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1. Introduction 
 

The determination of the shear capacity of reinforced 

concrete (RC) members is a critical research subject that 

has attracted the attention of many investigators in the last 

few decades (Regan 1969, Park and Paulay 1975, Wang et 

al. 2005, Londhe 2009). A RC element is typically 

subjected to combined shear and flexure, which triggers 

complex multi-axial stress states. The shear failure is 

typically associated with diagonal cracks and is generally 

more brittle than flexural failure (Russo and Puleri 1997, 

Keskin 2017, Qissab and Salman 2018). The presence of 

transverse reinforcement, commonly represented by vertical 

stirrups, attenuates brittle phenomena and contributes to 

increasing the shear capacity (Collins et al. 2008, Park et al. 

2015). 

The simplest approach to predict the shear strength of 

RC members with transverse reinforcement is based on the 

truss analogy and simple equilibrium conditions. Ritter 

(1899) and Mörsch (1908) proposed a very simple strut-

and-tie model at the beginning of the past century, formed 

by parallel chords and web members. The parallel chords 

describe the concrete stress blocks and longitudinal 

reinforcement. The web members incorporate the shear 

transfer actions of inclined compressive struts and tensile 

ties. The struts represent concrete stress fields between 

adjacent cracks, and are inclined at an angle 𝜃 with respect 

to the beam longitudinal axis, while the tensile ties 

represent the transverse reinforcement or stirrups. In the  
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Ritter-Mörsch (RM) model the strut inclination angle is 

given a particular value, namely 𝜃 = 45°, which coincides 

with the first shear cracking angle. Experimental 

investigations (Leonhardt 1973) demonstrated that this was 

a very conservative assumption and that this model largely 

underestimated the actual shear strength of RC beams. It is 

widely accepted that besides the truss action, included in the 

RM model, many other shear transfer mechanisms take 

place while the level of load increases, such as aggregate 

interlock, residual tensile stresses, shear stresses carried by 

the un-cracked compression chord, and dowel action (ACI 

445R-99, Russo et al. 2013). Based on these mechanical 

considerations, many theories and rational approaches were 

proposed to modify or improve the RM model, based on 

similar truss models (Li and Tran 2012, He et al. 2015, 

Yavuz 2016). Some well-established theories, such as the 

modified compressive field theory (MCFT) or other 

compatibility-aided theories (Vecchio and Collins 1986, 

Hsu 1988), used compatibility conditions in addition to 

equilibrium principles to determine the shear capacity. 

Despite their proven accuracy, these theories generally 

imply specialized knowledge and computer programs for 

their application, which is not convenient in daily 

engineering practice. However, these compatibility-based 

considerations inspired design formulations implemented in 

building codes in a simplified manner. 

Some models preserved the assumption 𝜃 = 45° for the 

strut inclination angle, but included an explicit concrete 

contribution as a correction term of the RM model (additive 

approach), such as the ACI 318 code (ACI, 2011) and the 

European pre-standard ENV 1992-1-1. On the other hand, 

the Model Code 2010 (fib 2013) incorporated different 

levels of approximation for the calculation of the shear 
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capacity of RC members with transverse reinforcement, in 

which the most precise method implies an additive 

approach where a concrete contribution is added explicitly 

(based on a simplified version of the MCFT), while the 

simplest approach neglects the concrete contribution and 

considers strut inclination angles 𝜃 less than 45° (Sigrist et 

al. 2013). Strut rotations at ultimate limit state lower than 

the first shear cracking angle were observed experimentally 

(Walraven et al. 2013) and depend upon amount of 

transverse reinforcement, concrete strength and beam cross-

section characteristics. Some other models, such as the 

Model Code 90 (fib 1993), the Eurocode 2 (EC2) (EC2 

2005) as well as national building codes in European 

countries, such as Italian (NTC 2018) and German codes 

(DIN 1045-1 2008), used a general variant of the RM model 

(without explicit concrete contribution) in which variations 

of the strut inclination angle 𝜃 are allowed within a certain 

range (variable strut inclination method). In these models, 

the determination of the ultimate strut inclination angle 𝜃𝑢 

is carried out in the framework of the lower-bound theorem 

of plasticity, or static theorem of limit analysis (Back et al. 

1978, Nielsen and Hoang 1999). In particular, the angle 𝜃𝑢 

maximizes the shear strength within the class of statically 

and plastically admissible solutions, i.e., the class of 

solutions satisfying equilibrium conditions and nowhere 

violating yield conditions. This design philosophy is similar 

to the stress field approach (Sigrist 2011), which combines 

limit analysis with a continuous representation of the web 

of the beam as a composition of membrane elements 

subjected to in-plane stresses, the cracked membrane model 

(Kaufmann and Marti 1998). In a wider context, many 

researchers demonstrated the effectiveness of limit analysis 

procedures to predict the ultimate capacity of RC members 

(Limam et al. 2003a, 2013b, Le et al. 2010, 2017, 

Spiliopoulos and Weichert 2014, Fuschi et al. 2015, De 

Domenico et al. 2014, 2018, Pisano et al. 2013, 2015). 

Along this research line, this paper presents a stress field 

limit analysis approach based on the concept of cracked 

membrane element in combination with the variable strut 

inclination method of the Eurocode 2. As a distinctive 

peculiarity of the proposed approach, in addition to the 

principal compressive stresses, also the contribution of the 

principal tensile stresses in the cracked membrane is 

explicitly included in the shear strength calculation 

procedure. This is a novelty in comparison to the EC-2 

approach as well as to other formulations proposed in the 

literature. It is reasonable to think that concrete membrane 

between two adjacent cracks is subject to a biaxial stress 

state formed by principal compressive and tensile stresses, 

where the latter are oriented along a direction orthogonal to 

the former. In line with the EC-2 approach, the expressions 

governing the shear capacity of a RC beam are derived 

based on equilibrium conditions, while the ultimate strut 

inclination angle 𝜃𝑢 is determined in the framework of the 

lower-bound theorem of plasticity. Including the principal 

tensile stresses slightly increases the strut inclination angle 

𝜃𝑢  and significantly improves the prediction of the shear 

strength with respect to the EC-2 approach, as demonstrated 

by a comparison with more than 200 experimental results 

from the literature. 

2. Stress field approach and shear strength 
calculation 

 

The concept of cracked membrane model was developed 

many years ago (Kaufmann and Marti 1998) and is 

schematically represented in Fig. 1. The segment of an RC 

beam is split into a tension and a compression chord and the 

web. In the web, the cracked membrane can be assumed to 

undergo a plane stress condition state. In particular, the 

membrane element is generally subjected to in-plane 

stresses 𝜎𝑥 , 𝜎𝑧, 𝜏𝑥𝑧 . The corresponding principal 

compressive and tensile stresses 𝜎𝑐𝑐𝑤 , 𝜎𝑐𝑡𝑤  are oriented 

along the directions 𝜃  and 𝜋/2 − 𝜃  with respect to the 

beam longitudinal axis, respectively. Concurrently, the 

membrane element is also subjected to tensile stresses due 

to the transverse reinforcement (i.e., the cracked membrane 

is orthogonally reinforced). The spacing of stirrups is 

assumed small enough so that their actions can be modeled 

with uniform stress fields 𝜎𝑠𝑤 , according to the smeared 

truss model concept (Marti 1985). 

In order to evaluate the shear capacity of the RC beam 

in the proposed stress field approach, it is sufficient to 

impose equilibrium conditions on different beam segments 

that are determined through different sections on the 

continuous model in Fig. 1. In particular, three different 

sections are studied, which correspond to three different 

failure mechanisms of the RC beam. The first failure 

mechanism is identified by the vertical equilibrium across 

the first beam segment obtained through a section parallel 

to the compression struts 𝜃, cf. the sketch of Fig. 2. The 

stress fields contributing to this failure mechanism are the 

tensile stresses of stirrups and the principal tensile stresses 

of concrete. Typically, the inner lever arm 𝑧  can be 

assumed as 0.9𝑑, in which 𝑑 represents the effective depth 

of the beam cross-section. The number of stirrups crossing 

the beam segment 𝐴𝐷̅̅ ̅̅  is computed under the hypothesis of 

a constant spacing 𝑠, which leads to 

1

(cot cot ) +
= =s

AD z
n

s s  

(1) 

As said above, assuming a uniform stress field of 

stirrups equal to 𝜎𝑠𝑤, and denoting with 𝐴𝑠𝑤 the area of the 

corresponding cross-section, the resultant tensile force of 

the transverse reinforcement is given by 

1 1

(cot cot ) 
 = =

+
s sw sw s sw sw

z
AS A n

s  
(2) 

On the other hand, the contribution of principal tensile 

stresses of concrete to this failure mechanism can be 

computed as follows 

1
sin

 


= =ct ctw w ctw w

z
S b AB b

 
(3) 

where 𝑏𝑤  denotes the minimum web width and 𝜎𝑐𝑡𝑤 

represents the principal tensile stress in concrete. The 

equation of vertical equilibrium leads to the expression of 

the shear force 𝑉 in terms of the vertical projections of the 

contributions in (2) and (3), namely 
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in which the mechanical ratio of transverse 

reinforcement 𝜔𝑤 has been introduced, which is defined as 

follows (Reineck et al. 2014) 

1

.
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(5) 

In Eq. (4) and (5) 𝑓𝑦𝑤𝑑  represents the design yield 

strength of transverse reinforcement, 𝑓𝑐𝑑  is the design 

concrete compressive strength and 𝜈1  is an efficiency 

factor for concrete cracked in shear whose value is typically 

in the range 0.5-0.6 (Reineck et al. 2014, EC2 2005). In the 

limit condition 𝜎𝑠𝑤 = 𝑓𝑦𝑤𝑑  and 𝜎𝑐𝑡𝑤 = 𝜈2𝑓𝑐𝑑  ( 𝜈2  being 

another efficiency factor for tensile stresses), Eq. (4) 

produces the shear strength due to contemporaneous 

yielding of steel transverse reinforcement combined with 

principal tensile stresses of concrete 

( ) 2
1 1 cot cot sin cot       = + +

 Rd w cd wV b z f
 

(6) 

where 𝜇 = 𝜈2/𝜈1  is a coefficient accounting for the 

biaxial failure of concrete membrane in plane stress state, 

typically in the range 1 − 6%  based on experimental 

findings (Menétrey and Willam 1995). The occurrence of 

this first failure mechanism (mainly ascribed to yielding of 

stirrups) is likely to occur for low amounts of transverse 

reinforcement. 

For the second failure mechanism, let us consider the 

vertical equilibrium across another beam segment obtained 

through a section parallel to the stirrup inclination 𝛼, see 

Fig. 3. The stress fields contributing to this failure 

mechanism are both the principal tensile and compressive 

stresses of concrete. Let 𝜎𝑐𝑐𝑤  denote the uniform 

compressive stress field of concrete in the web of the beam 

(principal compressive stresses), while 𝑆𝑐𝑐2  indicates the 

corresponding resultant compressive force given by 
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Similarly, let 𝜎𝑐𝑡𝑤  denote the uniform tensile stress 

field of concrete in the web of the beam (principal tensile 

stresses), while 𝑆𝑐𝑡2  indicates the corresponding resultant 

tensile force given by 
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The equation of vertical equilibrium leads to the 

expression of the shear force 𝑉  in terms of the vertical 

projections of the contributions in (7) and (8), namely 
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In the limit condition 𝜎𝑐𝑐𝑤 = 𝜈1𝑓𝑐𝑑  and 𝜎𝑐𝑡𝑤 = 𝜈2𝑓𝑐𝑑 , 

Eq. (9) produces the shear strength due to biaxial failure of 

the concrete membrane (combined principal compressive 

stresses and principal tensile stresses of concrete in the web 

of the beam) 

2 1
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which can be re-written in terms of cotangent functions 

exploiting simple trigonometric identities 

2
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(11) 

The occurrence of this second failure mechanism is 

likely to occur for high amounts of transverse reinforcement, 

whereby the biaxial failure of concrete membrane occurs 

prior to stirrup yielding. 

Finally, for the third failure mechanism let us consider 

vertical equilibrium across another beam segment obtained 

 
Fig. 1 Stress fields in a segment of a reinforced concrete beam 
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through a section parallel to the principal tensile stress 

direction 𝜋/2 − 𝜃, see Fig. 4. The stress fields contributing 

to this failure mechanism are the principal compressive 

stresses of concrete and the tensile stresses of stirrups. Let 

𝜎𝑐𝑐𝑤  denote the uniform stress field of concrete in the web 

of the beam (principal compressive stresses), while 𝑆𝑐𝑐3  

 

 

indicates the corresponding resultant compressive force 

given by 

3
cos

 


= =cc ccw w ccw w

z
S b AD b

 
(12) 

 
Fig. 2 First failure mechanism identified by a section parallel to the principal compressive stress direction (tensile stresses 

of stirrups and principal tensile stresses of concrete) 
 

 
Fig. 3 Second failure mechanism identified by a section parallel to the stirrup inclination (principal compressive and tensile 

stresses of concrete) 

 
Fig. 4 Third failure mechanism identified by a section parallel to the principal tensile stress direction (principal compressive 

stresses of concrete and tensile stresses of stirrups) 
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As said above, in this section a contribution of stirrups 

in tension is also present. This contribution is proportional 

to the number of stirrups crossing the beam segment 𝐴𝐵̅̅ ̅̅ , 

which is computed again under the hypothesis of a constant 

spacing 𝑠 as in the first failure mechanism 

3
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(13) 

from which the resultant tensile force of the transverse 

reinforcement is given by 

3 3
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The equation of vertical equilibrium leads to the 

expression of the shear force 𝑉  in terms of the vertical 

projections of the contributions in (12) and (14), namely 
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(15) 

In the limit condition 𝜎𝑠𝑤 = 𝑓𝑦𝑤𝑑  and 𝜎𝑐𝑐𝑤 = 𝜈1𝑓𝑐𝑑 , 

therefore Eq. (15) produces the shear strength due to 

contemporaneous yielding of steel transverse reinforcement 

combined with principal compressive stresses of concrete 

2
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(16) 

This failure mechanism involves both concrete in 

compression and steel in tension, therefore it is not easy to 

clearly identify the situations in which it is likely to occur. 

In the sequel of the paper, dimensionless expressions are 

used to facilitate the application of the stress field 

formulation for practical design purposes. To this aim, the 

three expressions (6), (11) and (16) of the three failure 

mechanisms are divided by a normalization factor 𝑟 =
𝑏𝑤𝑧𝜈1𝑓𝑐𝑑  (having dimension of force) to obtain the 

following dimensionless counterparts 

( ) 21
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which are the general expressions of the shear capacity 

of the proposed stress field limit analysis approach for an 

arbitrary angle 𝛼  of the transverse reinforcement. In the 

following Section, these expressions are particularized for 

the common case of vertical stirrups (𝛼 = 90° ) and are 

compared to the expressions reported in the Eurocode 2. 

3. Stress field limit analysis approach for vertical 
stirrups  

 

In the case of vertical stirrups ( 𝛼 = 90° ), the 

expressions (17)-(19) can be simplified as follows 

1 ( )cot  = +Rd wv
 (20) 

( )2 2

cot
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= +
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( )3

1
1
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(22) 

By inspection of expressions (20)-(22) the following 

critical considerations can be made: 

1. The proposed stress field approach that includes the 

principal tensile stresses of concrete in an explicit manner 

represents a general case of the Eurocode 2 truss model. 

Indeed, the expressions of 𝑣𝑅𝑑,𝑠 (failure due to yielding of 

stirrups) and 𝑣𝑅𝑑,𝑐 (failure due to crushing of compressive 

struts) of the EC-2 model are retrieved as special cases of 

the expressions of 𝑣𝑅𝑑1 and 𝑣𝑅𝑑2, respectively, in the limit 

condition 𝜇 = 0, which implies that the contribution of the 

principal tensile stresses to the shear capacity is not taken 

into account;  

2. The principal tensile stresses modify the two failure 

mechanisms incorporated in the EC-2 formulation, namely 

yielding of stirrups (failure mechanism 1) and crushing of 

compressive struts (failure mechanism 2) through an 

additional term linearly proportional to 𝜇; 

3. Incorporating the principal tensile stresses into the 

stress field approach gives rise to an additional failure 

mechanism that is not considered in the EC-2 model, 

namely the failure mechanism 3 obtained through a section 

parallel to the principal tensile stress direction; 

4. The shear strength due to failure mechanism 1 is a 

linear function of the variable cot 𝜃 (similarly to the EC-2 

approach), whereas the shear strength of the other two 

failure mechanisms exhibits a nonlinear dependence upon 

the cotangent function of the angle 𝜃; 

5. The additional parameter 𝜇  quantifies the 

contribution of the principal tensile stresses to the shear 

capacity and should be calibrated based on biaxial failure 

envelope of concrete in the web of the beam as well as 

experimental considerations. 

The actual shear strength is the smallest value of 𝑣𝑅𝑑1, 

𝑣𝑅𝑑2, 𝑣𝑅𝑑3, that is 

( ) ( )1 2 3, , min , ,  = =Rd Rd w Rd Rd Rdv v v v v
 

(23) 

In line with the variable strut inclination method of the 

EC-2, which is based on the static theorem of limit analysis 

(Nielsen and Hoang 1999), the rational design method leads 

to assuming a value of 𝜃 = 𝜃𝑢 (ultimate inclination angle 

of compression strut) corresponding to the simultaneous 

attainment of the three different failure mechanisms, 

namely 

1 2 3( ( () ) )  ==u uR R ud d Rdv v v
 (24) 
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Fig. 5 Ultimate inclination angle of compression strut 𝜃𝑢 

versus mechanical ratio of transverse reinforcement for 

different values of the tensile stress ratio 𝜇 
 

 

where the dependence upon the variables 𝜔𝑤 , 𝜇  has 

been omitted for compactness. The value of 𝜃𝑢 from (24) is 

given by 

1 1
cot




 

− −
=

+

w
u

w  

(25) 

This assumption maximizes the shear strength of the RC 

beam within the class of statically admissible (i.e., 

satisfying the equilibrium conditions) and plastically 

admissible (i.e., nowhere violating the yield conditions) 

solutions. The corresponding shear capacity can be obtained 

by substitution of the ultimate inclination angle (25) into 

one of the three expressions (as the three failure 

mechanisms are equivalent for 𝜃 = 𝜃𝑢  due to Eq. (24)), 

which leads to 

( )(1 )  = + −Rd w wv
 

(26) 

It can be seen that the ultimate inclination angle of the 

compression struts 𝜃𝑢, given by (25) and plotted in Fig. 5 

for a range of 𝜇 ratios, increases with the increase of the 

shear reinforcement ratio 𝜔𝑤 and with the increase of the 

tensile stress ratio 𝜇. Moreover, for 𝜔𝑤 = 0 the angle 𝜃𝑢 

is not zero as in the EC-2 approach (𝜇 = 0), but equal to a 

fixed value given by cot−1 (𝜇−
1

2) . 

Additional considerations of the different failure 

mechanisms of the proposed stress field approach 

(compared to the EC-2 truss model) can be made by 

referring to Fig. 6. The three failure mechanism curves of 

the proposed stress field approach are plotted for 𝜔𝑤 =
0.15  and 𝜇 = 0.02 . Additionally, the two failure 

mechanisms of the EC-2 approach ( 𝑣𝑅𝑑,𝑠  and 𝑣𝑅𝑑,𝑐 , 

obtained from 𝑣𝑅𝑑1 and 𝑣𝑅𝑑2 in the limit case 𝜇 = 0) are 

superimposed in the plot for comparative purposes and 

reported as dashed lines.  

The following remarks can be made: 

- For the assumed values of 𝜔𝑤  and 𝜇 , the third 

failure mechanism (curve 𝑣𝑅𝑑3) intersects the other two 

failure mechanisms of the proposed stress field model 

(𝑣𝑅𝑑1 and 𝑣𝑅𝑑2) at an angle 𝜃𝑢 = 24.09° (given by Eq. 

(25)), in other words for this value of strut inclination 

angle all the three failure mechanisms occur 

simultaneously; 

 
Fig. 6 Plot of the three failure mechanisms of the 

proposed stress field approach (for 𝜔𝑤 = 0.15 and 𝜇 =
0.02) compared to the two failure mechanisms of the EC-

2 truss model (𝜇 = 0) 

 

 

- Interestingly, the third failure mechanism (curve 

𝑣𝑅𝑑3) also intersects the two failure mechanisms of the 

EC-2 model (𝑣𝑅𝑑,𝑠  and 𝑣𝑅𝑑,𝑐 ), which means that the 

additional considered third failure mechanism, 

whenever incorporated in the EC-2 formulation, would 

lead to the same value of ultimate inclination angle of 

the compression struts and, consequently, to the same 

expression of the shear capacity as in the Eurocode 2; 

- For the assumed values of 𝜔𝑤  and 𝜇 , the 

intersection of the two failure mechanisms of the EC-2 

approach occurs at 𝜃𝑢
EC2 = 22.78°, (given by Eq. (25) 

for 𝜇 = 0), which is lower than 𝜃𝑢 = 24.09° identified 

in the proposes stress field approach; in other words, the 

presence of the principal tensile stresses of concrete 

slightly increases the ultimate inclination angle of the 

compression struts compared to the EC-2 formulation; 

- Obviously, the shear capacity obtained in the 

proposed stress field approach that incorporates the 

principal tensile stresses of concrete is higher than that 

obtained without including this term in the equilibrium 

equations (EC-2 model); for the assumed values of 𝜔𝑤 

and 𝜇, the ordinate of the intersection point of the three 

failure mechanisms (continuous lines) is 𝑣𝑅𝑑 = 0.380 

(obtained by Eq. (26)), whereas for the EC-2 model the 

intersection of the two failure mechanisms (dashed 

lines) corresponds to 𝑣𝑅𝑑
EC2 = 0.357, therefore there is 

an increase of around 6% in terms of shear strength. 

Although this seems to be a modest strength increase, it 

strictly depends upon the selected input parameters 𝜔𝑤 

and 𝜇  of this example. More significant strength 

increases (up to 40%) can be observed for other 

parameter combinations, as shown below.  

Indeed, the increase of shear capacity is obviously 

related to the contribution of the principal tensile stresses, 

quantified by the parameter 𝜇 . In Fig. 7 this strength 

increase is illustrated for a range of 𝜇  ratios (the same 

range used in Fig. 5 for the ultimate inclination angle).  

However, in the EC-2 model the variability of the strut 

inclination angle 𝜃 is limited in order to prevent large 

cracks in serviceability conditions (Thürlimann 1978). In 

particular, the following lower- bound and upper-bound 

 

EC2 22.78u =  24.09u = 

EC2 0.357Rdv =

0.380Rdv =
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Fig. 7 Plot of the shear strength according of the proposed 

stress field approach for different values of the tensile 

stress ratio 𝜇  

 

 

limitations are imposed on the cot 𝜃 variable  

( ) ( )
min max

cot cot cot   
 

(27) 

These limitations are different from country to country, 

as overviewed in (Grandić et al. 2015). For the Eurocode 2 
(cot 𝜃)min = 1  and (cot 𝜃)max = 2.5 , which correspond 

to 21.8° ≤ θ ≤ 45° . This range is appropriate also for the 

proposed stress field approach, because it is likewise based 

on equilibrium principles and the lower-bound theorem of 

plasticity. Introducing the upper-bound limitation 
(cot 𝜃)max = 2.5  into the expression of the ultimate 

inclination angle 𝜃𝑢 in (25) gives a value of 𝜔𝑤 = 𝜔𝑤lim 

expressed by 

lim

1
(4 25 ) 0.1379 0.8621

29
  = − = −w

 
(28) 

which identifies two different design regions (as in the 

EC-2 approach), the former (for 𝜔𝑤 < 𝜔𝑤lim ) where the 

ultimate inclination angle is set equal to its lower-bound 

limit 𝜃𝑢 = 𝜃min = 21.8°, and the latter (for 𝜔𝑤 ≥ 𝜔𝑤lim ) 

where the ultimate inclination angle 𝜃𝑢 can be varied in the 

range 21.8° ≤ θ ≤ 45° according to Eq. (25) depending on 

the amount of shear reinforcement. The function 𝜔𝑤lim(𝜇) 

for 𝜇 = 0 (where the principal tensile stress contribution is 

neglected) gives 𝜔𝑤lim = 0.1379 , which represents the 

value of the EC-2 approach, while for 𝜇 > 0  this limit 

value of transverse reinforcement identifying the two design 

regions decreases linearly. 

In Fig. 8 the failure mechanisms are plotted for 𝜇 =
0.02 and for a value of 𝜔𝑤 < 𝜔𝑤lim, namely 𝜔𝑤 = 0.05. 

It is reasonable to notice that for low amounts of transverse 

reinforcement (design scenarios in which 𝜔𝑤 < 𝜔𝑤lim) the 

shear strength is controlled by yielding of stirrups, because 

the lowest shear capacity (which is the actual failure 

mechanism that is activated) is offered by the first failure 

mechanism 𝑣𝑅𝑑1 due to yielding of stirrups in combination 

with principal tensile stresses of concrete. This also occurs 

in the EC-2 approach, where the failure is ascribed to 𝑣𝑅𝑑,𝑠, 

i.e., to the occurrence of yielding of stirrups. Consequently, 

when 𝜔𝑤 < 𝜔𝑤lim, the shear capacity is given by 

max
1 cot (cot )

2.5( )
 

 
=

= = +Rd Rd wv v
 

(29) 

which is a linear function of the mechanical ratio of 

transverse reinforcement. The corresponding trend of the 

shear strength for the unconstrained (without limitations on 

𝜃) and constrained case (taking into account the conditions 

in (27)) is shown in Fig. 9. 

For 𝜔𝑤 = 0 the residual shear capacity is offered by a 

term dependent upon the tensile stress ratio 𝜇 – this shear 

capacity is somehow related to the shear strength of the RC 

beam without transverse reinforcement, given by the tensile 

stress contribution of concrete. 

Nevertheless, it is worth noting that more complicated 

mechanisms, like dowel action, aggregate interlock and 

residual tensile stresses take place in the beam (ACI 445R-

99; Olalusi 2019), which are not fully included here. For 

this reason, the proposed stress field approach is considered 

valid only for RC beams with stirrups, namely for 𝜔𝑤 > 0. 

In this regard, Eq. (29) is applicable only to a value of 𝜔𝑤 

greater than the minimum value of transverse reinforcement 

as reported in §9.2.2 of the EC2 (2005), depending on the 

class of steel and concrete. On the other hand, introducing 

the lower-bound limitation (cot 𝜃)min = 1  into the 

expression of the ultimate inclination angle 𝜃𝑢  in (25) 

gives a value of 𝜔𝑤 = 𝜔𝑤max expressed by 

max

1

2




−
=w

 
(30) 

which is again a modification of the EC-2 value 

(𝜔𝑤max = 1/2) due to the presence of the tensile stress 

ratio 𝜇. Expression (30) implies that the maximum value of 

the shear capacity (maximum value of the parabola 

represented by Eq. (21)) is attained for a value of 𝜔𝑤 that 

is lower than 0.5. From this point onwards, a further 

increase of the shear reinforcement is useless, because web 

crushing of concrete (combined with principal tensile 

stresses) governs the shear failure in this range, with a 

constant strut inclination angle equal to 45° and 

corresponding shear capacity given by 

max

1
(1 )

2
= +Rdv

 
(31) 

Overall, the proposed stress field approach modifies the 

design parameters of the EC-2 truss model due to the 

presence of the tensile stress ratio 𝜇 . Comparison of the 

main parameters of the two approaches is summarized in 

Table 1. 

 

 

4. Comparison with experimental results 
 

The proposed stress field approach is validated against 

published experimental results from the literature. Many 

shear strength databases were reported in the literature by 

various authors, such as (Lee et al. 2011, Zhang et al. 2015, 

Mansour et al. 2004). In this work, the databases selected 

by a joint ACI-DafStb group and published by Reineck et al. 

(2014, 2017) are adopted, which concern slender beams 

with vertical stirrups subjected to point loads. These 

databases are chosen because of the underlying clear and  
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Fig. 9 Plot of the shear strength according of the proposed 

stress field approach for 𝜇 = 0.02 and accounting for the 

limitations on the strut inclination angle given by Eq. (27) 

 

 

transparent control criteria used to minimize the influence 

of database heterogeneity. Some of these criteria involved, 

for instance, slenderness ratios, minimum compressive 

strength, flexural checks, lack of mechanical or geometrical 

details in the original test reports, etc. Two databases are 

considered in this study, namely: 1) a smaller database 

reported in Reineck et al. (2014) and comprising 87 tests, 2) 

a larger database, which is a combination of the previous 

small database together with the ACI-DafStb H. 617 

database Reineck et al. (2017), the latter comprising 170 

tests. The larger database in 2) includes 213 independent 

tests, because 44 out of the 170 tests reported in the ACI-

DafStb H. 617 database were also reported in the small 

evaluation database (therefore, only 126 tests of the ACI-

DafStb H. 617 database are actually independent from the 

small evaluation database). Full details of the RC beams 

belonging to the two databases can be found in the original 

papers by Reineck et al. (2014, 2017). 

In order to make a consistent comparison between 

experimental data and the proposed stress field approach as 

well as the Eurocode 2 model, over-reinforced beams are 

preliminarily identified. Based on the considerations by Lee 

and Hwang (2010), beams having 𝜔𝑐 = 𝜌𝑤𝑓𝑦𝑤/𝑓𝑐 > 0.2 

(𝜌𝑤 = 𝐴𝑠𝑤/(𝑏𝑤𝑠) denoting the transverse reinforcement 

ratio) are characterized by over-reinforced shear failure, 

with crushing of web concrete occurring prior to yielding of 

steel reinforcement. However, this is in contrast to the main 

 

 

assumptions made in Section 2 for the proposed plasticity-

based approach. This aspect was also pointed out by other 

authors who used other plasticity-based approaches (He et 

al. 2015). In particular, 4 of the 87 beams in the small 

database, and 8 of the 213 beams in the large database have 

𝜔𝑐 > 0.2 and are, therefore, excluded in this comparison. It 

is worth noting that some of these over-reinforced beams 

also imply values of 𝜔𝑐 > 1.0, which makes the expression 

(25) (for 𝜇 = 0 ) complex-valued and, thus, physically 

meaningless. After eliminating these 4 and 8 beams in the 

two databases, the resulting reduced databases are formed 

by 83 and 205 beams, respectively, and the range of main 

geometrical and mechanical parameters is reported in Table 

2. 

In Fig. 10 the experimental shear strength data are 

reported in the 𝑣 − 𝜔𝑤 plane. From the experimental shear 

strength 𝑉exp  the corresponding dimensionless value 𝑣exp 

is calculated by dividing with 𝑟 = 𝑏𝑤𝑧𝜈1𝑓𝑐𝑑. The efficiency 

factor 𝜈1  has been computed as recommended by the 

Eurocode 2 (2005) through the formula 𝜈1 = 0.6(1 −
𝑓𝑐/250) , which changes depending on the cylinder 

compressive strength of concrete. The 𝑣 − 𝜔𝑤 curve of the 

Eurocode 2 truss model is reported as blue thin line in Fig. 

10 and proves to be over-conservative throughout the range 

of transverse reinforcement ratios 𝜔𝑤.  

The over-conservativeness of the EC-2 approach was 

documented also by other researchers (Olalusi 2019, Zhang 

et al. 2015, He et al. 2015, Cladera and Marí 2007, De 

Domenico and Ricciardi 2019) considering different 

databases. On the other hand, since the proposed stress field 

approach introduces another strength parameter 𝜇, different 

values of 𝜇 are investigated. The increase of shear capacity 

due to principal tensile stresses of concrete is expected to be 

more pronounced for higher amounts of transverse 

reinforcement. Indeed, for RC beams with higher shear 

reinforcement ratios, the crack widths are reduced and 

mainly controlled by the presence of stirrups. It is widely 

recognized that the contribution of residual tensile stresses 

in the web of the beam depends upon the crack width, and 

is more significant for smaller crack widths (ACI 445R-99). 

Based on these phenomenological considerations, the 

following expression of 𝜇 that is linearly increasing with 

𝜔𝑤 is proposed. 

 

Fig. 8 Identification of the shear strength for design scenarios in which 𝜔𝑤 < 𝜔𝑤lim 
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0.015(1 6 ) = + w  (32) 

which is equal to 0.015 in the limit as 𝜔𝑤 → 0, and 

equal to 0.06 for 𝜔𝑤 = 0.5 . In this way, the 

phenomenological relationship 𝜇 = 𝜇(𝜔𝑤)  when 

incorporated into the proposed stress field approach 

increases the shear strength of the Eurocode 2 model 

depending on the mechanical ratio of transverse 

reinforcement 𝜔𝑤. The shear strength curve of the proposed 

stress field approach with 𝜇 computed through Eq. (32) is 

reported in black solid line in Fig. 10. 

Other three curves are superimposed as (red, green and 

blue) dashed lines and correspond to three fixed values of 𝜇 

equal to 0.01, 0.035, and 0.06, respectively (i.e., not 

variable with the shear reinforcement ratio 𝜔𝑤 but assumed 

constant throughout the range of 𝜔𝑤). It is clearly seen that 

the dashed line for 𝜇 = 0.01 is in good agreement with the 

experimental points only for low values of 𝜔𝑤, whereas it 

is over-conservative for higher amounts of shear 

reinforcement. On the other hand, the dashed line for 𝜇 =
0.06 is relatively closer to the experimental results only for 

very high amounts of shear reinforcement, but is 

excessively under-conservative in the range 𝜔𝑤 < 0.2 

where most of the data fall. The derivation of the expression 

(32) is in fact based on these observations and allows 

capturing the variation of the shear strength with the 

increase of mechanical ratio of transverse reinforcement in 

an effective manner. 

In order to highlight the better predictive performance of 

the proposed stress field approach with 𝜇 determined 

through Eq.  (32)  in  comparison with  al ternative 

formulations based on a constant value of 𝜇, in Fig. 11 the 

𝑣exp/𝑣pred ratio is reported for the large database (205 tests) 

as a function of 𝜔𝑤  for different cases of 𝜇. The same 

conclusions as above can be drawn, whereby a constant 𝜇 

is able to capture the trend of the experimental data just for 

a limited range of 𝜔𝑤, and does not achieve an acceptable 

predictive performance throughout the range of shear 

reinforcement ratios. The quantitative performance of the 

various variants of the stress field approach depending on 

 

Table 1 Main parameters of the proposed stress field 

approach compared to the EC-2 truss model 

parameter EC-2 approach stress field approach 

𝜔𝑤𝑙𝑖𝑚 0.1379 0.1379 − 0.8621𝜇 

𝜔𝑤max 1/2 (1 − 𝜇)/2 

cot 𝜃𝑢 √(1 − 𝜔𝑤)/𝜔𝑤 √(1 − 𝜔𝑤)/(𝜔𝑤 + 𝜇) 

𝑣𝑅𝑑 for cot 𝜃𝑢 > 2.5 

(design region 1) 
2.5𝜔𝑤 2.5(𝜔𝑤 + 𝜇) 

𝑣𝑅𝑑  for 1 ≤ cot 𝜃𝑢 ≤
2.5 (design region 2) 

√𝜔𝑤(1 − 𝜔𝑤) √(𝜔𝑤 + 𝜇)(1 − 𝜔𝑤) 

𝑣𝑅𝑑 for cot 𝜃𝑢 < 1 

(design region 3) 
1/2 (1 + 𝜇)/2 

 

Table 2 Range of input parameters in the two considered 

databases 

 
ACI-DafStb 

small database (83 tests) 

ACI-DafStb 

large database (205 tests) 

input parameter min max min max 

𝑏𝑤(𝑚𝑚) 50.0 457.2 50.0 457.2 

𝑑(𝑚𝑚) 198.0 1200.0 161.0 1200.0 

𝑎/𝑑(−) 2.448 7.102 2.444 7.102 

𝜌𝑤(%) 0.079 1.678 0.070 2.646 

𝑓𝑦𝑤(𝑀𝑃𝑎) 270.0 820.0 229.0 820.0 

𝑓𝑐(𝑀𝑃𝑎) 15.7 125.3 13.4 125.3 

𝜔𝑤 0.018 0.334 0.017 0.484 

𝑉exp(kN) 94.0 1330.0 81.0 1330.0 

 
 

the choice of the tensile stress ratio 𝜇  is summarized in 

Table 3 in terms of mean, standard deviation, coefficient of 

variation (CoV), minimum and maximum values of the 

𝑣exp/𝑣pred  ratio for the large database. The mean of 

proposed stress field approach with 𝜇 determined through 

Eq. (32) is 1.03, and the CoV is 21.93%. On the other hand, 

the other formulations are associated with mean greater than 

1 (low values of 𝜇) or lower than 1 (high values of 𝜇 ) and 

higher values of CoV (worse precision). 

 
Fig. 10 Comparison of experimental shear strength versus predictions obtained with the proposed stress field approach with 

three values of 𝜇 and with 𝜇 = 𝜇(𝜔𝑤) given in Eq. (32) as well as with the EC-2 model 

 

small database
83 tests

large database
205 tests

523



 

Dario De Domenico and Giuseppe Ricciardi 

 

 

Fig. 11 Comparative trend of 𝑣exp/𝑣pred ratio versus 𝜔𝑤 

for stress field approach with three values of 𝜇 and with 

𝜇 = 𝜇(𝜔𝑤) given in Eq. (32)  

 

 

The proposed stress field approach is also compared to 

other code-based formulations, namely the EC2 (2005), the 

ACI 318-11 additive approach (2011) (the same approach as 

in ACI 318-18 regulations (2018)), and the Model Code 

2010 level III  (fib 2013), and the corresponding 

performance is illustrated in Fig. 12 and in Fig. 13 in the 

𝑣pred − 𝑣exp  plane for the small and large databases, 

respectively. For the proposed stress field approach, most of 

the couples (𝑣exp, 𝑣pred) reasonably fall along the 45° line 

and are equally distributed above and below the 45° line, 

which implies small bias and high accuracy, on average. In 

particular, an excellent predictive performance is achieved 

for the small database, with mean equal to 1.00 and CoV of 

16.45%. It is worth noting that the code-based formulations 

are applied without any partial safety factor, using the mean 

values of the material strength parameters. Consequently, 

the results compared are not exactly the actual predictions 

of the different models, because characteristic or design 

values of the material strength parameters should be 

assumed depending on the model considered. However, as a 

general trend, the code-based formulations produce higher 

mean values, in the range 1.40-1.50 (meaning 40-50% of 

model safety factor, on average) and higher values of CoV 

(meaning lower precision) in comparison with the proposed 

model. As an example, the CoV of the Eurocode 2 is 30% 

higher than the CoV of the proposed stress field approach 

Table 3 Predictive performance of stress field approach with 

three constant values of 𝜇  against proposed empirical 

formula 𝜇 = 𝜇(𝜔𝑤) given in Eq. (32) for large database 

(205 tests) 

𝑣exp/𝑣pred ratio 𝜇 = 𝜇(𝜔𝑤) 𝜇 = 0.01 𝜇 = 0.035 𝜇 = 0.06 

mean 1.03 1.19 0.79 0.67 

standard deviation 0.226 0.277 0.206 0.222 

CoV (%) 21.93 23.23 26.12 33.33 

minimum 0.42 0.47 0.37 0.29 

maximum 1.82 2.20 1.65 1.62 

 
 

for both the databases. Based on these comparisons, it can 

be concluded that the incorporation of the principal tensile 

stresses of concrete leads to a significant improvement of 

the Eurocode 2 model in terms of both accuracy (mean) and 

precision (CoV). The expression of 𝜇 proposed in Eq. (32) 

provides good agreement between predicted shear strength 

and experimental data. The introduction of the principal 

tensile stresses does not complicate the EC-2 formulation, 

and is directly incorporated in the expressions reported in 

Table 1, using the same theoretical principles as in the EC-2 

model, namely equilibrium conditions and lower-bound 

theorem of plasticity. 

As a final remark, it is worth noting that the ultimate 

inclination angle of the compression struts 𝜃𝑢  is a key 

parameter for the evaluation of the shear strength. In the 

proposed stress field approach, the angle 𝜃𝑢  is evaluated 

through the static theorem of limit analysis, and is based on 

the mechanical ratio of transverse reinforcement 𝜔𝑤  and 

the tensile stress ratio 𝜇 according to Eq. (25). However, if 

a one-to-one relation between 𝜔𝑤  and 𝜇  is assumed 

according to Eq. (32), the following nonlinear formula 

between 𝜔𝑤 and 𝜃𝑢 is obtained 

1 1

0.015
cot

(1 6 )




 

− −
=

+ +

w
u

w w  

(33) 

which for any value of 𝜔𝑤 gives a unique value of 𝜃𝑢.  

The validity of Eq. (33) is checked against experimental 

results from the literature. It is rather difficult to carry out 

experimental measurements concerning the ultimate 

inclination angle of the principal compressive stresses in the 

web of the beam. However, by a proper arrangement of a 

series of LVDTs in triangles, it is possible to measure 

deformations of the web of the beam along different 

directions. Exploiting Mohr’s circle principles, the 

inclination of the principal compressive strains can be 

determined accordingly. The assumption of principal 

compressive stress directions coincident with principal 

compressive strain directions was often made in other 

works from the literature (Vecchio and Collins 1986), 

although strictly speaking the former lag behind the latter. 

Under this assumption, it is possible to compare the 𝜃𝑢 

values found through Eq. (33) with the inclination of 

principal compressive strain direction obtained from 

experimental measurements. A series of such measurements 

were performed by Walraven et al. (2013) for I-shaped 
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beams having different shear reinforcement ratios, and the 

corresponding experimental results are reported in Fig. 14 

as cyan dots. The solid curve superimposed in the plot is the 

trend described by Eq. (33) (predictions of the proposed 

stress field approach). Moreover, the ultimate inclination 

angles predicted by plasticity theory combined with MCFT, 

based on a variable-angle truss model proposed by He et al. 

(2015), is also reported in the plot for comparative purposes 

 

 

It is clearly seen that there is a reasonable agreement 

between predicted and experimental angles for both the 

proposed stress field approach and the plasticity theory + 

MCFT. In particular, for the proposed model the mean value 

of the ratio 𝜃exp/𝜃predicted is 0.92 and the CoV of the same 

ratio is 9.13%. The predictions of the proposed stress field 

approach are in very good agreement with the experimental 

results in the range 𝜔𝑤 < 0.3, which is the most significant 

 
Fig. 12   Predicted versus experimental shear strength using various code formulations and the proposed stress field 

approach with 𝜇 = 𝜇(𝜔𝑤) given in Eq. (32) for small database  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Predicted versus experimental shear strength using various code formulations and the proposed stress field approach 

with 𝜇 = 𝜇(𝜔𝑤) given in Eq. (32) for large database 
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Fig. 14 Comparison between experimental and predicted 

strut inclination angles for I-shaped beams tested by 

Walraven et al. (2013)  

 

 

range as more pronounced strut rotations are expected to 

occur for lower amounts of transverse reinforcement. As the 

stirrup ratio increases, the failure occurs with minimal strut 

rotation and the proposed stress field approach tends to 

slightly overestimate the inclination of the compressive 

stress direction. 

 

 

5. Conclusions 
 

A stress field limit analysis approach for the shear 

capacity of RC beams with stirrups has been elaborated. 

The model is based on the concept of cracked membrane 

element combined with the variable strut inclination method 

of the Eurocode 2. Unlike the EC-2 approach, the proposed 

model explicitly incorporates the contribution of the 

principal tensile stresses of concrete in the beam web. The 

proposed model and the corresponding shear strength 

expressions are based on simple equilibrium considerations 

on different beam segments. Three different failure 

mechanisms have been identified, and the ultimate strut 

inclination angle 𝜃𝑢 has been determined through the static 

theorem of limit analysis, maximizing the shear strength 

within the class of statically and plastically admissible 

solutions. The presence of principal tensile stresses slightly 

increases the ultimate strut inclination angle 𝜃𝑢  and is 

incorporated in the shear design expressions through a 

phenomenological expression that is linearly increasing 

with the mechanical ratio of transverse reinforcement 𝜔𝑤. 

It has demonstrated that the proposed stress field limit 

analysis approach is in very good agreement with 

experimental shear strength results from the literature. In 

particular, a comparison with more than 200 experimental 

results from the literature has revealed an average ratio of 

experimental to predicted shear strength very close to unity 

(1.03), and a CoV in the range of 16-20%, which is around 

30% lower than that corresponding to the Eurocode 2 

approach. Moreover, the proposed stress field approach 

provides values of the ultimate strut inclination angles that 

are fairly in line with experimental measurements of 

principal compressive strain direction as well as in 

agreement with inclination angles predicted by other 

models reported in the literature.  
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