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1. Introduction 
 

Reinforced concrete (RC) shear walls are typically used 

in high-rise buildings as primary lateral load resisting 

elements because of their large in-plane stiffness and 

strength, which enables them to carry large lateral loads due 

to earthquakes while also minimizing lateral displacements 

(Lu and Huang 2014, Parulekar et al. 2016, Zhao et al. 

2017, Sakr et al. 2017). However, investigations into 

structural damage caused by recent earthquakes indicate 

that the inadequate deformation capacity and energy 

dissipation capacity of shear walls are the critical factors 

leading to structural failure and collapse. The application of 

a performance-based seismic design scheme is an effective 

way to control the structural response and damage degree, 

and accurate deformation capacity estimations are the basis 

of displacement-based seismic design (Varughese et al. 

2015). Furthermore, correct prediction of the entire load 

versus deformation response is of major importance to 

seismic performance evaluation using the capacity spectrum 

method. 

The plastic hinge model proposed by Paulay and 

Priestley (1992) is widely accepted and used in estimating 

the deformation capacity of RC shear walls because this 

model is simple and produces good flexural deformation  
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estimates (Choi et al. 2004, Takahashi et al. 2013, Kang and 

Kim 2014, Zhou et al. 2014). They allow the calculation of 

a bilinear load-deformation relationship by separating the 

elastic portion of the deformation from the inelastic portion, 

and lumping the inelastic portion of deformation into a 

plastic hinge at the critical section (Grammatikou et al. 

2019). Hence, a correct estimate of the plastic hinge length 

affected by shear and strain penetration dominates the 

accuracy of the plastic hinge model (Massone and Alfaro 

2016). However, the inherent shortcomings of the plastic 

hinge model are that the contributions of shear and sliding 

deformations to lateral displacements cannot be taken into 

account. Therefore, combining the plastic hinge model with 

the truss model proposed by Park and Paulay (1975) has 

become a common method for considering the contribution 

of shear deformation (Massone et al. 2006, Zhang et al.  

2009). Nevertheless, when using the truss model to 

calculate shear deformation, the shear stiffness is assumed 

to be a certain value over the entire plastic range, causing 

the calculated shear deformation to remain unchanged once 

the yield limit has been reached, which is significantly 

different from the observed experimental results. 

For functionality and architectural reasons, symmetrical 

linear walls are often joined or arranged in orthogonal 

directions to form asymmetrical (T- and L-shaped) flanged 

walls (Kabir and Vasheghani-Farahani 2009, Chen et al. 

2016). The contribution of the flange vertical reinforcement 

in flexural strength may result in a higher proportion of 

shear deformation (Bafti et al. 2019). Extensive 
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By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed 

for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for 
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experimental studies on flexure-dominant flanged walls 

have shown that shear deformation constitutes more than 

15% of the lateral top displacement and increases with 

increasing flexural deformation in the plastic range 

(Thomsen and Wallace 2004, Beyer et al. 2008, Wang et al. 

2018). Therefore, neglecting the shear deformation 

contribution or assuming constant shear stiffness will 

underestimate the deformation capacity of flanged walls. 

Due to the unclear shear mechanism and the complexity 

in flexure-shear interaction, estimation of the shear 

deformation has been a difficult issue in predicting the 

inelastic response of RC shear walls. Although considerable 

numbers of studies have been performed to account for 

nonlinear shear deformation, but most of these efforts 

concerned rectangular walls (Hossain and Wright 2004). 

Dazio et al. (1999) examined the shear deformation for 

displacement demands through quasi-static cyclic tests on six 

rectangular RC walls and found that the shear-to-flexural 

displacement ratio remained approximately constant for the 

peak displacements of all cycles in the inelastic range. Based 

on this observation and assuming a fanning crack pattern, 

empirical equations for estimating the shear-to-flexural 

displacement ratio were developed, and formulas for 

determining the ultimate displacement of flexure-dominant 

RC shear walls were further established combing the plastic 

hinge model (Hines et al. 2004, Priestley et al. 2007, Beyer et 

al. 2011). However, these methods are achieved by 

determining the uncertain cracking angle, which may amplify 

the variation in the calculation results. To account for 

combined axial, flexural, and shear effects, Mostafaei and 

Vecchio (2008) developed a uniaxial shear-flexure model to 

predict the full load-deformation relationships of RC 

elements, and Dang et al. (2014) applied this model to fiber-

reinforced concrete shear walls. Furthermore, using the 

microplane concept, Hua and Yahya (2010) formulated a fiber 

element to model nonlinear shear deformations in medium-

rise RC walls, and this model can include nonlinear axial-

flexural-shear interactions at the material level. Nevertheless, 

these methods require a relatively intensive computation and 

iteration process, which might be suitable for nonlinear 

analysis by researchers but not for structural design by 

engineers. More importantly, the feasibility of using the 

established models to predict the deformation capacity of 

flanged walls is debatable. 

Given the deficient study on modeling the inelastic 

response of flanged RC walls, additional research efforts 

are required to establish a simple model that enables 

reasonable estimations of each deformation component and 

accurate predictions of the entire load versus deformation 

response with low computational cost. In this study, 

experimental results for three large-scale T-shaped RC 

walls are presented to examine the variation in each 

deformation component with the total deformation over the 

entire loading process. Based on the observed deformation 

behavior and using flexural section analysis, simple 

methods are established to estimate the flexural, shear, and 

strain penetration components of deformation. By 

integrating the three deformation components, a new load-

deformation analytical model for flexure-dominant flanged 

walls is proposed that accounts for the contribution of 

deformations due to flexure, shear, and strain penetration. 

By further simplifying the analytical model, a simplified 

procedure is proposed for estimating the ultimate 

displacement capacity of flanged walls, which will be 

valuable for performance-based seismic designs and seismic 

capacity evaluations. 

 

 

2. Experimental program and observations 
 

2.1 Specimens and testing 
 

Three large-scale T-shaped RC wall specimens with 

different detailing at boundaries were tested under 

combined constant axial loading and reversed cyclic lateral 

loading. The specimen details are listed in Table 1. The 

three wall specimens are 2200 mm tall and 100 mm thick 

with a web length of 1000 mm and a flange length of 900 

mm. The configuration and reinforcement details of all 

three specimens (TW-1, TW-3 and TW-4) are shown in Fig. 

1. The wall specimens were designed with adequate shear 
reinforcement and favorable anchorage conditions to ensure 

flexural domination and to prevent shear, sliding and 

anchorage failures. Fine aggregate concrete with a mean 

compressive strength of 32.3 MPa was used for all 

specimens. Hot-rolled deformed bars were used as web 

 

Table 1 Specimen parameters 

Specimens 

Boundary confinement 

at the web-flange 

intersection 

Range of the 

web boundary 

region (mm)  

Longitudinal bars 

at the web 

boundary  

Transverse 

bars at the 

web boundary  

VN
a VMAX

b  θU
c 

TW-1 Yes 240  8-Ø10d Ø6@75e 
489 

-489 

380 

-216 

1/88 

-1/48 

TW-3 Yes 320  10-Ø10 Ø6@50 
489 

-489 

387 

-231 

1/68 

-1/41 

TW-4 No 240 8-Ø10 Ø6@75 
489 

-489 

322 

-217 

1/78 

-1/47 
 

* a Nominal shear capacity (flange in tension/flange in compression). 

* b Maximum applied lateral load. 

* c Ultimate drift ratio 

* d Number of longitudinal bars - bar diameter in mm. 

* e Bar diameter in mm @ bar spacing in mm. 
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Table 2 Reinforcing steel properties 

Rebar type 
Rebar 

grade 

Diameter 

d (mm) 

Yield 

strength 

fy (MPa) 

Ultimate 

strength 

fu (MPa) 

Elongation 

δu (%) 

Longitudinal 

reinforcement 
HRB400 10 478 610 21.5 

Distributed 

horizontal 

reinforcement 

HRB335 8 540 723 20.5 

Distributed 

vertical 

reinforcement 

HRB335 6 423 564 21.5 

Transverse 

reinforcement 
HRB335 6 408 582 20 

 

 

reinforcement and longitudinal reinforcement, whereas hot-

rolled plain bars were used as transverse reinforcement. The 

properties of the reinforcing steel are listed in Table 2. More  

 

 

detailed experimental information is available elsewhere 

(Wang et al. 2018). 

A cantilever loading device was adopted for this test, as 

shown in Fig. 2. An axial load of approximately 0.10Agfc′ 

was applied to the top of the wall by hydraulic jacks. Cyclic 

lateral displacements with unequal amplitudes were applied 

to the wall by a hydraulic actuator to allow the 

asymmetrical specimens to be loaded to failure in two 
loading directions (flange in tension and flange in 

compression). Failure of the specimens was defined at the 

displacement associated with a decrease in moment 

resistance to 85% of the maximum measured value.  

To accurately measure the deformation process, a high-

precision non-interference measurement method based on 

particle image velocimetry (PIV) was adopted to decouple 

the total deformation into flexural, shear and sliding 

deformations, as shown in Fig. 3. This technique combines 

digital photography, close-range photogrammetry and  

  
(a) Dimensions (b) Reinforcement details for specimen TW-1 

  
(c) Reinforcement details for specimen TW-3 (d) Reinforcement details for specimen TW-4 

Fig. 1 Specimen configuration and reinforcement details 

900
400

18001100

6
0

0

100 2
2

0
0

100

1000 950

4
0

0

 Hoops

6 @ 75

Vertical bars

  6 @ 100

Crossties

6 @ 200

Horizontal bars

8 @ 75

900

808023 54 80 80 23240

Horizontal bars

 8 @ 100

240

Longitudinal bars
   10 - 10

 Hoops

6 @ 75

Longitudinal bars
  4 - 10

2
3

8
0

8
0

1
0

0
0

5
4

8
0

8
0

8
0

2
3

Vertical bars

 6 @ 80

5
0

0

Longitudinal bars
        8 - 10

Crossties

6 @ 200

Vertical bars

  6 @ 100

Horizontal bars

8 @ 75

 Hoops

6 @ 50

Horizontal bars

 8 @ 100

Longitudinal bars
   10 - 10

 Hoops

6 @ 75

Longitudinal bars
  4 - 10

Vertical bars

 6 @ 80

2380805423 80 80

900

240 240

2
3

8
0

8
0

8
0

5
4

1
0

0
0

8
0

8
0

5
0

0

2
3

5
0

0

Longitudinal bars
        10 - 10

 Hoops

6 @ 75

Vertical bars

  6 @ 100

Crossties

6 @ 200

Horizontal bars

8 @ 75

Longitudinal bars
        8 - 10

Horizontal bars

 8 @ 100

 Hoops

6 @ 75

Longitudinal bars
  4 - 10

Vertical bars

 6 @ 80

2380785823 80 78

900

240 240

2
3

8
0

8
0

8
0

5
4

1
0
0
0

23

8
0

8
0

2
3

5
0
0

531



 

Bin Wang, Qing-Xuan Shi, Wen-Zhe Cai and YI-Gong Peng 

 

 

Fig. 3 Measuring device based on the PIV technique 

 

 

image analysis by PIV and can measure the changes in the 

location of any control point (target markers) on the 

specimen. The specific measurement system used for the 

PIV technique and the procedure for decoupling the 

deformations using this technique are detailed in Wang et 

al. (2019a). 

 

2.2 Deformation analysis 
 

The total top displacement of a cantilever RC wall can 

be interpreted as the sum of flexural deformations Δf, shear 

deformations Δs and sliding deformations Δsl. To investigate 

the variation in each deformation component with the total 

deformation for flexure-dominant flanged walls, Fig. 4 

shows the relative contributions of different deformation 

components to the total displacement at various loading 

steps for all three specimens. Additionally, Fig. 4 also 

compare the total displacements ΔPIV obtained by summing 

the three deformation components derived from the PIV 

technique with the top displacements ΔLVDT measured using 

linear variable differential transformers (LVDTs), in the 

form of ΔPIV/ΔLVDT ratios. The ΔPIV/ΔLVDT ratios varied 

within 0.9 to 1.1 for different loading steps, which verified 

the accuracy of the deformations measured by the PIV 

technique. 

The sliding deformations between the wall and the 

foundation did not exceed 10% of the total displacement in 

the initial loading stage. With the increase in top 

displacement, the sliding deformations contributed a 

decreasing proportion of the total displacement. Over the 

entire plastic range, the sliding deformations were less than 

3% of the total displacement in the flange-in- tension 

loading direction, whereas the sliding deformations were 

only approximately 1% of the total displacement in the 

flange-in-compression loading direction. Therefore, the 

contribution of sliding deformations can be neglected in the 

calculation of deformation capacity. 

The shear deformations accounted for a relatively higher 

proportion of the total displacement before concrete 

cracking. With the continuous development of flexural 

cracks at the bottom of the web, the increase in flexural 

deformations was faster than that of shear deformations, 

resulting in a significant decrease in the shear-to-total 

deformation ratio. Then, as the original flexural cracks 

developed obliquely into diagonal cracks, the decreasing 

trend of the shear-to-total deformation ratio gradually 

slowed. As the drift level increased beyond the yielding 

point, the shear deformations increased in proportion to the 

flexural deformations. Since the sliding deformations are 

too small to be neglected, it is concluded that for flexure-

dominant T-shaped walls without significant damage to the 

shear-transfer mechanism, the shear-to-total deformation 

ratio remains approximately constant over the entire plastic 

range. In addition, the shear deformations accounted for 

10% to 14% of the total displacement in the flange-in-

tension loading direction and reached 13% to 17% of the 

total displacement in the flange-in-compression loading 

direction. Therefore, the contribution of shear deformations 

should be included in the calculation of deformation 

capacity.  
 

 

3. Model for flexural deformation 
 

The flexural deformations Δf can be interpreted as the 

sum of the flexural deformations of the wall panel Δf,f and 

the displacement Δf, θ due to the fixed-end rotation of the 

wall associated with the strain penetration of the 

longitudinal reinforcing bars into the foundation. Different 

models are established for each of these two components. 

 

3.1 Flexural deformation of the wall panel 
 

For a cantilever wall component subjected to a given 

load, the curvature distribution over the wall height can be 

determined based on the moment distribution using the 

moment-curvature relationship. Then, the flexural 

deformations can be obtained by integrating the curvature 

along the wall height twice. This method is appealing due to 

its clear calculation process, but large deviations will be 

caused in the post-peak range. These deviations occur 

because when the curvature of the bottom section exceeds 

the peak point of the moment-curvature curve (i.e., as 

additional displacement is applied beyond the displacement 

causing the maximum resistance), the curvatures above the 

bottom section calculated from the reduced moments are  

 

Fig. 2 Test setup 

532



 

Estimation of the load-deformation responses of flanged reinforced concrete shear walls 

 

 

 

Fig. 5 Curvature distribution assumed in the plastic hinge 

analysis 

 

 

smaller than the curvatures at the peak point and far smaller 

than the experimental values, thereby underestimating the 
flexural deformations. In addition, such a method requires 

high computational effort due to the complexity in 

determining the curvature distribution from the moment 

distribution. Another simple approach using the plastic 
hinge model allows the calculation of a bilinear load-

displacement relationship based on the estimates of the 

plastic hinge length and curvatures at the yield and ultimate 

limit state. However, for the sake of simplicity, this 

approach generally assumes that the plastic hinge length 

remains constant over the entire plastic range, which also 

results in large differences between the calculated results 

and the experimental values. 

Combining the advantages of the above two approaches, 

a piecewise calculation method based on moment-curvature 

analysis is adopted in this paper, and the changes in the 

plastic hinge length are considered. For a cantilever shear 

wall subjected to a concentrated force at its top surface, the 

lateral load can be determined by the ratio of the moment at 

the bottom derived from the sectional analysis to the wall 

height, and the displacement is calculated in two stages: 

pre-yielding and post-yielding ranges. In the pre-yielding 

range, the curvature is linearly distributed along the wall 

height; then, the elastic flexural deformations of the wall 

panel can be estimated as follows: 

2

, 

1

3
ef f H =

 
(1) 

where ϕ is the curvature of the bottom section derived from 

the moment-curvature analysis, and H is the wall height. 

In the post-yielding range, the plastic hinge model is 

used to estimate the flexural deformations, but the plastic 

hinge length is no longer assumed to be a certain value.  

 

 
According to the piecewise-linear curvature profile in Fig. 

5, the variable equivalent plastic hinge length lp can be 

determined as follows: 

*0.5 0.5 1
y

p p

M
l l H

M

  
= = −  

    

(2) 

where lp
* is the true plastic hinge length and My and M are 

the yield moment and the moment of each loading step 

derived from the moment-curvature analysis, respectively. 

Using Eq. (2), lp can be accurately estimated until the 

ultimate moment capacity is reached. However, in the 

post-peak range, the plastic hinge length varied little 

according to the experimental observations. Therefore, the 

equivalent plastic hinge height at the peak moment is used 

to calculate the post-peak displacement. Following Hines 

(2002) suggestion for assessment purposes, the center of 

rotation for the plastic deformation is placed at the bottom 

of the plastic hinge region, and then the post-yield flexural 

deformations of the wall panel can be estimated as 

follows: 

2

, , , 

1
( )

3
f f yf f pf f y y pH l H   =  + = + −

 
(3) 

where Δyf,f is the yield displacement, Δpf,f is the plastic 

displacement, and ϕy is the yield curvature derived from the 

moment-curvature analysis.  

 
3.2 Flexural deformation due to strain penetration 

 

A common method to account for the contribution of 

deformations due to strain penetration is to add an 

additional equivalent plastic hinge length based on the 

plastic hinge model. However, such strategy lacks 

theoretical basis and the increased constant plastic hinge 

length is mostly decided by experience. More importantly, 

such a strategy fails to reflect the feature of the increase in 

the slip of the longitudinal bars with increasing top: 

displacement. Therefore, an individual model is used to 

estimate the deformations due to strain penetration in this 

paper. Based on the assumption that the plane sections 

remain plane, the rigid body rotation of a wall due to strain 

penetration can be calculated according to the slip of the 

extreme tensile bars and the neutral axis location, as shown 

in Fig. 6; thus, the deformations due to strain penetration 

can be expressed as follows: 

V

Shear wall H

M φy
φ

M y

lp
*

lp

0.5(φ-φy)lp
*

     =(φ-φy)lp

   
(a) TW-1 (b) TW-3 (c) TW-4 

Fig. 4 Contributions of each deformation component to the total displacement in different loading steps 
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Fig. 6 Models for estimating the deformations due to 

strain penetration 

 

 
Fig. 7 Strain distributions of the tensile bars in the 

anchorage region 
 

 

, 

0 -

slip

f slip

H
H

h c



 = =

 

(4) 

where θslip is the rotation due to strain penetration, δslip is the 
slip of the extreme tensile bars in the anchorage zone, h0 is 
the effective height of the section (distance from the extreme 
tensile bars to the extreme compression fiber), and c is the 
neutral axis depth. 

The neutral axis depth can be obtained directly from the 

moment-curvature analysis. The slip of the extreme tensile 

bars is determined using the model proposed by Lowes and 

Altoontash (2003), for which two simplifications are made to 

facilitate the use of this model by structural engineers. One 

simplification is that the anchorage length la is calculated 

corresponding to the yield stress of the tensile bars and 

assumed to be constant with increasing applied displacement. 

The other simplification is that the strain distribution over the 

anchorage length is assumed to be linear for any drift levels. 

Fig. 7 compares the actual strain distribution adopted in the 

model by Lowes and Altoontash to the simplified strain 

distribution assumed in this paper. The simplified model 

overestimates the slip of the tensile bars before yielding and 

underestimates the slip after yielding. However, the actual 

strain distribution should be determined by adding zero-

length interface elements in the fiber model or spring 

elements in the three-dimensional solid model (Zhao and 

Sritharan 2007), which greatly increases the difficulty and 

complexity of the calculation process. Although the 

simplified model sacrifices some accuracy, the calculation 

process has been greatly simplified. Comparing the bar slip 

determined by the above two models using the following 

procedure, the discrepancy was relatively large in the flange-

in-tension loading direction but within an acceptable range. 

When calculating the anchorage length, the average 

bond stress τavg is assumed to be a constant according to 

Eligehausen et al. (1983), and this value can be estimated as 

𝜏𝑎𝑣𝑔 = 1.75√𝑓′𝑐 . According to the static equilibrium 

between the pull-out force and the anchoring force of 

tensile bars (
𝜏𝑑2

4
𝑓𝑦 = 𝜋𝑑𝑙𝑎𝜏𝑎𝑣𝑔), the anchorage length at 

yielding can be calculated as follows: 

4 7 '

y y

a

avg c

f d f d
l

f
= =  (5) 

where d and fy are the diameter and yield stress of the 
longitudinal reinforcing bars, respectively, and f′c is the 
concrete cylinder strength. According to the assumed 
triangular strain distribution, the slip of the extreme tensile 
bars can be determined as follows: 

00.5slip al =  (6) 

where ε0 is the maximum strain in the extreme tensile bars 
at the wall base for a given loading, which can be 
determined from the moment-curvature analysis. Then, 
substituting Eqs. (5)-(6) into Eq. (4), the flexural 
deformations due to strain penetration can be calculated as 
follows: 

0 y

f, θ

c 014 ' ( )

f dH

f h c


 =

−
 (7) 

When estimating the deformations due to strain penetration, 
d, fy, f′c, H, and h0 are all constants that can be derived 
directly from the material properties and geometric 
parameters of the wall specimen, whereas ε0 and c can be 
determined from the results of the moment-curvature 
analysis. 
 

3.3 Verification of the flexural model 
 

Fig. 8 compares the experimentally measured flexural 
deformations Δf−experiment for all three test specimens to the 
predicted values Δf−prediction obtained by summing the 
flexural deformations of the wall panel Δf, f−prediction and the 
deformations due to strain penetration Δf,θ−prediction. The 
deformations due to strain penetration increase with 
increasing top displacements, but their contribution to the 
 

 

Table 3 Comparison between measured and predicted 

ultimate flexural displacements 

Δ
f, θ

ε

ε0

θ
slipδslip

h0-c

Before yielding

ε la
ε ε ε

la
la la

After yielding Before yielding After yielding

Specime

n 

Ultimate flexural displacement 

(flange in tension) 

Ultimate flexural displacements 

(flange in compression) 

Measure
d (mm) 

Predicte
d (mm) 

Measure/Predict
ed 

Measure
d (mm) 

Predicte
d (mm) 

Measure/Predict
ed 

TW-1 25.56 23.96 1.07 37.05 43.85 0.84 

TW-3 29.48 27.40 1.08 45.26 45.31 1.00 

TW-4 29.16 27.29 1.07 39.93 42.03 0.95 
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total flexural deformations are within 10% over the entire 

loading process. The lateral load versus flexural top 

displacement relationships predicted by the analytical 

model are in good agreement with the test results except for 

a small deviation in the ultimate flexural displacements 

(Table 3). In the flange-in-tension loading direction, the 

predicted values of the ultimate flexural displacement are 

slightly smaller than the experimental values, which results 

from neglecting the effect of shear cracks on flexural 

deformations in the prediction. The development of shear 

cracks during the test increases the plastic hinge length, 

thereby increasing the flexural deformation. In the flange-

in-compression loading direction, specimen failure was 

controlled by fracture of the buckled longitudinal bars at the 

free end of the web. The analytical model can calculate only 

the monotonic response and cannot accurately estimate the 

ultimate tensile strain of buckled longitudinal bars, which 

leads to some differences between the experimental values 

and the predicted values. In addition, the pre-peak stiffness 

of the predicted curves is greater than that of the test curves, 

which is also due to the reduction in bending stiffness by 

shear cracks. In general, the proposed model can reasonably 

predict the flexural response of flanged walls. 

 

 

4. Model for shear deformation 

 
Since the truss model used for estimating shear 

deformations is unable to consider the degradation of the 

shear stiffness in the plastic range and the empirical model 

used for estimating the shear-to-flexural deformation ratio 

has difficulty in determining the cracking angle, this paper 

attempts to combine the theoretical advantages of the truss 

model with the observed linear relationship between shear 

and flexural deformation and propose a new model for 

predicting the shear response of flanged walls. 
 

4.1 Modeling procedure 
 
Considering the differences in the variation in shear 

deformation between elastic and plastic ranges of flanged 

walls, two separate calculation procedures are established 

for pre-yielding and post-yielding ranges, respectively. 

Before yielding, the elastic shear deformation of a 

cantilever wall subjected to a concentrated force at its top 

surface can be estimated according to Castigliano’s second 

theorem as follows: 

 

 

es
w

PH

GA
 =

 
(8) 

where P is the applied lateral load, which can be determined 

from the moment-curvature analysis; G is the shear 

modulus; I is the cross-sectional moment of inertia of the 

wall; Aw is the cross-sectional area of the web; and μ is the 

section shape factor accounting for the uneven distribution 

of shear stress along the cross section. The value of μ is 

taken as 2.0375 according to the cross- sectional shape of 

the tested T-shaped wall (Shi and Liang 2012). 

After yielding, the curvature is nonlinearly distributed 

along the wall height with large values concentrated in 

the plastic hinge region, and the flexural top deformations 

are dominated by plastic hinge rotation. Due to the 

interaction between flexure and shear, the shear 

deformations are also concentrated in the plastic hinge 

region despite a constant shear demand over the wall 

height. As a result, the gross shape of the distribution of 

curvatures over the wall height is similar to the gross 

shape of the distribution of shear strains, as Brueggen  

(2009) observed in the quasi-static test of T-shaped walls. 

Additionally, Beyer et al. (2011) examined the shear and 

axial strain distributions based on the cyclic testing of U-

shaped walls and found that the magnitude of the shear 

strains was directly linked to the magnitude of the tensile 

strains in the vertical reinforcing bars. Because the 

neutral axis depth varies little once the boundary 

longitudinal bars yield (Thomsen and Wallace 2004), the 

tensile strains in the vertical reinforcing bars are 

proportional to the curvatures, which further verifies the 

linear relationship between shear strains and curvatures. 

The proportional relationship between the two values can 

be expressed as follows: 

C =
 (9) 

where γ is the shear strain and C is the proportional 

coefficient between the two values with units of length. 

Integrating both sides of Eq. (9) along the wall height leads 

to the proportional relationship between the shear 

displacement Δs and the flexural rotation θf, which is 

expressed as follows: 

s fC =
 

(10) 

The flexural rotation θf has been obtained in the flexural 

deformation calculations mentioned above. Hence, the shear  

   
(a) TW-1 (b) TW-3 (c) TW-4 

Fig. 8 Measured and predicted lateral load versus flexural top displacement relationships 
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deformation can be calculated by simply determining the 

value of C. 

For a given section, the curvature and shear strain can be 

determined by the ratio of internal force to stiffness: 

M

EI
 =

 
(11) 

s

V

K
 =

 

(12) 

where EI is the flexural stiffness, Ksis the shear stiffness per 

length, M and V are the moment and shear force (for a 

cantilever wall with a tip load, M=VH), respectively. Then, 

substituting Eqs. (11)-(12) into Eq. (9) yields the following 

expression: 

s

EI
C

K H
=

 

(13) 

Because the shear-to-flexural deformation ratio remains 

approximately constant over the entire plastic range for 

flexure-dominant T-shaped walls, as discussed in Section 

2.2, the proportional coefficient C is assumed to be constant 

for all post-yielding cycles. Hence, predictions of the shear 

and flexural stiffness at first yielding can be used to 

determine the value of C. The shear stiffness can be 

calculated form the equation proposed by Park and Paulay 

(1975) on the basis of an analogous truss, which assumed 

the chord members as infinitely rigid and neglected shear-

flexure interaction and any deformations at the anchorage of 

the stirrups. For simplicity of calculation, the cracking angle 

is assumed to be 45 degrees and the shear reinforcement is 

horizontally arranged according to the test, then the cracked 

shear stiffness per length can be calculated with 

thefollowing expression: 

0
1 4

sh
s s w

E sh

K E b h
a




=

+
 

(14) 

where ρsh is the ratio of the shear reinforcement area to the 
gross area of concrete perpendicular to that reinforcement, 
Es is the elastic modulus of steel, bw is the web width, and 
aE is the ratio of the elastic modulus of steel to the elastic 
modulus of concrete. Considering the increase in the 
modular ratio aE due to the softening of the diagonal 
concrete strut, aE is taken as an average value of 10 for 

analysis purposes, as suggested by Priestley et al. (2007).  
 
 
The flexural stiffness at first yielding can be calculated 
using the yield moment My and yield curvature ϕy derived 
from the moment-curvature analysis. Therefore, Eq. (13) 
can be written as follows: 

y

s y

M
C

K H
=

 

(15) 

Fig. 9 compares the coefficient C calculated using Eq. 
(15) to the values derived from the experimental results. For 
the plastic range where the proportional coefficient C needs 
to be used, the predicted values are closed to the test values, 
which verifies the accuracy of the calculation method 
proposed in this paper. Moreover, the values of coefficient 
C calculated from the test results remain approximately 
unchanged after the component reaches the yield limit, 
which further validates the assumption that the proportional 
coefficient C is constant for all post-yielding cycles. 

Then, substituting Eq. (15) into Eq. (10) leads to the 
final expression of shear deformations: 

y

s f

s y

M

K H



 =

 

(16) 

 
4.2 Verification of the shear model 

 

Fig. 10 compares the measured shear deformations in 

the experiment for all three test specimens to the values 

predicted by the analytical model. The predicted lateral load 

versus shear top displacement relationships closely match 

the measured wall responses, except for small deviations in 

the ultimate shear displacements (Table 4). In the flange-in-

tension loading direction, the predicted values of the 

ultimate shear displacement are generally greater than the 

experimental values. This discrepancy occurs because the 

assumption that the shear-to-flexural deformation ratio 

remains constant is completely valid for the case with the 

flange in compression but not for the case with the flange in 

tension. As shown in Fig. 4, the shear -to-flexural 

deformation ratio tends to decrease slightly over the plastic 

range under positive loading, which results in the 

overestimation of the shear displacements. In the flange-in-

compression loading direction, the predicted values of the 

ultimate shear displacement are slightly smaller than the 

experimental values. This discrepancy occurs because when 

calculating the cracked shear stiffness through Eq. (14), the  

   
(a) TW-1 (b) TW-3 (c) TW-4 

Fig. 9 Comparison of predicted coefficient C to experimental values 
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assumed cracking angle of 45 degrees is smaller than the 
experimental observed one, which results in the 
underestimation of the proportional constant C and the 
shear displacements. In general, the proposed model can 
reasonably predict the shear deformation response of 
flanged walls. 
 

 

5. Evaluation of the integrated model 
 

By integrating the deformations due to flexure, shear, 

and strain penetration, a new load-deformation analytical 

model is proposed for flexure-dominant flanged walls. Fig. 

11 shows the envelopes derived from the integrated model 

in comparison to the experimental force-displacement 

hystereses for all three test specimens. The results show that 

the predicted response of both specimens in the flange-in-

tension and flange-in-compression loading directions 

captures the shape of the measured response envelope 

reasonably well, which illustrates that the integrated model 

proposed in this paper can predict the load-deformation 

response of flanged walls with sufficient accuracy.  

The proposed model provides engineers with a simple, 

accurate modeling tool appropriate for routine design work. 

Through simple sectional analysis, the effects of the axial 

load ratio, reinforcement content, material properties and 

geometric parameters on the deformation behavior of  

 

 

flanged walls can be quantified in the proposed model. In 

addition, the monotonic pushover curve can be determined 

directly by substituting the design parameters and the 

moment-curvature response into the proposed formulas, 

without requiring a complex iteration process. Furthermore, 

to ensure the accuracy and wide applicability of the model, 

purely empirical relationships and oversimplified 

assumptions are avoided as much as practical. The proposed 

modeling procedure is applicable not only to the T-shaped 

RC walls studied in this paper but also to rectangular walls 

and other flanged walls with arbitrary sections. However, 

for asymmetrical flanged walls, moment-curvature analyses 

should be conducted in both flange-in-tension and flange-

in-compression loading directions. 

Given the differences in the profiles of shear 

displacement and flexural displacement over the wall height, 

the existing models for predicting the shear deformation as a 

constant fraction of flexural deformation can only estimate 

the shear displacement at the top of the wall. Applying a 

multiplier for estimating the shear displacements at other 

positions will lead to underestimation in the plastic hinge 

region and overestimation in the elastic region. For the model 

proposed in this paper, a more realistic proportional 

relationship between shear displacement and flexural rotation 

is established according to the similar gross shapes of the 

curvature and shear strain distributions over the wall height. 

Table 4 Comparison between measured and predicted ultimate shear displacements 

Specimen 
Ultimate shear displacement (flange in tension) Ultimate shear displacements (flange in compression) 

Measured (mm) Predicted (mm) Measure/Predicted Measured (mm) Predicted (mm) Measure/Predicted 

TW-1 3.29 3.49 0.94 6.34 6.15 1.03 

TW-3 3.54 3.74 0.95 7.82 6.66 1.17 

TW-4 3.26 3.2 1.01 7.03 5.89 1.19 

   
(a) TW-1 (b) TW-3 (c) TW-4 

Fig. 10 Measured and predicted lateral load versus shear top displacement relationships 

   
(a) TW-1 (b) TW-3 (c) TW-4 

Fig. 11 Comparison of predicted lateral load-top displacement skeleton curves to experimental hysteretic curves 
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Therefore, this model can be used to predict the shear 

displacement and total deformation at any position over the 

wall height, and the derived displacement profile is of great 

significance to the direct displacement-based design 

procedure.  

The integrated model can predict the monotonic 

pushover curves of flexure-dominant RC walls very well, 

explicitly accounting for each of the flexural, shear, and 

strain penetration components of deformation. However, 

several shortcomings still exist in the proposed model. First, 

because the model is based on a flexural section analysis 

that assumes that plane sections remain plane, the shear lag 

effects are neglected in the calculation. However, the shear 

lag effects may have less influence on the deformation 

behavior of flexure-dominant walls. Second, the tension 

shifting effects are neglected in the model, which leads to a 

reduced prediction of plastic hinge length and 

underestimation of the deformation in the plastic range; 

however, this underestimation tends to be conservative for 

design purposes. Third, when calculating the cracked shear 

stiffness using the truss model, the cracking angle is 

assumed to be 45 degrees for the sake of simplicity, which 

deviates from the true cracking angle especially for the T-

shaped walls with the flange in compression. A better 

estimation of the cracking angle can be obtained by the 

equation from Collins and Mitchell (1997). Generally, the 

proposed integrated model can give good prediction of the 

load-deformation response of flexure-dominant RC walls. 

 
 
6. Simplified calculation of ultimate displacement 
 

Ultimate displacement capacity is an important index that 

determines the ductility and energy dissipation capacity of a 

structure and is critical to performance-based seismic designs 

and seismic capacity evaluations. The ultimate displacement 

(curvature) is defined as the smallest value in the following 

three cases: (1) the moment resistance decreases to 85% of the 

maximum moment capacity; (2) the core concrete achieves the 

ultimate compressive strain of 0.018; (3) the longitudinal 

tensile bars achieve the ultimate tensile strain of 0.06 (Smyrou 

et al. 2013).The analytical model established above can be 

used to predict the ultimate displacement capacity of flanged 

walls based on a flexural section analysis. However, given that 

most of the time only the ultimate displacement is needed, it is 

necessary to establish a simpler procedure without section 

analysis for estimating the ultimate displacement capacity of 

flanged walls. 

 

6.1 Estimation of ultimate flexural displacement 
capacity 
 

Following the method for calculating the flexural 

deformation of the wall panel in Section 3.1, the ultimate 

flexural displacement of flanged walls can be estimated 

using the plastic hinge model as follows: 

21
( )

3
fu y u y pH l H   = + −

 
(17) 

where the yield curvature ϕy and the ultimate curvature ϕu 

can be determined from the author's early research on 

curvature estimation of asymmetrical flanged walls (Wang 

et al. 2019b). For the case with the flange in tension, the 

yield curvature and ultimate curvature can be calculated as 

follows: 

(2.77 3.66 11.17 0.49 )
y f

yFiT

w w

b
n

l l


 = − + −

 

(18) 

8.831
(37.94 37.73 751.68 11.33 804.56 1.36 )

1000

fn w

uFiT v

w w

b l
e

l l t
  −= + − − + −

 
(19) 

For the case with the flange in compression, the yield 

curvature and ultimate curvature can be calculated as 

follows: 

(1.61 8.91 14.92 )
y

yFiC w

wl


  = + +

 

(20) 

1
(68.65 12.67 2.31 0.27 )

1000

f w
uFiC

w w w

b l
n

l l b
 = + − −

 

(21) 

where εy is the steel yield strain, lw is the web height, n is 

the axial load ratio, ρ is the boundary longitudinal 

reinforcement ratio, ρw is the web distributed vertical 

reinforcement ratio, ρv is the transverse reinforcement ratio, 

and bf is the flange width. 

Since the section analysis is no longer performed in the 

simplified calculation of ultimate displacement, the 

equivalent plastic hinge length used for estimating the 

flexural deformation of the wall panel cannot be determined 

based on the moment of each loading step derived from the 

moment-curvature analysis as in Eq. (2). Moreover, for the 

estimation of the flexural deformation due to strain 

penetration, Eq. (7) is also no longer applicable because the 

maximum strain in the extreme tensile bars and the neutral 

axis depth at the ultimate limit state are not known. 

Therefore, combining the contributions of the above two 

types of flexural deformations, the total flexural deformation 

can be calculated through a unified equivalent plastic hinge 

length. Considering the contributions of moment gradient and 

strain penetration to the spread of plasticity, Paulay and 

Priestley (1992) proposed the following expression to 

estimate the total equivalent plastic hinge length of shear 

walls: 

0.08 0.022pFIC yl H df= +
 

(22) 

where the first term represents the spread of plasticity due to 

moment gradient and the second term represents the 

increased rotation capacity due to strain penetration. Eq. (22) 

is applicable to asymmetrical flanged walls with the flange in 

compression because such walls have similar mechanical 

behaviors to ordinary rectangular walls. However, for the 

case with the flange in tension, as the stiff flange prevents the 

diagonal cracks and the plasticity from spreading, the plastic 

hinge length in this loading direction is relatively smaller 

than that in the flange-in-compression loading direction. A 

comparison with the experimental results shows that 

improved predictions of the equivalent plastic hinge length in  
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the flange-in-tension loading direction can be obtained by 

modifying Eq. (22) to the following expression: 

0.06 0.022pFIT yl H df= +
 

(23) 

 

6.2 Estimation of the ultimate shear displacement 
capacity 
 

Following the proportional relationship between shear 

displacement and flexural rotation established in Section 

3.2, the ultimate shear displacement of flanged walls can be 

estimated as follows: 

su fuC =
 

(24) 

However, when using Eq. (13) to calculate the 

proportional constant C, the flexural stiffness at first 

yielding can no longer be determined using the yield 

moment and yield curvature derived from the moment-

curvature analysis. Therefore, the flexural stiffness can be 

approximately determined based on the method for 

predicting the short-term stiffness of cracked concrete from 

the Chinese code for design of concrete structures (GB 

50010, 2010) as follows: 

2

0

6
1.15 0.2

1 3.5 '

s s

E

f

E A h
EI

a 




=

+ +
+

 

(25) 

where ψ is the non-uniformity coefficient for the strain of 

the longitudinal tensile reinforcement between cracks (for 

cyclic loading ψ=1); γ′f is the ratio of the cross-sectional 

area of the compressive flange to the effective cross-

sectional area of the web, which can be estimated as 

f f f w 0' ( ) /wb b h b h = − ; and As is the cross-sectional area of 

the longitudinal tensile reinforcement. The cracked shear 

stiffness per length can still be calculated by Eq. (14), and  

 

 

the ultimate flexural rotation can be estimated using the 

plastic hinge model as follows: 

1
( )

2
fu y u y pH l   = + −

 
(26) 

 

6.3 Procedure for estimating the ultimate 
displacement capacity 
 

The ultimate displacement capacity of flanged walls can 

be obtained by summing the flexural and shear components 

of deformation: 

u fu su =  +
 

(27) 

The specific procedure for estimating the ultimate 

displacement is shown in Fig. 12. 

Table 5 compares the ultimate displacements predicted 

using the procedure established above to the experimental 

results of the asymmetrical flanged walls tested by the 

author (Wang et al. 2018) and Thomsen and Wallace 

(2004). The predicted values differ within 10% from the 

measured values of the specimens tested by the author. 

However, a relatively large discrepancy exists in the 

specimens tested by Thomsen and Wallace. The predicted 

values of the ultimate displacement are larger than the 

measured values for specimen TW1, especially for the case 

with the flange in compression. This overestimation occurs 

because specimen TW1 exhibited a brittle failure and failed 

to reach the nominal moment due to the poor detailing 

provided at the web boundary. The predicted ultimate 

displacements of specimen TW2 are in good agreement 

with the measured values when the flange was in 

compression but are smaller than the measured values when 

the flange was in tension. The reason for the large 

discrepancy in the comparison for specimen TW2 is that the  

 
Fig. 12 Flow chart for estimating the ultimate displacement capacity 

Estimate ultimate curvature φu (flange in tension, 

Eq. (19); flange in compression, Eq. (21)) 

Estimate plastic hinge length lp (flange in tension, 

Eq. (23); flange in compression, Eq. (22) 

Estimate yield curvature φy (flange in tension, 

Eq. (18); flange in compression, Eq. (20)) 

Estimate flexural 

stiffness EI (Eq. (25)) 

Estimate shear 

stiffness Ks (Eq. (14) 

Estimate flexural 

rotation θfu (Eq. (26)) 

Estimate proportional 

constant C (Eq. (15)) 

Estimate ultimate shear 

displacement Δsu (Eq. (24)) 

Estimate ultimate flexural 

displacement Δfu (Eq. (17)) 

Estimate ultimate displacement 

capacity Δu (Eq. (27)) 
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spacing of the transverse reinforcement used at the web 

boundary is as small as 32 mm, which exceeds the range of 

curvature estimation in the author's early research, resulting 

in the underestimation of the ultimate curvature. However, 

the hoop spacing of 32 mm is seldom used in practical 

engineering applications due to its inconvenience in 

construction. In general, the simplified procedure proposed 

in this paper can estimate the ultimate displacement 

capacity of flanged walls with sufficient accuracy. 

Nevertheless, given that few well- documented 

experimental data are available to assess the ultimate 

displacement of asymmetrical flanged walls in both the 

flange-in-tension and flange-in-compression loading 

directions, further experimental investigations are needed 

for additional verification. 

 

 
7. Conclusions 
 

Experimental results for three mid-rise T-shaped RC 

walls are presented to identify the relative contributions of 

the flexural, shear and sliding deformations to the lateral 

displacements at different loading stages. Results of the 

tests indicate that the shear deformations can contribute 

more than 15% of the total displacement and the ratio of 

shear-to-total top displacements remains approximately 

constant over the entire plastic range. The sliding 

deformations contribute less than 3% of the total 

displacement and can be neglected in the calculation of the 

deformation capacity. 

Based on the observed deformation behavior, a new 

load-deformation analytical model is proposed for flexure-

dominant flanged walls, in which each of the three 

components of wall deformation (flexure, shear, and strain 

penetration) is modeled separately. Flexural deformations 

are estimated from a modified plastic hinge model that 

considers the changes in plastic hinge length. 

Deformations due to strain penetration are estimated 

from a simplified mechanics-based model that facilitate the 

determination of anchorage length and strain distribution of 

the tensile bars. Shear deformations are estimated from the 

derived flexural rotation, and the proportional constant 

between them can be determined according to the truss 

model and the observation that the shear-to-flexural 

displacement ratio is independent of the top displacement 

demand. 

 

 

A detailed verification of the analytical models is 

provided by comparing with the experimental results at the 

global and component scales. It is concluded that the 

integrated model provides engineers with a simple, accurate 

modeling tool to capture the load-deformation responses of 

flanged walls. Compared to conventional analytical models, 

the proposed model can predict the monotonic pushover 

curve without a complex iteration process, and purely 

empirical relationships and oversimplified assumptions are 

avoided as much as practical. In addition, through simple 

sectional analysis, the effects of the axial load ratio, 

reinforcement content, material properties and geometric 

parameters on the deformation behavior of flanged walls 

can be quantified in the model. The proposed model can 

further be applied to flexural walls with arbitrary sections 

and is capable of determining displacements at any position 

over the wall height, which is of great significance to the 

direct displacement-based design procedure. 

To rapidly and accurately evaluate the deformation 

capacity of flanged walls, a simple procedure for estimating 

the ultimate displacement capacity is proposed by 

simplifying the analytical model, which will be valuable for 

performance-based seismic designs and seismic capacity 

evaluations. 
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