition  

111
)()()()( 11111 yxy iqqxxxxx −=+++  (7) 

where x1 is the affix of the points of the rectilinear 

prefracture zone.  

We look for the complex potentials )(0 z , )(0 z  

describing the stress-strain state of the fiber in the form 

(Muskhelishvili 1977)   




=

=

1

0 )(

k

k
k zaz ,

     




=

=

1

0 )(

k

k
k zbz  (8) 

We denote the left-hand side of boundary condition (5) 

by 21 iff +  and accept that on the contour L the function 

21 iff +  expands in Fourier series. The Fourier series for 

the function 21 iff +  has the form  




−=

=+

k

ik
keAiff 

21  (9) 

Based on boundary condition (8), (9) and relations (5), 

using the method of power series, we have 

n

n
n

R

A
a =

 

(n > 1),

   
R

A
a

2
Re 1

1 =

 

(10) 
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( )
n

n

n

n
n

R

A
n

R

A
b 22 +− +−=   (n ≥ 0) 

To determine the coefficients Ak, it is necessary to 

consider the solution of the problem of elasticity theory for 

the binder with a prefracture zone. Using the analytic 

functions )(0 z  and )(0 z , after some elementary 

transformations the boundary conditions on the contour L 

for finding complex potentials )(z  and )(z  will be 

written in the form  




−=

=++

k

ik
keA  )()()(  (11) 







−−=−− 


=





 i

k

ikk
k ReaeRa 1

1

0
0

)()()(

 

( )






−+− 


=

−


=

−+
+

00

22
22

k

ikk
k

k

ikk
k eRbeRak   

(12) 

We sought for the solution of boundary value problem 

(7), (11) and (12) in the form 

)()()( 21 zzz += ,  )()()( 21 zzz +=  

( ) 


=

−=

0

1

k

k
k zcz ,    ( ) 



=

−=

0

1

k

k
k zdz

 

( ) ( )zz = ,    ( ) ( )zz =  

( ) += yxc 
4

1
0 ,       ( )  +−= xyxy id 

2

1
0  

(13) 

( )
( )


−

−
=

1

1
1

1
2

2

1
l

l
zt

dttg
z


 

( )
( ) ( )

( )
dt

zt

tgT

zt

tg
ez

l

l

i


−

−













−
−

−
=

1

1

1

2
1

11

1

12
2

2

1 


 

(14) 

where 
0
11

1 zteT
i

+=


; ( )0
11

1 zzez
i

−=
− 

; l1 is the half-

length of the prefracture zone; )( 11 xg  is the desired 

function characterizing the opening of prefracture zone 

faces  


+

=
)1(

2
)( 11





i
xg

 

( ) )0,()0,()0,()0,( 11111111
1

xvxvixuxu
dx

d −+−+ −+−  

(15) 

Using the functions (13)-(14), we represent the 

boundary conditions (11)-(12) in the following form 

)()()()( 0
1111   feA

k

ik
k +=++ 



−=
 

(16) 

=−− )()()( 111 

 







−−= 


=




 i

k

ikk
k ReaeRa 1

1

0
0

 

( ) )(2 0
2

00

22
2  feRbeRak

k

ikk
k

k

ikk
k +







−+− 


=

−


=

−+
+  

where 

 )()()()( 222
0

1  ++−=f

  )()()()( 222
0

2  −−−=f  

 

Satisfying by functions (13)-(14) the boundary 

conditions (16) and comparing the coefficients for the 

identical powers exp(iθ) in the both hand sides, we get a 

system of algebraic equations for determining the 

coefficients ck, dk and Ak. These equations allow to obtain 

formulas in the explicit form for ck, dk and Ak by the desired 

function )( 11 xg  . 

Satisfying by the complex potentials (13)-(14) the 

boundary conditions on the prefracture zone faces (7), after 

some transformations we get a complex integral equation 

with respect to the unknown function )( 11 xg :  

( ) ( ) ( ) ( )  ( )1111111111

1

1

,, xFtgxtStgxtR

l

l

=+
−  

11 lx   

(17) 

where  

−−=
111

)( 11 yxy iqqxF

 
 )()()()( 11111111 xxxxx +++−  

 

x1, t, 
0
1z  and l1 are dimensionless variables referred to R; 

Rnk and Snk (n = k = 1) are determined by the known 

formulas (VI. 62) of the book (Panasyuk et al. 1976).  

To the singular integral equation, we should add the 

condition of uniqueness of displacements when tracing the 

prefracture zone contour 

( ) 0

1

1

1 =
−

l

l

dttg  (18) 

Under condition (18), the complex singular integral 

equation (17), by means of algebraization procedure 

(Panasyuk et al. 1976, Mirsalimov 1987) is reduced to the 

system of M algebraic equations for determining M 

unknowns )(1 mtg (m = 1,2,…,M): 

( ) ( ) ( ) ( ) =+
=

M

k

rmmrmm xltlStgxltlRtgl
M

1

11111111111 ,,
1

( )rxF1=

 

(19) 
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( ) 0

1

1 =
=

M

m

mtg  

where 


M

m
tm

2

12
cos

−
=    m = 1,2,…,M

 

M

r
xr


cos=      r =1,2,…,M – 1 

 

If in the system (19) we pass to complex conjugated 

variables, we get one more M algebraic equations. The 

right-hand sides of the system (19) contain unknown values 

of )( 11
xqy  and )( 111

xq yx  tractions at the nodal points of 

prefracture zone.  

The additional relation (3) for k = 1 is the condition 

determining the unknown stresses in the bonds between the 

prefracture zone faces. In the problem under consideration, 

it is convenient to write this condition for the derivative of 

the opening of displacements of prefracture zone faces 

( ) =−−−


 −++ )0,()0,()0,()0,( 11111111
1

xuxuixvxv
x

 

 )(),()(),( 111111
1

11
xqxixqx

x
yxxyy  −




=  

(20) 

Using the obtained solution, we can write 

( ) 
+

=




1

2
11 xg

 

( ) ( ) ( ) ( ) 111111
1

111
,, xqxxqx

dx

d
yxxyy  −  

(21) 

where x1 is the affix of the points of prefracture zone faces.  

This complex differential equation helps to find the 

stresses 
1yq  and 

11yxq  in the bonds between the 

prefracture zone faces. To construct missing algebraic 

equations for determining approximate values of stresses 

)(
1 my tq  and )(

11 myx tq  at the nodal points we require 

fulfillment of conditions (21) at the nodal points tm (m = 

1,2,…,M) contained in prefracture zone. Herewith, the finite 

differences method is used. As a result, we obtain a 

complex algebraic system of M equations for determining 

approximate values )(
1 my tq , )(

11 myx tq  (m = 1,2,…,M) at 

the nodal points of prefracture zone. Herewith the boundary 

conditions 

( ) 0
11
= lqy ,     ( ) 0

111
= lq yx   

corresponding to the conditions 

( ) ( ) 00,0,
11 11 =− −+ lvlv

 
( ) ( ) 00,0,

11 11 =− −+ lulu  

 

were taken into account.  

For completeness of the obtained algebraic equations we 

need two complex equations determining the coordinates of 

vertices (location) of prefracture zone. As the stresses in the 

composite are everywhere bounded, the solution of the 

singular integral equation should be sought in the class of 

everywhere bounded functions (stresses). Therefore, it is 

necessary to add to the system (19) the conditions of stress 

boundedness at the ends of prefracture band 11 lx = . 

These conditions are of the form  

( ) ( ) 0
4

12
tan1

1

1 =
−

−
=

+
M

m

m
mM

m

m
tg 

 

( ) ( ) 0
4

12
cot1

1

1 =
−

−
=

M

m

m
m

m

m
tg   

(22) 

Because of unknown size of the prefracture zone, the 

obtained joined system of algebraic equations with respect 

to ck, dk, Ak, )(1 mtg , )(
1 my tq , )(

11 myx tq  is nonlinear.  

Its numerical solution allows under the given external 

load to obtain the coordinates of vertices (location) and the 

size of prefracture zone, the stress-strain state of the 

composite. Obviously, having determined the coordinates of 

the vertices of prefracture zone, by the known formulas of 

analytic geometry we can find the coordinates of the center 
0
1z  of prefracture zone, the angle α1 with the axis x (Fig. 2) 

and the length l1 of prefracture zone. The physical condition 

for the finiteness of the stresses at the vertices of prefracture 

zone of is used. 

Even under linear elastic bonds, the joined system of 

equations because of unknown quantity l1, becomes 

nonlinear. The method of successive approximations is used 

for solving it. The essence of this method is in the 

following. We solve the joined algebraic system under some 

definite value of 
*
1l  with respect to the remaining 

unknowns ck, dk, Ak, )(1 mtg , )(
1 my tq , )(

11 myx tq . In the 

case of linear-elastic bonds, the remaining unknowns enter 

into the joined system linearly. The values of 
*
1l  and the 

values of remaining constants corresponding to it will not, 

generally speaking, satisfy equations (22). Therefore, 

selecting the values of the parameter l1 we will many times 

repeat calculations until equations (22) will be satisfied with 

given accuracy.  

In each approximation, the joined algebraic system was 

solved by the Gauss method with the choice of the principal 

element. 

In the case of nonlinear law of deformation of bonds, for 

determining forces in prefracture zone, the iterative method 

similar to the method of elastic solutions (Il’yushin 2003) is 

used. It is assumed that the law of deformation of 

interparticle bonds in prefracture zone is linear for 

*
2
1

2
11 VvuV += . The first step of the iterative process of 

calculation is in solving the system of resolving equations 

for linear-elastic bonds. The next iterations are fulfilled 

only if the inequality ( ) *11 VxV   holds on a part of 

prefracture zone (Mirsalimov 2007). For such iterations the 

system of resolving equations is solved for quasielastic  
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Fig. 3 Distribution of normal forces 

yyq 

1
 in 

prefracture zone 

 

 

bonds (cohesion forces) with effective compliance variable 

along the prefracture zone and dependent on the value of 

the modulus of forces vector in bonds obtained at the 

previous stage of calculation. The calculation of effective 

compliance is carried out as in finding the secant modulus 

in the method of variable parameters of elasticity (Birger 

1965). It is accepted that the successive approximation 

process ends as the forces in prefracture zone obtained at 

two successive steps differ a little.  

The nonlinear part of the curve of deformation of bonds 

was represented in the form of bilinear dependence whose 

ascendant part corresponds to elastic deformation of bonds (

( ) *110 VxV  ) with maximum tension of bonds. For 

( ) *11 VxV  , the deformation law was described by 

nonlinear dependence determined by two points ( )**,V  

and ( )crcr  , , and for * cr  we have the increasing 

linear dependence (linear strengthening corresponding to 

elastic deformation of bonds). 

In Fig. 3 we give distribution of normal forces 

yyq 

1
 

in prefracture zone. The compliances of bonds in normal 

and tangential stresses were accepted equal and constant 

along prefracture zone. The law of change of tangential 

stresses along the prefracture zone is similar to the change 

of normal forces with a difference that absolute values of 

tangential forces are significantly lower. And the maximum 

values of tangential stresses are achieved for small sizes of 

prefracture bands.  

The graph of distribution of maximum value of vector 

forces modulus 
22

111 yxy qq +=  depending on relative 

size Rl /1=  of prefracture zone, is depicted in Fig. 4. 

The vector forces modulus y 
reaches its maximum 

value when the relative size λ = 0.04. The numerical 

calculation was carried out for the fiber 30.0= ; 
5

0 105.4 = MPa; and binder 32.0= ; 
5106.2 =

MPa; 35* = MPa; 2/ * =cr ; 
6101.2 −=cr m; 

7105.1 −=B m/MPa ( B  is effective compliance of 

bonds). 

 
Fig. 4 Distribution of maximum value of vector forces 

modulus σ depending on relative size of the prefracture 

zone 

 

 
Fig. 5 Dependence of the prefracture zone length on 

external tensile load */ 
y  

 
 

The largest values of the modulus of force vector in 

bonds, as a rule, are attained in the middle of the prefracture 

zone. As the size of prefracture zone increases, the level of 

the stresses 
kyq  and 

kk yxq  in the bonds decreases and, 

respectively, the value of the modulus of force vector in 

bonds decreases. 

The graph of dependence of the prefracture zone length 

λ on external tensile load */ 
y  is given in Fig. 5. For 

this case we find: 
381 = , 

11/0
1 23.1 ieRz = . 

Using the solution of the problem, we find 

displacements on the prefracture zone faces  

( ) ( ) ( )0,0,
2

1
1111111

1

1

xiuxvdxxg

x

l

−=
+

− 
−




 (23) 

Assuming 
0
11 xx = , applying the change of variable and 

replacing the integral by the sum, we find  

( ) ( ) ( )0,0,
2

1 0
11

0
11

1

1
1

1

xiuxvtg
M

l
M

m

m −=
+

− 
=






 (24) 

Here M1 is the number of nodal points contained in the 

interval ( )0
11, xl− .  
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Fig. 6 Dependence of critical tensile load */ 
y  on 

relative opening 1* / l  at the centre of prefracture zone 

 

 

Taking into account ( ) ( ) ( )mmm tiutvtg 0
1

0
11 −= , from 

relation (24) we find ( )0,0
11 xv , ( )0,0

11 xu  and displacement 

vector modulus on prefracture zone faces for  

2212
1

2
10

2

1
BA

M
vuV +

+
=+=







 

( )m

M

m

tvA 
=

=
1

1

0
1 ,     ( )m

M

m

tuB 
=

=
1

1

0
1  

(25) 

To determine the critical state under which a crack 

happens, we use limit condition (4). Then the condition that 

determines the critical value of the external tensile load, 

will be the relation 

crBA
M

l







=+

+ 221

2

1
 (26) 

The joint solution of the joined algebraic system and 

condition (26) allows (under the given characteristics of 

crack resistance) to find critical value of the external tensile 

load, the coordinates of vertices, and the size of prefracture 

zone for limit equilibrium state under which a crack appears 

in the composite.  

The graph of dependence of critical tensile load 

*/ 
y  on relative opening 1* / l  at the center of 

prefracture zone, where 
*

*
)1( 




+
= cr  , is given in Fig. 6. 

The obtained algebraic system of equations allows 

solution of the problem with any accuracy given 

beforehand. The convergence of the procedure of numerical 

solution using singular equations is discussed in various 

works (Panasyuk et al. 1976, Ladopoulos 2000, Savruk and 

Kazberuk 2017). Many studies show that since M = 20, the 

values of the coefficients of the function of normal 

displacement are not significantly changed. In the 

calculations M was equal to 30. 

4. Case of arbitrary number of prefracture zones 
 

Now assume that in the next composite, near the fiber 

there are N rectilinear prefracture zones of length 2lk (k = 

1,2,…,N). At the center of prefracture bands we locate the 

origin of local systems of coordinates xkOkyk whose axes xk 

coincide with prefracture band and form the angles αk with 

the axis x (Fig. 1).  

In the case under investigation, appearance of 

embryonic cracks in the composite is the process of 

breaking of material's bonds between prefracture zone faces 

of the binder. The location and sizes of prefracture zone are 

not known in advance and should be determined.  

As in the case of a single prefracture zone, the 

considered boundary value problem of mechanics of 

composite materials turns to be an elasticity theory problem 

with an unknown boundary and it is required to solve it in 

the course of solving the boundary value problem.  

The solution of the problem for this case is similar to the 

solution in the case of a single prefracture zone. Relations 

(11)-(13) remain valid also for the considered case of 

arbitrary number of prefracture zones. According to 

condition (2), on rectilinear prefracture zone faces we have 

kkk yxykkkkk iqqxxxxx −=+++ )()()()(

 
(k = 1,2,…,N) 

(27) 

where xk is the affix of the points of the k-th prefracture 

zone.  

The complex potentials )(2 z  and )(2 z  are 

generalized for the case of arbitrary number of prefracture 

zones:  
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(28) 

where 
0
k

i
k zteT k +=


, ( )0

k
i

k zzez k −=
− 

, )( kk xg  (k = 

1,2,…,N) are the desired functions characterizing the 

opening of prefracture zone faces  


+

=
)1(

2
)(





i
xg kk

 

( ) )0,()0,()0,()0,( kkkkkkkk
k

xvxvixuxu
dx

d −+−+ −+−

 

(29) 

Satisfying by the functions (13) and (28) the boundary 

conditions on prefracture zone faces (27), we get the system 

of N complex integral equations with respect to unknown 

functions )( kk xg  (k = 1,2,…,N):  

  
= −

=+

N

k

n

l

l

nnknnk xFdttgxtStgxtR

k

k
1

)()(),()(),( 

 

nlx     (n = 1,2,…,N) 

(30) 

592



 

A study of fracture of a fibrous composite 

 

where 

( ) −−=
nnn yxyn iqqxF

 
 )()()()( 1111 nnnnn xxxxx +++−  

 

and x, t, 
0
nz  and ln are dimensionless variables referred to 

the radius R of the fiber. 

To the system of integral equations we should add the 

conditions  

( )
−

=

k

k

l

l

k dttg 0     (k = 1,2,…,N) (31) 

Under additional conditions (31) by means of 

algebraization procedure the system of singular integral 

equations (30) is reduced to the system of N×M complex 

algebraic equations for determining N×M unknowns 

)( mk tg  (k = 1,2,…,N; m = 1,2,…,M) 

( ) ( )
= =

+

M

m

N

k

rnmnnkmkk xltlRtgl
M

1 1

,
1

 

( ) ( ) ( )rnrnmnnkmn xFxltlStg =+ ,

 

( )
=

=

M

m

mn tg

1

0  

n = 1,2,…,N;     r =1,2,…,M – 1 

(32) 

If in equations (32) we pass to complexly-conjugated 

values, we get one more N×M algebraic equations.  

By the load function )( rn xF  (n = 1,2,…,N) on 

prefracture zone faces, the right hand sides of algebraic 

equations contains the desired coefficients ck, dk, Ak, the 

unknown values of 
nyq  and 

nn yxq  tractions at nodal 

points of the corresponding prefracture zone.  

Using the obtained solution and equation (3), we find 

( ) 
+

=
k

kk
dx

d
xg





1

2

 

( ) ( ) ( ) ( ) kyxkkxkykky
k

xqxixqx
dx

d
kkk

 ,, −

 
(k = 1,2,…,N) 

(33) 

where xk is the affix of the faces of the k-th prefracture 

zone.  

These complex differential equations help to determine 

the forces 
kyq  and 

kk yxq  (k = 1,2,…,N) in the bonds 

between the faces of corresponding prefracture zones.  

To construct the missing algebraic equations for finding 

approximate values of forces ( )my tq
k

 and ( )myx tq
kk

 at 

the nodal points, we behave as in the case of a single 

prefracture zone. As a result we get a complex algebraic 

system of N×M equations for determining the values 

( )my tq
k

, ( )myx tq
kk

 (k = 1,2,…,N; m = 1,2,…,M) at the 

nodal points of the prefracture zone. For completeness of 

the obtained algebraic equations we need 2×N complex 

equations determining the coordinates of vertices of 

prefracture bands.  

The solution of the system of singular integral equations 

is sought in the class of everywhere bounded functions 

(stresses). Therefore, it is necessary to add to the system 

(32), the stress boundedness conditions at the ends of 

prefracture bands kk lx = . These 2N conditions are of the 

form 

( ) ( ) 0
4

12
tan1

1

=
−

−
=

+


M

m
tg mk

M

m
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(k = 1,2,…,N)

 
( ) ( ) 0

4

12
cot1

1

=
−

−
=


M

m
tg mk

M

m

m
 

(34) 

The obtained resolving joined system of algebraic 
equations with respect to ck, dk, Ak, ( )mk tg , ( )my tq

k
, 

( )myx tq
kk

 (m = 1,2,…,M) allows under the given external 
load to obtain stress-strain state of the composite in the 
presence of arbitrary number of prefracture bands in the 
binder.  

The joined resolving system of equations, even for 
linear elastic bonds because of unknown quantities lk (k = 
1,2,…,N) turned to be nonlinear. To solve it, we use the 
method of successive approximations.  

To study the critical equilibrium, when a crack appears, 

we use relation (4) and have  

crkk
k BA

M

l





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=+

+ 22

2

1

 

(k = 1,2,…,N) 

 

where 

( )m

M

m

kk tvA
k


=

=
1

1

0
,      ( )m

M

m

kk tuB
k


=

=
1

1

0
 (35) 

M1k is the number of nodal points contained in the 

interval ( )0, kk xl− . 

Analysis of the model of crack nucleation in the binder 
of the composite in the loading process is reduced to 
parametric joint investigation of resolving algebraic system 
of equations, finite-difference analogue of condition (33) 
and crack nucleation criterion (35) for different values of 
free parameters of the composite. These are different 
geometrical and mechanical characteristics of the materials 
of the binder and fiber. 

 

 

5. Interaction of prefracture zones and crack with 
interfacial bonds 

 

At some stage of loading, simultaneous existence in the 

binder the prefracture zones and cracks with interfacial 

bonds, is possible.  
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Fig. 7 Calculation scheme of the interaction of prefracture 

zones and a single crack in a fibrous composite 
 

 

Assume that the binder near the fiber has a crack of 

length 2l01 and (N – 1) rectilinear prefracture zones. 

Interaction of prefracture zones in the vicinity of the crack 

may lead to loss of stability of the crack and appearance of 

new cracks with interfacial bonds. It is accepted that the 

sizes of end zones of the crack are comparable with the 

crack's length. 

At the centers of prefracture zones and bridged crack we 

locate the origin of local systems of coordinates xkOkyk, the 

axes xk (k = 1,2,…,N) coincide with prefracture zones and 

make angles αk with the axis x (Fig. 7).  

The axis x1 coincides with the line of the bridged crack 

and makes the angle α1 with the axis x. Based on what has 

been said earlier, the conditions on the interface of the 

materials have the form (1), and on the faces of bridged 

crack and prefracture zones:  

0
1
=y ,   0

11
=yx ,  211   x  

 
11 yy q= ,   

1111 yxyx q= ,   

 
111 − xl   and  112 lx   

 
kk yy q= ,  

kkkk yxyx q=  on  Lk  (k = 2,3,…,N) 

(36) 

where Lk are the faces of the k-th prefracture zone. 

We write the boundary conditions (36) on the crack 

faces with end zones and prefracture zones, by means of the 

Kolosov-Muskhelishvili unknown formulas (Muskhelishvili 

1977) for complex potentials )(z  and )(z  in the form  

( ) ( ) ( ) ( ) kkkkkk Fxxxxx =+++ '

 (k = 1,2,…,N) 

(37) 

where 





−
=

crack ofzonesendoffacestheon

faces crack  theon0

111

1
yxy iqq

F

 

(38) 

kkk yxyk iqqF −=    (k = 2,3,…,N) 

xk is the affix of the faces of the k-th prefracture zone. 

We look for complex potentials )(z  and )(z  in 

the form (13) and (28). Satisfying by the function (13) and 

(28) the boundary conditions (37) and (38), we get the 

system of N complex singular integral equations of type 

(30), where Fn(x) are determined by formulas (38). It is 

necessary to add to the system of singular integral equations 

of type (30), additional equalities of type (31), expressing 

condition of uniqueness of displacements when tracing the 

contour of the crack with end zones and prefracture zones. 

Under additional conditions of type (31), the system of 

singular integral equations of type (30), by means of 

algebraization procedure (Panasyuk et al. 1976, Mirsalimov 

1987) is reduced to the system of N×M complex algebraic 

equations for finding N×M unknowns ( )mk tg  (k = 

1,2,…,N; m = 1,2,…,M) of type (32). The right hand sides 

of algebraic system of equations (32) contain unknown 

values of normal 
kyq  and tangential 

kk yxq  forces at the 

nodal points contained in prefracture zones and end zones 

of crack. By means of the obtained solution we have N 

complex differential equations of type (33). They help to 

determine the forces 
kyq  and 

kk yxq  in the bonds of 

corresponding zones. To construct missing algebraic 

equations for determining the forces ( )my tq
k

 and 

( )myx tq
kk

 at the nodal points, we behave as in the previous 

case, i.e. we use the finite differences method. As a result 

we get a complex algebraic system of N×M equations for 

determining ( )my tq
k

, ( )myx tq
kk

 at the nodal points of the 

crack's end zones and prefracture zones. Herewith we take 

into account the boundary conditions 

( ) 0= ky lq
k

,   ( ) 0= kyx lq
kk

  

corresponding to the conditions 

( ) ( ) 00,0, =− −+
kkkk lvlv ,

 ( ) ( ) 00,0, =− −+
kkkk lulu  

 

In the case under consideration, for completeness of the 

obtained algebraic equations we need 2×N complex 

equations allowing to determine the coordinates of vertices 

(location) of prefracture zones and crack's end zones. As the 

stresses in the composite are everywhere bounded, then the 

solution of the system of singular integral equations should 

be sought in the class of everywhere bounded functions 

(stresses). Therefore, to the system it is necessary to add the 

conditions of stress boundeness on the ends of end zones of 

the crack and prefracture zone of type (34). These 2N 

complex equations help to determine the coordinates of 

vertices of prefracture zones and end zones of crack.  

Because of unknown sizes of prefracture zones and 

crack's end zones even for linear-elastic bonds the algebraic 

system (32)-(36) is nonlinear. To solve it, the method of 

successive approximations is used.  

The obtained joined algebraic system with respect to ck, 
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dk, Ak, ( ) ( ) ( )mkmkmk tiutvtg 00 −=  (k = 1,2,…,N; m = 

1,2,…,M) allows under the given external load to find the 

stress-strain state of the composite in the presence of 

bridged crack with end zones and arbitrary number of 

prefracture zones in the binder. The numerical solution of 

the obtained joined system of algebraic equations allows to 

find approximate values of coefficients ck, dk, Ak, the values 

of functions ( )mk tv0
, ( )mk tu0

, ( )my tq
k

, ( )myx tq
kk

 and 

coordinates (location) of crack with end zones and 

prefracture zones. The algorithm for solving algebraic 

systems is similar to the previous case.  

Using the solution of the problem, we calculate the 

opening of the faces of a crack with end zones and of 

prefracture zones  

( ) ( ) ( ) ( )1111111 1
,0,0, xqxxvxv yy =− −+

 
( ) ( ) ( ) ( )1111111 11

,0,0, xqxxuxu yxx =− −+  
(39) 

( ) ( ) ( )0,0,
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1
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1
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m
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k xiuxvtg

M
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−=
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− 
=







 

(k = 1,2,…,N) 

(40) 

where M1k is the number of nodal points contained in the 

interval ( )kk xl 0,− . 

The condition of critical opening of crack faces at the 

base of the end zone, will be  

( ) ( ) cyxxyy qiq  =− )()(,)()(, 11111111 111

 
for 11 =x

 
( ) ( ) cyxxyy qiq  =− )()(,)()(, 22122212 111

 
for 21 =x  

(41) 

where c  is a characteristic of the fracture toughness of 

the binder's material. 

The obtained solution of the problem enables to predict 

appearance of new cracks in the binder's material. For that, 

as before, it is necessary to complement the problem 

statement with criterion of crack initiation (breaking of 

interparticle bonds of the material) of type (4).  

Using the obtained solution, the limit condition may be 

written in the form 

( ) crkk
k

k BA
M

lk
xV 




 =+

+
= 22*

0
2

1

 
(k = 1,2,…,N)

 
( )

=

=
kM

m

mkk tvA
1

1

,   ( )
=

=
kM

m

mkk tuB
1

1

 

(42) 

where 
*
kx  is the coordinate of the prefracture zone point at 

which breaking of the material's bonds occurs; M1k is the 

number of nodal points in the interval ( )*, kk xl− . 

 
Fig. 8 Dependence of the length of crack end zone on 

value of the external load for different values of crack 

length 

 

 

Fig. 9 Dependence of critical tensile load 
c  on 

dimensionless crack length under the found angle of 

orientation 
451 =  

 

 

These additional conditions allow to establish the 

parameters of the composite, under which new cracks 

appear in the binder. 

Dependence of the length of the end zone of the crack 

( ) Rld /111 −=  on the value of the external load * 
y  

for different values of crack length ( ) Rl /12
*
0  −=  for 

451 = , 
80

1 3.1 ieRz =  is depicted in Fig. 8. 

Fig. 9 represents the dependence of critical tensile load 

*/ = y
c  on dimensionless length of the crack 

*
0l  

under the found angle of orientation 451 = . 

Analysis of the model of a crack with bonds between the 

faces in the binder, weakened with arbitrary number of 

prefracture zones (damages) in the loading process, is 

reduced to parametric joint investigation of resolving 

algebraic system and crack growth criterion (41) for 
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different values of free parameters of the fibrous composite. 

Mechanical and geometrical characteristics of materials of 

the binder and fiber serve as free parameters of the 

composite.  

 

 

6. Conclusions 
 

The experience of using fibrous composites in 

constructions convincingly shows that at the design stage of 

composites it is necessary to take into account the cases 

when there may arise damages and cracks in the binder. The 

existing methods of strength analysis of constructions made 

of fibrous composite ignore this circumstance. This 

situation makes it impossible to design a composite with 

minimal material consumption with guaranteed reliability 

and durability. So, it is necessary to conduct limit analysis 

of the composite in order to establish the critical loads at 

which crack nucleation and crack growth in the binder 

occurs. The size of critical minimal prefracture zone at 

which a crack appears, is recommended to consider as 

design characteristics of the binder's material. Based on the 

suggested design model that takes into account the 

existence of damages (the zones of weakened interparticle 

bonds of the material) and cracks with end zones in the 

composite, we worked out a method for calculating the 

parameters of the composite, at which crack nucleation and 

crack growth occurs. Knowing the principal values of 

critical parameters of crack nucleation, crack growth, and 

influence of the properties of materials on them, one can 

reasonably manage the crack nucleation and crack growth 

phenomena through design and technological solutions at 

the design stage.  

Numerical realization of the obtained resolving 

equations allows to solve practically important problems of 

design of composites: 

•  to assess guaranteed resource of a fibrous composite 

with regard to expected defects and loading conditions;  

•  to set up admissible level of defects and maximum 

value of workloads providing sufficient margin of 

reliability; 

•  to carry out the choice of material with necessary 

complex of static and cyclic characteristics of the fracture 

toughness. 
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PL 
 
 

Nomenclatures 

)( kk xg
 

Desired function characterizing opening 

of prefracture zone faces; 

i2= ‒1; 

lk Half length of k-th prefracture zone; 

N Number of prefracture zones in binder; 

kyq
, kk yxq

 Cohesive forces in interfacial bonds; 

R Fiber radius; 

*V
 

Value of opening of crack faces, at which 

a transition linear to nonlinear bonds 

deformation law takes place; 

rv
, v  

Radial and tangential of vector 

displacements components in binder; 

0
rv

, 
0
v  

Radial and tangential of vector 

displacements components in fiber; 

( )−+ − kk vv ,
( )−+ − kk uu  

Normal and tangential component of 

opening of faces of k-th prefracture zone; 

*
kx

 

Coordinate of prefracture zone point at 

which breaking of material's bonds 

occurs; 

0
kz

 
Complex coordinate of k-th prefracture 

zone; 

αk  Angle of k-th prefracture zone with axis x; 

cr
 

Characteristics of resistance of binder's 

material to crack nucleation; 

c  
Characteristic of fracture toughness of 

binder's material; 

κ, μ Elastic constants of material of binder;  
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κ0, μ0  Elastic constants of material of fiber; 

ν Poisson ratio; 

x
, y

, xy
 Components of stress tensor; 

r ,  ,  r     Components stress tensor in binder; 

0
r , 

0
 , 

0
 r     Components stress tensor in fiber; 

22

kkk yxyk qq +=
 
Modulus of force vector in bonds; 

*  Maximum elastic stresses in bonds; 

c 
Tension of bonds corresponding to limit 

opening crack faces; 

Πy(xk,σk), 

Πx(xk,σk) 
Effective compliances of bonds; 

φ(z), Ψ(z)  

and φ0(z), Ψ0(z) 

Analytic functions for binder and fiber, 

respectively. 
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