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1. Introduction 
 

In recent years, due to the instinct electro-mechanical 

coupling effects, piezo- electric materials have various 

practical applications in smart structures and systems (Kane 

and Mele (1997), Maiti et al. (2002)). Development of these 

nanostructures requires a good understanding of their 

properties such as vibration behavior. Nanoplates are two-

dimensional structure of nano-scale size. Researches in 

these structures are increasing every day. The problem of 

buckling of thick plates has attracted considerable attention 

in recent years. Up to now, several researches have been 

conducted on the buckling characteristics of nanoplates. 

Most of the previous studies in the analysis of buckling 

indicated these studies are only limited in the linear 

buckling analysis of structures. In several investigations 

(Dickinson (1978), Sciuva (1986), Chattopkdhyay and 

Hadzhong (1994), Shahwan and Waas (1998), Ziliukas 

(2008), Moon and Yih (1968)), computed the buckling of 

plates by classical and higher order plate theory without 

considering the nonlinear terms in the governing equations.  

In general, there are different kinds of methods 

including analytical and numerical ones for considering 

buckling of structures nanostructures. Finite element (FE) 

and differential quadrature method (DQM) in numerical 
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methods have a good agreement with analytical methods. 

Javaheri and Eslami (2002) investigated thermal effect in 

buckling of functionally graded (FG) plates based on the 

classical plate theory. To study the elastic buckling behavior 

of orthotropic small-scale plates under biaxial compression, 

Murmu and Pradhan (2009) employed semi-analytical. To 

obtain the buckling response of single-layered graphene 

sheets (SLGS), Pradhan and Murmu (2010) employed 

DQM. In this work, both Winkler-type and Pasternak-type 

foundation models are employed to simulate the interaction 

between the graphene sheet and the surrounding elastic 

medium. Murmu et al. (2013) also investigated the buckling 

behavior of double nanoplates using an analytical method. 

In this work, they are reported the linear buckling 

characteristics of double layered nanoplates without 

considering the thermo-electro-elastic response. Ansari et 

al. (2011) developed a nonlocal elastic shell model to 

investigate the axially compressed buckling response of 

multi-walled carbon nanotubes (MWCNTs) considering 

thermal environment effect. Surface and piezoelectric 

effects on the buckling of piezoelectric nanofilms due to 

mechanical loads are studied by Zhang et al. (2014). The 

buckling analysis of functionally graded carbon nanotube-

reinforced composite (FG-CNTRC) plates under various in-

plane mechanical loads presented Lei et al. (2013). 

Recently, Young et al. (2014) used a modified couple stress 

theory for buckling analysis of sigmoid functionally graded 

material (S-FGM) nanoplates on elastic medium. Analysis 

of biaxial buckling behavior of double-orthotropic 
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microplate system including in-plane magnetic field, using 

strain gradient theory are presented by Jamalpoor and 

Hosseini (2015).  

Recently, buckling of magneto-electro-elastic nanoplate 

is investigated based on nonlocal Mindlin theory by Li et al. 

(2014). However, the studies of mentioned above are only 

limited in the linear buckling analysis of structures and 

nanostructures. In 1973, based on nonlinear von Karman 

equations, Knightly and Sather (1974) developed nonlinear 

buckling of rectangular plate with using analytical method. 

Nonlinear bending analysis for a simply supported, shear 

deformable composite laminated plate subjected to 

combined uniform lateral pressure and compressive edge 

loads and resting on a two-parameter (Pasternak-type) 

elastic foundation is presented by Shen (2000). Kapania and 

Yang (1987) investigated nonlinear buckling, Postbuckling 

isotropic and laminated thin plates. They used the finite-

element method. Based on von Karman's plate theory and 

Hamilton's principles, analysis of the nonlinear thermal 

post-buckling of a heated orthotropic annular plate is 

presented by Li et al. (2002). Based on the classical 

nonlinear von Karman plate theory, Ma and Wang (2003) 

also studied axisymmetric large deflection bending of a FG 

circular plate under mechanical, thermal and combined 

thermal–mechanical loadings. Recently, Kolahchi et al. 

(2015) investigated nonlocal nonlinear buckling analysis of 

embedded polymeric temperature-dependent microplates 

resting on an elastic matrix as orthotropic temperature-

dependent elastomeric medium. In this work, they are 

reported the nonlinear buckling behaviors of single 

viscoelastic microplates without considering the electro-

elastic response.  

Therefore, the thermo-electro-elastic nonlinear buckling 

analysis of the double layered viscoelastic nanoplate has not 

been accomplished so far. In the present study, the 

mentioned task is accomplished, including the following 

novelties: 

• Assessment of effects of using the electric field 

on the behavior of the double viscoelastic nanoplate, for the 

first time. 

• The effects of electric voltage and magnetic field 

on the nonlinear buckling analysis of the double nanoplate 

with viscoelastic effect based on Kelvin-Voigt model, for 

the first time. 

• A comprehensive parametric study including 

evaluation of effects of the small scale, elastomeric 

foundation, the viscidity and aspect ratio of the nanoplate. 

• The presented conclusions extend the available 

published information regarding the double layered 

viscoelastic nanoplates and provide more accurate results 

for the more complicated viscoelastic nanoplate with 

elastomeric foundation. 

Moreover, the tricky empirical experiments have always 

been a barrier in front of the new explorations; however 

employing intelligence solutions are one of the practical 

ways to address these issues. Whereas, artificial intelligence 

techniques have perfomed on a variety of experimental 

studies and proved to be reliable not only in case of 

parameters estimation but also the prediction of crucial 

design characteristics (Chuanhua Xu 2019, Shariati et al. 

2019b, Shariati et al. 2019c, Trung et al. 2019, Armaghani 

et al. 2020, Shariati et al. 2020c, Shariati et al. 2020e, 

Shariati et al. 2020f). Different kind of algorithms has 

introduced which have their traits and advantages 

(Mohammadhassani et al. 2013, Mohammadhassani et al. 

2015, Shao et al. 2019a, Shao et al. 2019b, Shi et al. 2019a, 

Suhatril et al. 2019, Shariati et al. 2020a, Shariati et al. 

2020b, Shariati et al. 2020d). Using the relevant algorithms 

in order to analytical assessment has been carried out on 

different types of studies (Shao et al. 2015, Shahabi et al. 

2016, Chahnasir et al. 2018, Sedghi et al. 2018, Shao et al. 

2018, Katebi et al. 2019, Luo et al. 2019, Mansouri et al. 

2019, Milovancevic et al. 2019, Shariati et al. 2019a, Shi et 

al. 2019b). That being the case, performing the artificial 

intelligence algorithms is a potential method to avoid non-

linearity and sophisticated analysis of the nanoscale 

problems.  
 

 
2. Formulation 
 

Fig. 1 illustrates the double layered piezo nanoplate with 

the length 𝑎, width 𝑏 and thickness ℎ. in this work, the 

nanoplates are assumed to be homogeneous and isotropic. 

Unlike the conventional local elasticity, in the nonlocal 

elasticity theory it is assumed that the stress at a point is a 

function of strains at all points in the continuum (Eringen 

(1972), Eringen (1983)). According to the nonlocal 

elasticity theory, the basic equations for Hookean 

piezoelectric solids neglecting the body force are expressed 

by the following relationships 

𝜎𝑖𝑗 = ∫𝐾(|𝑋′ − 𝑋|, 𝜏)
 

𝑉

[𝑐𝑖𝑗𝑘𝑙휀𝑘𝑙(𝑋
′) − 𝑒𝑘𝑖𝑗𝐸𝑘(𝑋

′)

− 𝜆𝑖𝑗∆𝑇]𝑑𝑋
′ 

(1) 

𝐷𝑖 = ∫𝐾(|𝑋
′ − 𝑋|, 𝜏)

 

𝑉

[𝑒𝑖𝑘𝑙 휀𝑘𝑙(𝑋
′) + 𝜅𝑘𝑖𝑗𝐸𝑘(𝑋

′)

+ 𝑝𝑖Δ𝑇]𝑑𝑋
′ 

(2) 

𝜎𝑖𝑗 = 𝜌�̈�𝑖,            𝐷𝑖,𝑗 = 0. 
(3a, 

3b) 

휀𝑖𝑗 =
1

2
(𝑈𝑖,𝑗 + 𝑈𝑗,𝑖),     𝐸𝑖 = −𝛷,𝑖 . 

(4a, 

4b) 

where 𝜎𝑖𝑗 , 휀𝑖𝑗, 𝐷𝑖 , 𝐸𝑖 , 𝑈𝑖   and 𝛷 are the components of the 

non-local stress tensor, strain tensor, electric displacement 

vector, electric field vector, displacement vector and electric 

potential, respectively. And  𝐾(|𝑋′ − 𝑋|)  is the Kernel 

function represents the nonlocal modulus. Also terms 

𝑐𝑖𝑗𝑘𝑙 , 𝑒𝑘𝑖𝑗 , 𝜅𝑘𝑖𝑗 , 𝜆𝑖𝑗 , 𝑝𝑖  and 𝜌 are the components of a fourth 

order elasticity tensor, piezoelectric constants, dielectric 

constants, thermal moduli, pyroelectric constants and mass 

density, respectively. ∆𝑇 denote the temperature difference 

between the top and bottom layers of the nanoplate. Eringen 

(1972) demonstrated that it is possible to represent the 

integral constitutive relation in an equivalent differential 

form as 
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(1 − 𝜇∇2)𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙휀𝑘𝑙 − 𝑒𝑘𝑖𝑗𝐸𝑘 − 𝜆𝑖𝑗∆𝑇 

(1 − 𝜇∇2)𝐷𝑖 = 𝑒𝑖𝑘𝑙  휀𝑘𝑙 + 𝜅𝑘𝑖𝑗𝐸𝑘 + 𝑝𝑖Δ𝑇 
(5a, b) 

where , ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 the Laplacian operator and 𝜇 =

(𝑒0𝑎) is the nonlocal parameter, in which, 𝑎  and 𝑒0  are 

an internal characteristic length and a constant that 

appropriates to each material, respectively. The value of 𝑒0 

needs to be determined from experiments or by matching 

the dispersion relation of plane waves with those of atomic 

lattice dynamics. 

Based on classic elasticity theory, the displacement field 

of the CLPT is expressed as 

𝑈 = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧𝑤,𝑥 

𝑉 = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧𝑤,𝑦 

𝑊 = 𝑤(𝑥, 𝑦, 𝑡) 

(6) 

In Eq. (6), 𝑈  and 𝑉  are the in-

plane displacements of the plate along the x and y directions

, 𝑊 is the transverse displacement along the z direction, an

d 𝑢 and 𝑣 are the middle surface displacements along the 

x and y directions. Since the nonlinear vibration is assumed 

to have large amplitude motion, the von Karman type strain 

displacement relations are employed as 

휀 = 휀0 + 𝑧𝜅 (7) 

where ε is the strain vector, and 휀0 and κ can be expressed 
as 

 

 

휀0 =

{
 
 

 
 𝑢,𝑥 +

1

2
𝑤,𝑥
2

𝑣,𝑦 +
1

2
𝑤,𝑦
2

𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦}
 
 

 
 

,           𝜅 = {

−𝑤,𝑥𝑥
−𝑤,𝑦𝑦
−2𝑤,𝑥𝑦

}. (8) 

Now, we need to know the distribution of electric potent

ial through the thickness of the PNP. In the investigation of 

piezoelectric nanobeams behavior, Ke and Wang (2012) ass

umed that the electric potential distribution is a combination

 of a cosine and linear functions. Thus, following Ke and W

ang (2012), the electric potential can be expressed as follow

s 

𝛷(𝑥, 𝑦, 𝑧, 𝑡) = − cos (
𝜋𝑧

ℎ
)𝜙(𝑥, 𝑦, 𝑡) +

2𝑧𝑉0
ℎ

𝑒𝑖𝜔𝑡 (9) 

where 𝜙(𝑥, 𝑦, 𝑡) is the electric potential of point (𝑥, 𝑦, 0)in 

the mid-plane at time t; 𝑉0 is the external electric voltage; 

and 𝜔 denotes the complex eigenvalue. Using Eqs. (4b) 

and (9), the components of the electric field can be written 

as 

𝐸𝑥 = cos (
𝜋𝑧

ℎ
)
𝜕𝜙

𝜕𝑥
 ,         𝐸𝑦 = cos (

𝜋𝑧

ℎ
)
𝜕𝜙

𝜕𝑦
 ,     

𝐸𝑧 = −
𝜋

ℎ
 sin (

𝜋𝑧

ℎ
)𝜙 −

2𝑉0

ℎ
 𝑒𝑖𝜔𝑡. 

(10) 

Using Eqs. (5), the non-

local constitutive relations of thin PNP in the Cartesian coor

dinates can be approximated as 

 

 

Fig. 1 double layered viscoelastic piezo-nanoplate embedded on an elastomeric medium 
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{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} − (𝜇 ∇2) {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

}

= [

�̃�11 �̃�12 0
�̃�21 �̃�22 0
0 0 �̃�66

] {

휀𝑥𝑥
휀𝑦𝑦
2휀𝑥𝑦

}

− [
0 0 �̃�31
0 0 �̃�31
0 0 0

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} − {
�̃�11
�̃�11
0

}Δ𝑇 

(11) 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} − (𝜇 ∇2) {

𝐷𝑥
𝐷𝑦
𝐷𝑧

}

= [
0 0 0
0 0 0
�̃�31 �̃�31 0

] {

휀𝑥𝑥
휀𝑦𝑦
2휀𝑥𝑦

}

+ [

�̃�11 0 0
0 �̃�11 0
0 0 �̃�33

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} + {

𝑝1
𝑝1
𝑝3

} Δ𝑇 

(12) 

All materials exhibit some viscoelastic response such as 

creep and relaxation (Lakes (2009)). Based on Kelvin-Voigt 

model (Lakes (2009), Findley (1976)), for a viscoelastic 

structure, elasticity tensor in Eq. (11), can be modified, 

[𝑐]

=

[
 
 
 
 
 �̃�11 (1 + 𝑔

𝜕

𝜕𝑡
) �̃�12 (1 + 𝑔

𝜕

𝜕𝑡
) 0

�̃�21 (1 + 𝑔
𝜕

𝜕𝑡
) �̃�22 (1 + 𝑔

𝜕

𝜕𝑡
) 0

0 0 �̃�66 (1 + 𝑔
𝜕

𝜕𝑡
)]
 
 
 
 
 

 (13) 

Where, 

�̃�11 = �̃�22 =
𝐸

1 − 𝜈2
 , �̃�12 = �̃�21 =

𝜈𝐸

1 − 𝜈2
 ,

�̃�66 =
𝐸

1 + 𝜈
  . 

(14) 

where E, υ, g   and  denote the Young's modulus, the 

Poisson's ratio, the viscoelastic structural damping 

coefficient, the coefficient of thermal expansion and the 

temperature difference between the top and bottom layers of 

the nanoplate, respectively. The following equilibrium 

equations can be expressed (Reddy (2010)). In Eqs. (11) 

and (12), �̃�𝑖𝑗  , �̃�𝑖𝑗  , �̃�𝑖𝑗  , �̃�𝑖𝑗  and 𝑝𝑖𝑗  are respectively the 

reduced elastic constants, piezoelectric constants, dielectric 

constants, thermal moduli and pyroelectric constants for the 

piezoelectric nanoplate under the plane stress state (Zhao et 

al. (2006), Pietrzakowski (2008)). These constants are given 

as 

�̃�11 = 𝑐11 −
𝑐13
2

𝑐33
 , �̃�12 = 𝑐12 −

𝑐13
2

𝑐33
 ,   �̃�66 = 𝑐66 , 

      �̃�31 = 𝑒31 −
𝑐13𝑒33

𝑐33
 , 

�̃�11 = 𝑘11 ,   �̃�33 = 𝑘33 −
𝑐33
2

𝑐33
   ,   �̃�11 = 𝜆11 −

(15) 

𝑐13𝜆33

𝑐33
 ,   𝑝1 = 𝑝1 ,    𝑝3 = 𝑝3 −

𝑒33𝜆33

𝑐33
 . 

The total potential energy, V, of the double nanoplate is t

he sum of strain energy, U and the work done by the elasto

meric medium, W. The total strain energy of piezoelectric n

anoplate (𝛱𝑠) can be expressed as, 

𝛿𝛱𝑠 =∭(𝜎𝑥𝑥  𝛿휀𝑥𝑥 + 𝜎𝑦𝑦 𝛿휀𝑦𝑦 + 2𝜎𝑥𝑦 𝛿휀𝑥𝑦

 

𝑉

− 𝐷𝑥  𝛿𝐸𝑥 − 𝐷𝑦 𝛿𝐸𝑦 − 𝐷𝑧 𝛿𝐸𝑧)𝑑𝑉

=∬[𝑁𝑥𝑥  
𝜕𝛿𝑢

𝜕𝑥
+ 𝑁𝑦𝑦  

𝜕𝛿𝑣

𝜕𝑦

 

𝐴

+ 𝑁𝑥𝑦 ( 
𝜕𝛿𝑢

𝜕𝑦
+ 
𝜕𝛿𝑣

𝜕𝑥
)

− (𝑀𝑥𝑥  
𝜕2𝛿𝑤

𝜕𝑥2
+𝑀𝑦𝑦  

𝜕2𝛿𝑤

𝜕𝑦2

+ 2𝑀𝑥𝑦  
𝜕2𝛿𝑤

𝜕𝑥𝜕𝑦
)]𝑑𝐴

−∬ ∫{𝐷𝑥  cos (
𝜋𝑧

ℎ
)
𝜕𝛿∅

𝜕𝑥

ℎ
2

−
ℎ
2

 

𝐴

+ 𝐷𝑦  cos (
𝜋𝑧

ℎ
)
𝜕𝛿∅

𝜕𝑦

− 𝐷𝑧  
𝜋

ℎ
sin (

𝜋𝑧

ℎ
) 𝛿∅} 𝑑𝑧 𝑑𝐴 

(16) 

Here, 𝐴  is the area of the plate. The stress 

resultants  𝑁𝑖𝑗 , and the moment resultants, 𝑀𝑖𝑗 , for the 

nonlocal nanoplate can be defined as 

{𝑁𝑖𝑗 , 𝑀𝑖𝑗} = ∫ 𝜎𝑖𝑗
 (1, 𝑧)𝑑𝑧           𝑖 = 𝑥, 𝑦      𝑗 = 𝑥, 𝑦

ℎ
2

−
ℎ
2

 (17) 

The external works are due to temperature-

dependent, elastomeric medium and magnetic field. The wo

rk done by elastic medium is calculated from 

𝛿𝑊𝑓 =∬(𝑃 𝛿𝑤) 𝑑𝐴 

 

𝐴

 (18) 

where 𝑃  is related to orthotropic elastomeric medium. 

Orthotropic elastomeric foundation can be expressed as 

(Shen (2009), Kutlu and Omurtag (2012)) 

P = k w − Gξ(cos
2 θ w,xx + 2 cos θ sin θ w,yx

+ sin2 θ w,yy)

− Gη(sin
2 θ w,xx

+ 2 sin θ cos θ w,yx

+ cos2 θ w,yy) 

(19) 

Where, angle 𝜃  describes the local 𝜉 direction of 
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orthotropic foundation with respect to the global x-axis of 

the plate. Since the elastomeric medium is relatively soft, 

the foundation stiffness k may be expressed by 

k =
E0

4L(1 − v0
2)(2 − C)2

[5

− (2γ2 + 6γ + 5) exp(−2γ)], 

C = (γ + 2) exp(−γ) , γ =
Hs
L
,

E0 =
Es

(1 − vs
2)
 ,   v0 =

vs
(1 − vs)

 

(20) 

where 𝐸𝑠 , 𝑣𝑠  and 𝐻𝑠  are Young’s modulus, Poisson’s 

ratio and depth of the foundation, respectively. In this 

paper, 𝐸𝑠 is assumed to be temperature-dependent while 𝑣𝑠 
is assumed to be a constant. The governing electrodynamics 

Maxwell equations for a perfectly conducting and a plate 

subjected to a steady magnetic field, the exerted body force 

can be written as (Kolahchi et al. (2015), Ghorbanpour 

Arani and Zarei (2014), Ghorbanpour Arani et al. (2014)).  

J⃗ = ∇ × h⃗⃗ ,           h⃗⃗ = ∇ × (D × H⃗⃗⃗) (21) 

in which 𝐽 is the current density, ℎ⃗⃗ is disturbing vectors 

of magnetic field, 𝐷 is the displacement vector and �⃗⃗⃗� =
(𝐻𝑥  , 0 , 0) is magnetic field vector. 

h⃗⃗ = ∇ × (D × H⃗⃗⃗) =  −H⃗⃗⃗x (V,y +W,z)î + H⃗⃗⃗x (V,x)ĵ

+ H⃗⃗⃗x (W,x)k̂ (22) 

J⃗ = ∇ × h⃗⃗ = H⃗⃗⃗x (W,xy − V,xz)î

− H⃗⃗⃗x (V,yz +W,zz +W,xx)ĵ

+ H⃗⃗⃗x (V,xx + V,yy +W,zy)k̂ 
(23) 

Eq. (24) indicates the Lorentz force (𝑓) in three directi

ons (Reddy and Wang (2004)): 

𝑓 = 𝑓𝑥𝑖̂ + 𝑓𝑦𝑗̂ + 𝑓𝑧�̂� 

𝑓 = 𝜂(𝐽 × �⃗⃗⃗�) = 𝜂[0𝑖̂ + �⃗⃗⃗�𝑥
2 (𝑉,𝑥𝑥 + 𝑉,𝑦𝑦 +𝑊,𝑦𝑧)𝑗̂

+ �⃗⃗⃗�𝑥
2 (𝑉,𝑦𝑧 +𝑊,𝑧𝑧 +𝑊,𝑥𝑥)�̂� ] 

(24) 

where 𝜂 is the magnetic permeability; ∇ is the gradient 

operator. With substituting Eq. (6) into Eq. (24), therefore 

the Lorentz body force per unit volume of the plate can be 

obtained as  

𝑓𝑚𝑥 = 0, 

𝑓𝑚𝑦 = 𝜂𝐻𝑥
2 [𝑣,𝑥𝑥 + 𝑣,𝑦𝑦], 

𝑓𝑚𝑧 = 𝜂𝐻𝑥
2 [𝑤,𝑥𝑥]. 

(25) 

Finally, the generated forces from the Lorentz force may

 be expressed as 

𝐹𝑚 = ∫𝑓𝑚 𝑑𝑧 = {

𝐹𝑚𝑥 = 0                               

𝐹𝑚𝑦 = 𝜂ℎ𝐻𝑥
2 [𝑣,𝑥𝑥 + 𝑣,𝑦𝑦]

𝐹𝑚𝑧 = 𝜂ℎ𝐻𝑥
2 [𝑤,𝑥𝑥]            

ℎ
2

−
ℎ
2

 (26) 

3. Governing equation 
 

The governing equations can be derived by Hamilton's 

principal as follows 

∫(−𝛿𝛱𝑠 + 𝛿𝑊𝑓)𝑑𝑡 = 0

𝑡

0

 (27) 

Substituting Eqs. (16), (17), (18) and (26) into Eq. (27), 

integrating the resulting expression by parts and collecting t

he coefficients of 𝑑𝑢, 𝑑𝑣, 𝑑𝑤 and 𝑑𝜙, the following diff

erential equations can be obtained 

𝛿𝑢 ∶    𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 + 𝐹𝑚𝑥 = 0 , 

𝛿𝑣 ∶    𝑁𝑥𝑦,𝑥 +𝑁𝑦𝑦,𝑦 + 𝐹𝑚𝑦 = 0 , 

𝛿𝑤 ∶    𝑀𝑥𝑥,𝑥𝑥 + 2𝑀𝑥𝑦,𝑥𝑦 +𝑀𝑦𝑦,𝑦𝑦 + (𝑁𝑥𝑥𝑤,𝑥),𝑥
+ (𝑁𝑦𝑦𝑤,𝑦),𝑦 + (𝑁𝑥𝑦𝑤,𝑥),𝑦
+ (𝑁𝑥𝑦𝑤,𝑦),𝑥 + 𝑃 + 𝐹𝑚𝑧 = 0 , 

𝛿𝜙:     ∫ [cos (
𝜋𝑧

ℎ
)𝐷𝑥,𝑥 + cos (

𝜋𝑧

ℎ
)𝐷𝑦,𝑦

ℎ
2

−
ℎ
2

+
𝜋

ℎ
sin (

𝜋𝑧

ℎ
)𝐷𝑧] 𝑑𝑧 = 0 

(28) 

Moment and stress resultants may be defined in terms of

 displacements following nonlinear strain–

displacement relationships Eq. (7), stress–

strain relationships Eq. (11) and stress resultants definitions 

Eq. (17) as 

(1 − 𝜇∇2)𝑀𝑥𝑥 = −𝐷11(𝑤,𝑥𝑥 + 𝑔 𝑤,𝑡𝑥𝑥)

− 𝐷12(𝑤,𝑦𝑦 + 𝑔 𝑤,𝑡𝑦𝑦) + 𝐹31𝜙 , 

(1 − 𝜇∇2)𝑀𝑦𝑦 = −𝐷12(𝑤,𝑦𝑦 + 𝑔 𝑤,𝑡𝑦𝑦)

− 𝐷22(𝑤,𝑥𝑥 + 𝑔 𝑤,𝑡𝑥𝑥) + 𝐹31𝜙 , 

(1 − 𝜇∇2)𝑀𝑥𝑦 = −2𝐷66(𝑤,𝑥𝑦 + 𝑔 𝑤,𝑡𝑥𝑦) , 

(1 − 𝜇∇2)𝑁𝑥𝑥 = 𝐴11 (𝑢,𝑥 +
1

2
(𝑤,𝑥)

2
)

+ 𝐴12 (𝑣,𝑦 +
1

2
(𝑤,𝑦)

2
) + 2𝑒31𝑉0

− 𝑁𝑥𝑥
𝑇  , 

(1 − 𝜇∇2)𝑁𝑦𝑦 = 𝐴12 (𝑢,𝑥 +
1

2
(𝑤,𝑥)

2
)

+ 𝐴22 (𝑣,𝑦 +
1

2
(𝑤,𝑦)

2
) + 2𝑒31𝑉0

− 𝑁𝑦𝑦
𝑇  , 

(1 − 𝜇∇2)𝑁𝑥𝑦 = 𝐴66(𝑢,𝑦𝑣,𝑥 + 𝑤,𝑥𝑤,𝑦) . 

(29) 

similarly, from Eqs. (12), we have 

∫ [cos (
𝜋𝑧

ℎ
) [𝐷𝑥,𝑥 − 𝜇∇

2(𝐷𝑥,𝑥)]] 𝑑𝑧

ℎ
2

−
ℎ
2

= 𝑋11𝜙,𝑥𝑥  , 

∫ [cos (
𝜋𝑧

ℎ
) [𝐷𝑦,𝑦 − 𝜇∇

2(𝐷𝑦,𝑦)]] 𝑑𝑧

ℎ
2

−
ℎ
2

= 𝑋11𝜙,𝑦𝑦 , 

(30) 
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∫ [
𝜋

ℎ
sin (

𝜋𝑧

ℎ
) [𝐷𝑧 − 𝜇∇

2𝐷𝑧]] 𝑑𝑧

ℎ
2

−
ℎ
2

= −𝐹31(𝑤,𝑥𝑥 +𝑤,𝑦𝑦) − 𝑋33𝜙 . 

where  𝐷11 = 𝐷22 , 𝐷12 = 𝐷21 , 𝐴11 = 𝐴22  and 𝐴12 = 𝐴21 

and also, we can define 

{

𝐷11
𝐷12
𝐷66

} =
ℎ3

12
 {

�̃�11
�̃�12
�̃�66

} ,                 {

𝐴11
𝐴12
𝐴66

}

= ℎ {

�̃�11
�̃�12
�̃�66

} ,        {

𝐹31
𝑋11
𝑋33

}

=  

{
 
 

 
 
2

𝜋
�̃�31ℎ

�̃�11ℎ

2
𝜋2�̃�33
2ℎ }

 
 

 
 

 , 

{
𝑁𝑥𝑥
𝑇

𝑁𝑦𝑦
𝑇 } = ∫{

�̃�11
�̃�11
}

ℎ
2

−
ℎ
2

Δ𝑇 𝑑𝑧 

(31) 

Here, 𝐷11 and 𝐷12 are the flexural rigidities of the PN

P. 𝐷66 is called the torsional stiffness of the PNP. Assumin

g the density of plate material (𝜌) as an even function of t

hickness (𝑧)  and applying the linear operator (1 −
𝜇∇2) on each side of the equilibrium equations (28) and usi

ng relations of (29), (30) and Eq. (31), the following differe

ntial equations can be obtained 

𝐴11 (𝑢,𝑥𝑥 +
1

2
𝑤,𝑥𝑥𝑤,𝑥) + 𝐴12 (𝑣,𝑥𝑦 +

1

2
𝑤,𝑥𝑦𝑤,𝑦)

+ 𝐴66(𝑢,𝑦𝑦 + 𝑣,𝑥𝑦 + 𝑤,𝑥𝑦𝑤,𝑦
+ 𝑤,𝑦𝑦𝑤,𝑦) + 𝐹𝑚𝑥 = 0, 

(32) 

𝐴12 (𝑢,𝑥𝑦 +
1

2
𝑤,𝑥𝑦𝑤,𝑥) + 𝐴22 (𝑣,𝑦𝑦 +

1

2
𝑤,𝑦𝑦𝑤,𝑦)

+ 𝐴66(𝑢,𝑥𝑦 + 𝑣,𝑥𝑥 + 𝑤,𝑥𝑦𝑤,𝑥
+ 𝑤,𝑥𝑥𝑤,𝑦) + 𝐹𝑚𝑦 = 0, 

(33) 

𝐷11(𝑤,𝑥𝑥𝑥𝑥 + 𝑔 𝑤,𝑡𝑥𝑥𝑥𝑥)

+ 2(𝐷12 + 2𝐷66)(𝑤,𝑥𝑥𝑥𝑥
+ 𝑔 𝑤,𝑡𝑥𝑥𝑥𝑥)

+ 𝐷22(𝑤,𝑦𝑦𝑦𝑦 + 𝑔 𝑤,𝑡𝑦𝑦𝑦𝑦) 
(34) 

+(1 − 𝜇∇2)(2𝑒31𝑉0)(𝑤,𝑥𝑥 + 𝑤,𝑦𝑦)

+ (1 − 𝜇∇2)(−�̃�11ℎ Δ𝑇)(𝑤,𝑥𝑥
+ 𝑤,𝑦𝑦) 

= (1 − 𝜇∇2)(𝑘 𝑤

− 𝐺𝜉(cos
2 𝜃  𝑤,𝑥𝑥

+ 2 cos 𝜃 sin 𝜃  𝑤,𝑦𝑥 + sin
2 𝜃 𝑤,𝑦𝑦)

− 𝐺𝜂(sin
2 𝜃 𝑤,𝑥𝑥

+ 2 sin 𝜃 cos 𝜃  𝑤,𝑦𝑥 + cos
2 𝜃 𝑤,𝑦𝑦)

+ 𝐹𝑚𝑧)

+ 𝑤,𝑥𝑥 [
𝐴11
2
(𝑤,𝑥)

2
+
𝐴12
2
(𝑤,𝑦)

2
]

+ [𝐴11𝑤,𝑥𝑥𝑤,𝑥 + 𝐴12𝑤,𝑥𝑦𝑤,𝑦]𝑤,𝑥

+ 𝑤,𝑦𝑦 [
𝐴12
2
(𝑤,𝑥)

2
+
𝐴22
2
(𝑤,𝑦)

2
]

+ [𝐴12𝑤,𝑥𝑦𝑤,𝑥 + 𝐴22𝑤,𝑦𝑦𝑤,𝑦]𝑤,𝑦

+ 𝐴66𝑤,𝑥𝑥(𝑤,𝑦)
2
+ 4𝐴66𝑤,𝑥𝑤,𝑥𝑦𝑤,𝑦

+ 𝐴66𝑤,𝑦𝑦(𝑤,𝑥)
2

+ 𝐹31(𝜙,𝑥𝑥 + 𝜙,𝑦𝑦), 

𝐹31(𝑤,𝑥𝑥 +𝑤,𝑦𝑦) − 𝑋11(𝜙,𝑥𝑥 + 𝜙,𝑦𝑦) + 𝑋33𝜙 = 0 . (35) 

Based on Eqs. (32), (33), (34) and (35), the governing e

quations of nonlinear vibration for double viscoelastic nano

plates can be expressed as, 

𝐴11 (𝑢𝑖 ,𝑥𝑥 +
1

2
𝑤𝑖 ,𝑥𝑥𝑤𝑖 ,𝑥)

+ 𝐴12 (𝑣𝑖 ,𝑥𝑦 +
1

2
𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑦)

+ 𝐴66 (𝑢𝑖 ,𝑦𝑦 + 𝑣𝑖 ,𝑥𝑦 + 𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑦

+ 𝑤𝑖 ,𝑦𝑦𝑤𝑖 ,𝑦) + 𝐹𝑚𝑥 = 0, 

(36) 

𝐴12 (𝑢𝑖 ,𝑥𝑦 +
1

2
𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑥)

+ 𝐴22 (𝑣𝑖 ,𝑦𝑦 +
1

2
𝑤𝑖 ,𝑦𝑦𝑤𝑖 ,𝑦)

+ 𝐴66 (𝑢𝑖 ,𝑥𝑦 + 𝑣𝑖 ,𝑥𝑥 + 𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑥

+ 𝑤𝑖 ,𝑥𝑥𝑤𝑖 ,𝑦) + 𝐹𝑚𝑦 = 0, 

(37) 

𝐷11 (𝑤𝑖 ,𝑥𝑥𝑥𝑥 + 𝑔 𝑤𝑖 ,𝑡𝑥𝑥𝑥𝑥)

+ 2(𝐷12 + 2𝐷66) (𝑤𝑖 ,𝑥𝑥𝑥𝑥

+ 𝑔 𝑤𝑖 ,𝑡𝑥𝑥𝑥𝑥)

+ 𝐷22 (𝑤𝑖 ,𝑦𝑦𝑦𝑦 + 𝑔 𝑤𝑖 ,𝑡𝑦𝑦𝑦𝑦) 

(38) 
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+(1 − 𝜇∇2)2𝑒31𝑉0 (
𝑤𝑖 ,𝑥𝑥
+𝑤𝑖 ,𝑦𝑦

)

+ (1 − 𝜇∇2)(−�̃�11ℎ Δ𝑇) (𝑤𝑖 ,𝑥𝑥

+ 𝑤𝑖 ,𝑦𝑦) 

= (1 − 𝜇∇2)(𝑘 𝑤

− 𝐺𝜉(cos
2 𝜃 𝑤,𝑥𝑥

+ 2 cos 𝜃 sin 𝜃  𝑤,𝑦𝑥
+ sin2 𝜃 𝑤,𝑦𝑦)

− 𝐺𝜂(sin
2 𝜃  𝑤,𝑥𝑥

+ 2 sin 𝜃 cos 𝜃  𝑤,𝑦𝑥
+ cos2 𝜃 𝑤,𝑦𝑦) + 𝐹𝑚𝑧)

+ 𝑤𝑖 ,𝑥𝑥 [
𝐴11
2
(𝑤𝑖 ,𝑥)

2

+
𝐴12
2
(𝑤𝑖 ,𝑦)

2

]

+ [𝐴11𝑤𝑖 ,𝑥𝑥𝑤𝑖 ,𝑥

+ 𝐴12𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑦]𝑤𝑖 ,𝑥

+ 𝑤𝑖 ,𝑦𝑦 [
𝐴12
2
(𝑤𝑖 ,𝑥)

2

+
𝐴22
2
(𝑤𝑖 ,𝑦)

2

]

+ [𝐴12𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑥

+ 𝐴22𝑤𝑖 ,𝑦𝑦𝑤𝑖 ,𝑦] 𝑤𝑖 ,𝑦

+ 𝐴66𝑤𝑖 ,𝑥𝑥 (𝑤𝑖 ,𝑦)
2

+ 4𝐴66𝑤𝑖 ,𝑥𝑤𝑖 ,𝑥𝑦𝑤𝑖 ,𝑦

+ 𝐴66𝑤𝑖 ,𝑦𝑦 (𝑤𝑖 ,𝑥)
2

+ 𝐹31 (𝜙𝑖 ,𝑥𝑥 + 𝜙𝑖 ,𝑦𝑦), 

𝐹31 (𝑤𝑖 ,𝑥𝑥 +𝑤𝑖 ,𝑦𝑦) − 𝑋11 (𝜙𝑖 ,𝑥𝑥 + 𝜙𝑖 ,𝑦𝑦) + 𝑋33𝜙𝑖

= 0 . (39) 

Subscript 𝑖 (𝑖 = 1, 2), for the variables of 𝑢, 𝑣, 𝑤 and 𝜙 

are employed to describe the upper and lower nanoplates, 

respectively. The following simply-supported boundary 

condition is considered in the present study 

{
𝑢 = 𝑣 = 𝑤 = 𝜙 = 𝑀𝑥𝑥 = 0             𝑥 = 0, 𝑎
𝑢 = 𝑣 = 𝑤 = 𝜙 = 𝑀𝑦𝑦 = 0             𝑦 = 0, 𝑎 (40) 

 

 

4. GDQ method and solution procedure 
 

The GDQ method is an efficient and accurate numerical 

approach in comparison with the weighted residual methods 

such as FE method (Zong and Zhang (2009)). In GDQ 

method a derivative of a function F is assumed as weighted 

linear sum of all functional values within the computational 

domain and at a given grid point (𝑥𝑖 , 𝑦𝑗), is approximated 

as 

𝑑𝑛𝐹

𝑑𝑥𝑛
| 𝑥=𝑥𝑖 =∑𝑐𝑖𝑗

(𝑛)𝐹(𝑥𝑗)

𝑁

𝑗=1

 (41) 

here  

𝐶𝑖𝑗
(1) =

𝜋(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗) 𝜋(𝑥𝑗)
        𝑖, 𝑗 

= 1,2, … , 𝑁,        𝑖 ≠ 𝑗 

(42) 

And 𝜋(𝑥𝑖) is defined as 

𝜋(𝑥𝑖) =∏(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

,      𝑖 ≠ 𝑗 (43) 

And when 𝑖 = 𝑗 

𝐶𝑖𝑗
(1) = 𝑐𝑖𝑖

(1) = −∑𝐶𝑖𝑘
(1)

𝑁

𝑘=1

,      

𝑖 = 1,2, … , 𝑁,      𝑖 ≠ 𝑘, 𝑖 = 𝑗 

(44) 

the weighting coefficients for the second, third, and fourth 

derivatives are determined with using matrix multiplication 

𝐶𝑖𝑗
(2) =∑𝐶𝑖𝑘

(1)𝐶𝑘𝑗
(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(3) =∑𝐶𝑖𝑘

(1)𝐶𝑘𝑗
(2)

𝑁

𝑘=1

=∑𝐶𝑖𝑘
(2)𝐶𝑘𝑗

(1)

𝑁

𝑘=1

 

𝐶𝑖𝑗
(4) =∑𝐶𝑖𝑘

(1)𝐶𝑘𝑗
(3)

𝑁

𝑘=1

=∑𝐶𝑖𝑘
(3)𝐶𝑘𝑗

(1)

𝑁

𝑘=1

          𝑖, 𝑗

= 1, 2, … , 𝑁. 

(45) 

using the following rule, the distribution of grid points 

based on Gauss-Chebyshev-Lobatto points in domain is 

calculated as 

𝑥𝑖 =
𝑎

2
[1 − cos (

𝑖 − 1

𝑁 − 1
𝜋)]       𝑖 = 1, 2, … , 𝑁, 

𝑦𝑗 =
𝑏

2
[1 − cos (

𝑗 − 1

𝑀 − 1
𝜋)]       𝑗 = 1, 2, … ,𝑀, 

 

(46) 

to solve the time derivatives of Eqs. (36)-(39), we can 

assume it in the form 

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝑥, 𝑦)𝑒𝜔𝑡 

𝑣(𝑥, 𝑦, 𝑡) = 𝑉(𝑥, 𝑦)𝑒𝜔𝑡 

𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦)𝑒𝜔𝑡 

𝜙(𝑥, 𝑦, 𝑡) = 𝝓(𝑥, 𝑦)𝑒𝜔𝑡 

(47) 

in which, 𝜔  is the complex eigenvalue. Finally, the 

governing equations (i.e. Eqs. (36) -(39)) can be expressed 

as 
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𝐴11 (∑𝐶�̅�,𝑘
(2)

𝑁

𝑘=1

𝑈𝑖𝑘,𝑗 +
1

2
(∑𝐶�̅�,𝑘

(2)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
)(∑𝐶�̅�,𝑘

(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘ 𝑊)+ 𝐴12

(

 
 
 
 (∑∑𝐶�̅�,𝑘1

(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1) 𝑉𝑖𝑘1,𝑘2)

+
1

2
(∑∑𝐶�̅�,𝑘1

(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1)𝑊𝑖𝑘1,𝑘2

)(∑�̅�𝑖,𝑘
(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘ 𝑊

)

 
 
 
 

+ 𝐴66

(

 
 
 
 ∑�̅�𝑗,𝑘

(2)

𝑀

𝑘=1

𝑈𝑖 𝑖,𝑘 + (∑∑𝐶�̅�,𝑘1
(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1) 𝑉𝑖𝑘1,𝑘2)

+(∑∑𝐶�̅�,𝑘1
(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1)𝑊𝑖𝑘1,𝑘2

)(∑�̅�𝑖,𝑘
(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘𝑊 + (∑�̅�𝑗,𝑘

(2)

𝑀

𝑘=1

𝑊𝑖 𝑖,𝑘
)(∑�̅�𝑖,𝑘

(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘𝑊

)

 
 
 
 

= 0, 

(48) 

𝐴12

(

 
 
 
 (∑∑𝐶̅𝑖,𝑘1

(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1)
𝑈𝑖𝑘1,𝑘2

)

+
1

2
(∑∑𝐶̅𝑖,𝑘1

(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1)
𝑊𝑖𝑘1,𝑘2

)(∑𝐶̅𝑖,𝑘
(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘ 𝑊

)

 
 
 
 

+ 𝐴22 (∑ �̅�𝑗,𝑘
(2)

𝑀

𝑘=1

𝑉𝑖𝑖,𝑘 +
1

2
(∑ �̅�𝑗,𝑘

(2)

𝑀

𝑘=1

𝑊𝑖𝑖,𝑘
)(∑ �̅�𝑗,𝑘

(1)

𝑀

𝑘=1

𝑊𝑖𝑖,𝑘
) ∘ 𝑊)

+ 𝐴66

(

 
 
 
 (∑∑𝐶̅𝑖,𝑘1

(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1)
𝑈𝑖𝑘1,𝑘2

) +∑𝐶̅𝑖,𝑘
(2)

𝑁

𝑘=1

𝑉𝑖𝑘,𝑗

+(∑∑𝐶̅𝑖,𝑘1
(1)

𝑀

𝑘2

𝑁

𝑘1

�̅�𝑗,𝑘2
(1)
𝑊𝑖𝑘1,𝑘2

)(∑𝐶̅𝑖,𝑘
(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘ 𝑊 + (∑𝐶̅𝑖,𝑘

(2)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
)(∑ �̅�𝑖,𝑘

(1)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
) ∘ 𝑊

)

 
 
 
 

+ 𝜂ℎ𝐻𝑥
2 (∑𝐶̅𝑖,𝑘

(2)

𝑁

𝑘=1

𝑉𝑖𝑘,𝑗 +∑ �̅�𝑗,𝑘
(2)

𝑀

𝑘=1

𝑉𝑖𝑖,𝑘) = 0, 

(49) 
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𝐹31 (∑𝐶�̅�,𝑘
(2)

𝑁

𝑘=1

𝑊𝑖𝑘,𝑗
+∑�̅�𝑗,𝑘

(2)

𝑀

𝑘=1

𝑊𝑖𝑖,𝑘
)

− 𝑋11 (∑𝐶�̅�,𝑘
(2)

𝑁

𝑘=1

𝝓𝑖𝑘,𝑗

+∑�̅�𝑗,𝑘
(2)

𝑀

𝑘=1

𝝓𝑖 𝑖,𝑘) + 𝑋33𝝓1 = 0. 

(51) 

In Eqs. (48)-(51), 𝐶̅  and �̅�  denote the weighting 

coefficients in x and y directions, respectively. In order to 

analyses the nonlinear matrix, we can use two mathematical 

products (Hadamard and Kronecker) (Chen et al. (2000), 

Lancaster and Timenetsky (1985)). Eqs. (48)-(51), can be 

explained in matrix form which is called nonlinear 

eigenvalue problem. 

(𝜔[𝐷] + [𝐾𝐿 + 𝐾𝑁𝐿])

{
 
 
 

 
 
 
𝑈1
𝑉1
𝑊1

𝝓1
𝑈2
𝑉2
𝑊2

𝝓2}
 
 
 

 
 
 

= 0, (52) 

where 𝐷 , 𝐾𝐿  and  𝐾𝑁𝐿  are damping matrix, the linear 

stiffness matrix and the nonlinear stiffness matrix which are 

a functions of 𝑈, 𝑉,𝑊 and 𝝓. The stiffness matrices in 

Eqs. (52) can be expressed as 

[𝐷] =

[
 
 
 
 
 
 
 
 
[0] [0] [0] [0] [0] [0] [0] [0]
[0] [0] [0] [0] [0] [0] [0] [0]

[0]
[0]

[0]
[0]
[0]

[0]

[0]
[0]

[0]
[0]
[0]

[0]

[𝐷3𝑤
3 ]

[0]
[0]
[0]

[0]
[0]

[0] [0] [0] [0] [0]

[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]

[0] [0] [0] [𝐷7𝑤
7 ] [0]

[0] [0] [0] [0] [0] ]
 
 
 
 
 
 
 
 

, 

 
[𝐾𝐿]

=

[
 
 
 
 
 
 
 
 
 
 
[𝐾𝐿1𝑢

1 ] [𝐾𝐿1𝑣
2 ] [0] [0]

[𝐾𝐿2𝑢
1 ] [𝐾𝐿2𝑣

2 ] [0] [0]

[0]
[0]
[0]

[0]
[0]
[0]

[0]
[0]
[0]

[0]
[0]
[0]

[𝐾𝐿3𝑤
3 ]

[𝐾𝐿4𝑤
3 ]

[0]
[0]

[𝐾𝐿7𝑤
3 ]

[0]

[𝐾𝐿3𝜙
4 ]

[𝐾𝐿4𝜙
4 ]

[0]
[0]
[0]

[0]

    

[0] [0] [0] [0]
[0] [0] [0] [0]

[0]
[0]

[𝐾𝐿5𝑢
5 ]

[𝐾𝐿6𝑢
5 ]

[0]

[0]

[0]

[0]

[𝐾𝐿5𝑣
6 ]

[𝐾𝐿6𝑣
6 ]

[0]
[0]

[𝐾𝐿7𝑤
3 ]

[0]

[0]
[0]

[𝐾𝐿7𝑤
7 ]

[𝐾𝐿8𝑤
7 ]

[0]
[0]
[0]

[0]

[𝐾𝐿7𝜙
8 ]

[𝐾𝐿8𝜙
8 ]
]
 
 
 
 
 
 
 
 
 
 

,     

 

[𝐾𝑁𝐿] =

[
 
 
 
 
 
 
 
 
 
[0] [0] [𝐾𝑁𝐿1𝑤

3 ] [0]

[0] [0] [𝐾𝑁𝐿2𝑤
3 ] [0]

[0]
[0]
[0]

[0]
[0]
[0]

[0]
[0]
[0]

[0]
[0]
[0]

[𝐾𝑁𝐿3𝑤
3 ]

[0]
[0]
[0]

[0]
[0]

[0]
[0]
[0]

[0]
[0]
[0]

    

[0] [0] [0] [0]
[0] [0] [0] [0]

[0]
[0]

[0]
[0]
[0]

[0]

[0]
[0]

[0]
[0]
[0]

[0]

[0]

[0]

[𝐾𝑁𝐿5𝑤
7 ]

[𝐾𝑁𝐿6𝑤
7 ]

[𝐾𝑁𝐿7𝑤
7 ]

[0]

[0]
[0]

[0]
[0]
[0]

[0]]
 
 
 
 
 
 
 
 
 

.    (53) 

This nonlinear equation can be solved using a direct 

iterative process as follows (Arani (2013)): First, term of 

nonlinearity is ignored by taking 𝐾𝑁𝐿 = 0 to obtain the 

eigenvalue problem demonstrated in Eq. (52). This yields 

the linear eigenvalue 𝜔𝐿  and corresponding eigenvector 

(𝑈, 𝑉,𝑊, 𝜙). Using linear corresponding eigenvector  

       (50) 
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Fig. 2 Variation of buckling load ratio with the length of a 

square nanoplate for various nonlocal parameters 
 
 

(𝑈, 𝑉,𝑊, 𝜙), 𝐾𝑁𝐿  could be calculated. Then by substituting 

𝐾𝑁𝐿  into Eq. (52), eigenvalue problem is solved. This 

would give the nonlinear eigenvalue 𝜔𝑁𝐿  and the new 

eigenvector. The above process is repeated iteratively until 

the frequency values from the two subsequent iterations ‘𝑟’ 
and ‘𝑟 +  1’ satisfy the prescribed convergence criteria as 

||𝜔𝑁𝐿|
𝑟+1 − |𝜔𝑁𝐿|

𝑟|

|𝜔𝑁𝐿|
𝑟

< 휀0 (54) 

where 휀0 is a small value number and in this present 휀0 

is 10−4. 
 

 

5. Results and discussion 
 

Firstly, the results are compared with the available 

literatures to verify the accuracy of the present 

formulations.  Since the present results are the first 

reported results for the double viscoelastic nanoplates, no 

available results may be found in literature to be used for 

comparison purposes. For this reason, present results are 

verified by results of the single layered nanoplate. The 

values obtained by the local and nonlocal models are shown 

in Fig. 2. The present results in Fig. 2 are in a good 

agreement with Pradhan and Murmu (2010). 

Fig. 2 describes the effects of small scale, that buckling 

ratio is defined as the ratio of the nonlocal buckling load to 

the local buckling load. The elastic modulus = 1.06  𝑇𝑝𝑎 , 

length or breadth 𝐿 = 10 𝑛𝑚, thickness of each plate ℎ =
0.34 𝑛𝑚, the Poisson’s ratio 𝜈 = 0.3 and density 𝜌 =
2250 𝑘𝑔 𝑚3⁄  are employed. Characteristics and properties 

of material are taken from Pradhan and Murmu (2010). It’s 

noted that, in Fig. 2, we compared the results of the 

buckling load ratio of isotropic square plate with simply 

supported boundary conditions with the available 

literatures. These results also are obtained without 

considering the nonlinear terms, effects of elastic medium 

in governing equation. In evaluating the nonlinear buckling 

ratio of the nano plate, we need to obtain the minimum 

number of grid points that makes the convergence. The 

convergence and accuracy of the GDQ method based on the 

 

Fig. 3 Convergence behavior of buckling ratio against 

number of grid point of GDQ method 

 

Table 1 Comparison of the convergence behavior of 

buckling ratio against number of grid point of GDQ method 

𝑁 

 

𝜇 

5 × 5 7 × 7 

 

9 × 9 

 

11 × 11 13 × 13 

0.4 0.9630 0.9662 0.9695 0.9694 

 

0.9694 

 

1 0.8065 0.8208 0.8358 0.8351 

 

0.8351 

 

1.6 0.6194 0.6415 0.6653 0.6643 0.6643 

2 0.5102 0.5338 0.5599 0.5588 0.5588 

 
 

number of grid points is plotted in Fig. 3 and Table 1 for 

simple support in all sides. For illustration of small scale or 

nonlocal effects, the maximum length of the SLGS is taken 

as 45.2896 nm. This maximum value is also used by 

Pradhan and Murmu (2010) for the side length of the 

graphene sheet. The scale coefficients were taken as 𝜇 =
0.0, 1.0, 1.5 and 2.0 𝑛𝑚 

As basic issues in a numerical analysis, the convergence 

characteristics and accuracy of the GDQ solution should be 

carefully assessed. Table 1 demonstrates the convergence 

and accuracy of the GDQ method based on the number of 

grid points in evaluating the nonlinear buckling load ratio of 

isotropic square plate with simply supported boundary 

conditions. Fast rate of convergence of the method are quite 

evident and it is found that thirteen DQ grid points can yield 

accurate results. 
 

Nonlinear buckling of double viscoelastic 
nanoplates 

In this section, we will present the semi-analytical study 

on the nonlinear buckling load ratio of the double 

viscoelastic nanoplate with all edges simply supported. 

Assume that the nanoplate is made of PZT-4 with the 

material properties listed in Table 2 (Ke and Wang (2012), 

Wang (2002), Liu et al. (2013)). In Table 3, the nonlinear 

buckling ratio of the viscoelastic double nanoplate 

evaluated accounting for nonlocal parameters  (𝜇 = 0.2,
0.5, 1 𝑛𝑚) and the aspect ratio (𝛽 = 1 4,⁄ 1/2, 1, 3/2). 
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In the present investigation for various values of 

(𝑔 = 0.01) and the elastomeric coefficients  (𝐺𝜂 = 0,

4.14), nonlinear buckling load ratio, are listed. Results 

show that by increasing the electric voltage from 0 to 0.75, 

the buckling loads for small nonlocal parameter (𝜇 =
0.1 𝑛𝑚) increase but for higher nonlocal parameter 
(𝜇 = 0.5, 1 𝑛𝑚)  r ed u ce  in  b o th  th e  e l a s t o m er i c 

 

 

 

 

coefficients  (𝐺𝜂 = 0, 4.14) . The same trend has been 

observed for the elastomeric coefficient (𝐺𝜂 = 4.14). To 

better evaluate, let us define the following non-dimensional 

variable for the Lorentz force coefficient 

𝐻𝑥 = √
𝜂 𝐻𝑥

2

𝐸𝐴
 

(55) 

Table 2 Material properties of PZT-4 (Ke and Wang (2012), Wang (2002), Chen et al. (2013)) 

𝑐11 (𝐺𝑝𝑎) 𝑐12 (𝐺𝑝𝑎) 𝑐13 (𝐺𝑝𝑎) 𝑐33 (𝐺𝑝𝑎) 𝑐66 (𝐺𝑝𝑎) 𝑒31(𝐶 𝑚2⁄ ) 𝑒15(𝐶 𝑚2⁄ ) 𝑒33(𝐶 𝑚2⁄ ) 

132 71 73 115 30.5 −4.1 10.5 14.1 

𝑘11(𝐶 𝑉 𝑚⁄ ) 𝑘33(𝐶 𝑉 𝑚⁄ ) 𝜆11(𝑁 𝑚2 𝑘⁄ ) 𝜆33(𝑁 𝑚2 𝑘⁄ ) 𝑝1(𝐶 𝑚2 𝑘⁄ ) 𝑝3(𝐶 𝑚2 𝑘⁄ ) 𝜌 (𝑘𝑔 𝑚3⁄ ) 
 

5.841 × 10−9 7.124 × 10−9 4.738 × 10−5 4.529 × 10−5 0.25 × 10−4 0.25 × 10−4 7500 

Table 3 nonlinear buckling ratio for various values of  𝛽, 𝜇, 𝐺𝜂, and 𝑉0 against maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 =

1),  the viscoelastic damping coefficient (𝑔 = 0.01) and (𝐻𝑥 = 0, 𝜃 = 45°, 𝐺𝜉 = 4.14 , Δ𝑇 = 0) 

𝐺𝜂 = 0 𝐺𝜂 = 4.14 

𝑉0 

𝜇 𝛽 0 0.25 0.5 0.75 0 0.25 0.5 0.75 

0.2 1/4 42.2749 50.5252 54.6911 57.3192 44.3959 51.4857 55.2610 57.7120 

 1/2 40.8243 49.0448 53.3348 56.0621 41.0188 49.1346 53.3880 56.0984 

 1 34.8322 45.2625 50.5014 53.7317 36.4306 45.9799 50.9165 54.0087 

 3/2 29.0875 42.5617 48.8274 52.5310 35.3037 45.2099 50.3185 53.5084 

0.5 0.5 56.7526 60.9863 45.5285 31.2984 57.7718 61.5436 42.3626 29.2652 

 1 56.0736 60.1615 53.2031 37.9819 56.1639 60.2104 52.8989 37.7853 

 1.5 53.3771 58.1990 60.9726 50.9388 54.0827 58.5582 61.2110 49.3671 

 2 50.8964 56.8885 60.0434 57.8300 53.5844 58.1729 60.8687 52.2119 

1 0.5 48.6285 23.1831 10.6822 3.1366 42.0466 20.2652 9.0147 2.0472 

 1 53.1387 27.7072 14.7012 6.6971 52.5337 27.4322 14.5425 6.5928 

 1.5 60.7713 39.3630 23.2558 13.5187 61.2536 37.1443 21.9926 12.6963 

 2 59.1566 47.7373 28.3740 17.1099 60.9118 39.5256 23.8131 14.1839 

Table 4 nonlinear buckling ratio for various values of  𝐻𝑥  , 𝜇 , 𝑉0 , and Δ𝑇  against maximum transverse amplitude 

(𝑤1 𝑚𝑎𝑥 = 1),  the viscoelastic damping coefficient (𝑔 = 0.01) and (𝛽 = 1, 𝜃 = 45°, 𝐺𝜉 = 4.14 , G𝜂 = 4.14) 

Δ𝑇 = 0 𝐾 Δ𝑇 = 100 𝐾 

𝐻𝑥 

𝜇 𝑉0 0 0. 5 1 1.5 0 0. 5 1 1.5 

0.2 0 9.5394 15.3384 20.0371 23.9225 15.8734 4.0757 4.7076 11.5027 

 0.25 36.6747 38.2776 39.7123 41.0044 31.2571 33.4976 35.4617 37.1982 

 0.5 46.0919 46.8441 47.5430 48.1942 43.7516 44.6838 45.5418 46.3344 

 0.75 50.9820 51.4274 51.8496 52.2506 49.6530 50.1724 50.6620 51.1246 

0.5 0 42.7768 45.1555 47.0972 48.7165 32.4718 37.2394 40.8056 43.5803 

 0.25 54.1912 54.9093 55.5613 56.1572 51.8247 52.7938 53.6540 54.4246 

 0.5 58.6147 58.9982 59.3605 59.7038 57.4586 57.9130 58.3382 58.7376 

 0.75 61.2490 61.5092 61.7599 59.4558 60.4957 60.7861 61.0645 61.3318 

1 0 54.4161 55.7471 56.8628 57.8194 48.9091 51.4194 53.3359 54.8620 

 0.25 61.3288 61.0701 56.6001 52.5783 59.7475 60.3809 60.9592 61.4916 

 0.5 36.7982 34.4760 32.3220 30.3182 44.0439 41.1545 38.4989 36.0492 

 0.75 21.7934 20.4418 19.1640 17.9540 25.8453 24.2587 22.7666 21.3604 
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Small scale effects on nonlinear buckling of 
nanoplates 

To understand the effects of the small-scale coefficients 

(nonlocal parameter) on the double piezo nanoplates, 

numerical nonlinear buckling load results with considering 

the viscoelastic damping coefficient (𝑔) , for different 

values of nonlocal parameter (𝜇)  are obtained. 

Furthermore, are also considered effects of temperature 

variations, (∆𝑇) and magnetic field. Figs. 4 demonstrate 

the effects of the small-scale coefficients in nonlinear 

buckling behavior for various aspect ratios. Based on the 

obtained results, it can be concluded that the small scale 

effect makes the nanoplate more flexible (Fig. 10) as the 

nonlocal model may be viewed as atoms linked by elastic 

springs while the local continuum model assumes the spring 

constant to take on an infinite value (Jomehzadeh and Saidi 

(2011)). 

 

 

Electric voltage effects on nonlinear buckling of 
nanoplates 

The effects of magnetic field (𝐻𝑥) and external electric 

voltage (𝑉0) on the nonlinear buckling ratio of a double-

piezo viscoelastic nanoplate are described in Figs. 5 and 6. 

It is seen that first the buckling load increase nonlinearly 

with increasing electric voltage and then decrease 

nonlinearly. The results are extracted for various nonlocal 

parameters (𝜇 = 0.5, 1 𝑛𝑚) , variation of temperature 
(∆𝑇 = 0, 100 𝐾)   for simply supported boundary 

conditions. Results obtained in Figs. 5 and 6 reveals that by 

increasing electric voltage in high nonlocal parameter 
(𝜇 = 1 𝑛𝑚), the nonlinear buckling ratio decreases. I.e. the 

small scale (nonlocal parameter) effect makes the nanoplate 

more flexible, but in low nonlocal parameters (𝜇 =
0.5 𝑛𝑚), it is inverses.  

 

 

(∆𝑇 = 0 𝐾 , 𝐻𝑥 = 0) (∆𝑇 = 100 𝐾 , 𝐻𝑥 = 0) 

 

 

(∆𝑇 = 0 𝐾 , 𝐻𝑥 = 1) (∆𝑇 = 100 𝐾 , 𝐻𝑥 = 1) 

Fig. 4 nonlinear buckling ratio for various values of   (𝛽) against nonlocal parameter 𝜇, electric voltage (𝑉0 = 0) for 

variation of temperature (∆𝑇 = 0 𝐾, 100 𝐾), coefficient of dimensionless magnetic field (𝐻𝑥 = 0, 1), maximum transverse 

amplitude (𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic damping coefficient (𝑔 = 0.01) 
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(∆𝑇 = 0 𝐾 , 𝜇 = 0.5 𝑛𝑚) (∆𝑇 = 0 𝐾 , 𝜇 = 1 𝑛𝑚) 

 

 

(∆𝑇 = 100 𝐾 , 𝜇 = 0.5 𝑛𝑚) (∆𝑇 = 100 𝐾 , 𝜇 = 1 𝑛𝑚) 

Fig. 5 nonlinear buckling ratio for various values of   (𝐻𝑥)  against electric voltage (𝑉0)  for variation of 

temperature (∆𝑇 = 0 𝐾, 100 𝐾), nonlocal parameter (𝜇 = 0.5 𝑛𝑚 , 1 𝑛𝑚), maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 = 1) 
and the viscoelastic damping coefficient (𝑔 = 0.01) 
  

  
(∆𝑇 = 0 𝐾 , 𝜇 = 0.5 𝑛𝑚) (∆𝑇 = 100 𝐾 , 𝜇 = 1 𝑛𝑚) 

Fig. 6 nonlinear buckling ratio for various values of   (𝐻𝑥) and electric voltage (𝑉0) for variation of temperature (∆𝑇 =
0 𝐾, 100 𝐾), nonlocal parameter (𝜇 = 0.5 𝑛𝑚 , 1 𝑛𝑚), maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic 

damping coefficient (𝑔 = 0.01). 
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(∆𝑇 = 0 𝐾 , 𝜇 = 0.5 𝑛𝑚) (∆𝑇 = 0 𝐾 , 𝜇 = 1 𝑛𝑚) 
Fig. 7 nonlinear buckling ratio for various values of  𝛽 and electric voltage (𝑉0) for nonlocal parameter (𝜇 = 0.5, 1 𝑛𝑚), 
variation of temperature  (∆𝑇 = 0 𝐾) , maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 = 1)  and the viscoelastic damping 

coefficient (𝑔 = 0.01) 

 

 

(𝐻𝑥 = 0 , 𝜇 = 0.5 𝑛𝑚) (𝐻𝑥 = 0 , 𝜇 = 1 𝑛𝑚) 

 

 

(𝐻𝑥 = 1 , 𝜇 = 0.5 𝑛𝑚) (𝐻𝑥 = 1 , 𝜇 = 1 𝑛𝑚) 

Fig. 8 nonlinear buckling ratio for various values of   (𝛽) against temperature (∆𝑇) and variation of coefficient of 

dimensionless magnetic field  (𝐻𝑥 = 0, 1) , nonlocal parameter  (𝜇 = 0.5 𝑛𝑚 , 1 𝑛𝑚) , maximum transverse amplitude 

(𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic damping coefficient (𝑔 = 0.01) 
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Fig. 7 shows the effects of aspect ratio (𝛽) or width to 

length ratio (𝑏/𝑎) on the nonlinear buckling ratio of a 

double-piezo nanoplate against increasing electric voltage 

(𝑉0 ) . The results are extracted for various nonlocal 

parameters (𝜇 = 0.5, 1 𝑛𝑚) , variation of temperature 

(∆𝑇 = 0, 100 𝐾)  for simply supported boundary 

conditions, respectively. From Figs. 5, 6 and 7, it can be 

found that electric voltage can decline the stiffness of the 

structure. Fig. 14 shows the nonlinear buckling behavior for 

different values of the viscoelastic damping coefficient of 

the nanoplates versus electric voltage with nonlocal 

parameters  (𝜇 = 1 𝑛𝑚)  and temperature fields  (∆𝑇 =
100 𝐾). From this figure, it can be seen that the electric 

voltage has the more effect on the buckling behavior while 

the effect of viscoelastic coefficient is little and by increase 

viscoelastic coefficient, nonlinear buckling load ratio 

almost remains unchanged. 

 

Thermal effects on nonlinear buckling of 
nanoplates 

To illustrate the effect of temperature on the nonlinear 

buckling ratio, in this section, the effects of uniform 

temperature fields on the nonlinear buckling ratio versus 

increasing aspect ratio (𝛽) and nonlocal parameters (𝜇) are 

shown Figs. 8-11. This is obvious that increasing the 

temperature (∆𝑇), the nonlinear buckling ratio decreases in 

all of plots. Fig. 10 illustrates the variation of the nonlinear 

buckling ratio versus increasing of uniform temperature 

field (0 − 200 𝐾) for different nonlocal parameters. It is 

revealed that for each temperature field, with increasing 

nonlocal parameter, nonlinear buckling ratio can increases 

or decreases that depends values of electric voltage and 

magnetic field. It is also revealed that the nonlinear 

buckling ratio increases in absence electric voltage (𝑉0 =
0). 
 

Magnetic field effects on nonlinear buckling of 
nanoplates 

Applying magnetic field in axial direction generate the  

 

 

force in radial direction that is called Lorentz force. The 

effect of magnetic field on nonlinear buckling behavior of 

double-piezo nanoplate is shown in Figs. 6. It is concluded 

that nonlinear buckling ratio can decreases with increasing 

magnetic intensity or can increases with increasing 

magnetic intensity (Figs. 5, 6 and 10). In absence electric 

voltage  (𝑉0 = 0)  with increasing magnetic intensity, the 

nonlinear buckling ratio increases. It is evident that the 

magnetic field is fundamentally an effective factor on 

increasing or decreasing buckling load of system. 

 

Elastomeric foundation effects on nonlinear 
buckling of nanoplates 

Fig. 12 describes nonlinear buckling behavior versus 

increasing electric voltage (𝑉0)  for the effect of 

elastomeric foundation coefficient (𝐺𝜉 = 0, 4.14)  and 

nonlocal parameters (𝜇 = 0.8, 1 𝑛𝑚). It can be found that 

the effect of elastomeric medium on buckling behavior is 

more significant than temperature and magnetic field.  

The elastomeric medium is made of Poly dimethylsiloxane 

(PDMS) which the temperature-dependent material 

properties in which (𝑇 = 𝑇0 + Δ𝑇)  and  (𝑇0 = 300 𝐾) 
(room temperature). It’s noted that, in the present, 
(𝐸𝑠 = (3.22 − 0.0034𝑇)𝐺𝑝𝑎, 𝜐𝑠 = 0.48 , )are taken from 

Refs. (Kolahchi (2015), Shen (2009), Kutlu and Omurtag 

(2012)). The Winkler coefficient  (𝑘) PDMS coefficients 

(𝐺𝜉 = 0, 4.14 , 𝐺𝜂 = 0, 4.14 , 𝜃 = 45°)  for the 

elastomeric foundation are also taken similar values of 

modulus coefficients were taken by Refs. (Kolahchi (2015), 

Shen (2009), Kutlu and Omurtag (2012)).  
 
 

6. Conclusions  
 

In the present research, the nonlinear thermo-electro-

elastic buckling behavior of viscoelastic nanoplates is 

investigated based on nonlocal elasticity theory. Employing 

nonlinear strain-displacement relations, the geometrical 

nonlinearity is modeled while governing equations are  

  
(𝐻𝑥 = 1 , 𝜇 = 0.5 𝑛𝑚) (𝐻𝑥 = 0 , 𝜇 = 1 𝑛𝑚) 

Fig. 9 nonlinear buckling ratio for various values of   (𝛽) and variation of temperature  (∆𝑇)  and coefficient of 

dimensionless magnetic field  (𝐻𝑥 = 0, 1) , nonlocal parameter  (𝜇 = 0.5 𝑛𝑚 , 1 𝑛𝑚) , maximum transverse amplitude 

(𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic damping coefficient (𝑔 = 0.01) 
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(𝑉0 = 0 , 𝐻𝑥 = 0) (𝑉0 = 0 , 𝐻𝑥 = 1) 

 

 

(𝑉0 = 1 , 𝐻𝑥 = 0) (𝑉0 = 1 , 𝐻𝑥 = 1) 

Fig. 10 nonlinear buckling ratio for various values of   (∆𝑇) against nonlocal parameter 𝜇, in electric voltage (𝑉0 = 0, 1), 
coefficient of dimensionless magnetic field (𝐻𝑥 = 0, 1), maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic 

damping coefficient (𝑔 = 0.01)  

  
(𝑉0 = 0 , 𝐻𝑥 = 1) (𝑉0 = 1 , 𝐻𝑥 = 1) 

Fig. 11 nonlinear buckling ratio for various values of   (∆𝑇) against nonlocal parameter 𝜇, in electric voltage (𝑉0 = 0, 1), 
coefficient of dimensionless magnetic field (𝐻𝑥 = 0, 1), maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic 

damping coefficient (𝑔 = 0.01) 
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Fig. 13 nonlinear buckling ratio for various values of   
(𝑉0)  and nonlocal parameter  𝜇 , in temperature  (∆𝑇 =
100 𝐾) , coefficient of dimensionless magnetic 

field  (𝐻𝑥 = 0, 1) , maximum transverse amplitude 
(𝑤1 𝑚𝑎𝑥 = 1)  and the viscoelastic damping 

coefficient (𝑔 = 0.01). 

 
 
derived through Hamilton’s principle and the semi -

analytical GDQ method are used to discretize the governing 

equation and associated boundary conditions. Eringen's 

nonlocal elasticity theory considers the effect of small size, 

which enables the present model to become effective in the 

analysis and design of nano-electromechanical systems. 

Based on Kelvin-Voigt model, the influence of the 

viscoelastic coefficient is also discussed. It is demonstrated 

that the GDQ method has high precision and computational 

efficiency in the vibration analysis of viscoelastic 

 

 

Fig. 14 nonlinear buckling ratio for various values of   
(𝑉0)  and the viscoelastic damping coefficient  (𝑔)  in 

nonlocal parameter  (𝜇 = 1 𝑛𝑚) , temperature  (∆𝑇 =
100 𝐾) , coefficient of dimensionless magnetic 

field  (𝐻𝑥 = 1)  and maximum transverse amplitude 
(𝑤1 𝑚𝑎𝑥 = 1) 

 

 

nanoplates. To present a better imagination of the trend of 

variations of the nonlinear buckling behavior of PZT-4 

nanoplate, results are also plotted 3 dimensions. Novelties 

of the present research are listed at the end of the 

introduction section. 

The main practical conclusions may be summarized as: 

• Present results are accurate and in an excellent 

agreement with results of the nonlocal linear solutions 

available in literature. 

• Increasing the magnetic field, can nonlinearly 

decreases or increases the buckling load of the viscoelastic 

double-piezo nanoplates. 
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(∆𝑇 = 100 𝐾 , 𝐻𝑥 = 0) (∆𝑇 = 100 𝐾 , 𝐻𝑥 = 1) 

Fig. 12 nonlinear buckling ratio for various values of   (𝑉0) against nonlocal parameter 𝜇, in temperature (∆𝑇 = 100 𝐾), 
coefficient of dimensionless magnetic field (𝐻𝑥 = 0, 1), maximum transverse amplitude (𝑤1 𝑚𝑎𝑥 = 1) and the viscoelastic 

damping coefficient (𝑔 = 0.01) 
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• When the small-scale effect increases the hardening 

stiffness of the nanoplate rapidly decreases. i.e. the small-

scale effect makes the nanoplate more flexible. 

• Increasing the external electric voltage, considerably 

and non-monotonically increase the nonlinear buckling load 

of the viscoelastic double-piezo nanoplates. 

• Influence of the small scale is more remarkable for 

nanoplates with simple supports in all sides and an 

elastomeric foundation. 

• The nonlinear buckling behavior is dependent on 

many factors, among them: viscoelastic coefficient, 

magnetic intensity, aspect ratio, material properties and 

boundary conditions. 

• Numerical results are presented to serve as 

benchmarks for next analyses of viscoelastic piezo 

nanoplates as fundamental elements in nano thermo-electro-

mechanical systems. 
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