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1. Introduction 
 

In turning of hardened steel, the main challenge 

emerging is the achievement of high product quality, in 

terms of dimensional accuracy, surface finish, and high 

production rate and cost effectiveness. The mechanism of 

surface roughness formation depends on various 

uncontrollable factors. The cutting conditions of machining 

operation, including the cutting speed, feed rate, depth of 

cut, tool geometry, and the material properties of both the 

tool and workpiece, have been reported to be fairly strongly 

correlated with the surface finish quality of machined 

workpiece (Chae et al. 2006). During the machining process, 

the relative vibration condition, occurring among the 

instrument, cutting tool, chuck, and workpiece, is an 

inextricable part and it has detrimental effects on the quality 

of machined surface (Tounsi et al. 2000). Especially, the 

relative vibrations of cutting tool and workpiece cause the 

poor machined surface finish, poor dimensional accuracy of 

the workpiece and tool breakage, which lowers down the 

productivity and increases the cost of production. The 

appearance of vibrations on the cutting tools is mainly 

subjected to the cutting dynamics process under various 

cutting conditions. The dynamic phenomena of cutting tool 

induced by the interaction of elastic system in the cutting  
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process causes the relative displacement between tool and 

workpiece, which generates the vibration of the cutting tool 

(Marinescu et al. 2002). Moreover, the major detrimental 

effect of vibration for the workpiece further worsens the 

quality of the machined surface. Surface roughness has 

been widely used in the index of the machined surface 

quality since a reasonably good surface finish was good for 

improving the tribological properties, fatigue strength, 

corrosion resistance, and esthetic appeal of the machined 

product (Dimla, 2004, Thomas et al. 1996). The surface 

roughness sensitivity according to cutting parameters such 

as cutting speed, feed rate and depth of cut while keeping 

constant tool edge geometry in hard turning will be 

presented in this paper. Due to inadequate knowledge of the 

complexity machining technology, numerous mathematical 

models have been proposed and extensively developed by a 

growing numbers of papers for the analysis of the 

machinability (Yıldırım et al. 2019, Çiçek et al. 2015, 

Junaid Mir et al. 2018, Umamaheswarrao et al. 2018, Azizi 

et al. 2012 and Keblouti et al. 2017). The machining 

parameters such as cutting speed, feed rate, depth of cut and 

tool vibration will highly affect surface roughness. When 

hard turning process is applied in metal cutting industry, 

high dimensional accuracy and better surface finish is 

urgently demanded. A lot of factors can affect the quality of 

the surface finish and one of the most affecting is the 

cutting tool vibration. It is necessary to select the most 

appropriate machining settings in order to improve cutting 

efficiency, process at low cost, and produce high-quality 

products. The optimization techniques of machining 
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Abstract.  In the present work, the optimization of machining parameters to achieve the desired technological parameters such as 

surface roughness, tool radial vibration and material removal rate have been carried out using response surface methodology (RSM). 

The hard turning of EN19 alloy steel with coated carbide (GC3015) cutting tools was studied. The main problem faced in 

manufacturer of hard and high precision components is the selection of optimum combination of cutting parameters for achieving 

required quality of surface finish with maximum production rate. This problem can be solved by development of mathematical 

model and execution of experiments by RSM. A face centred central composite design (FCCD), which comes under the RSM 

approach, with cutting parameters (cutting speed, feed rate and depth of cut) was used for statistical analysis. A second-order 

regression model were developed to correlate the cutting parameters with surface roughness, tool vibration and material removal 

rate. Consequently, numerical and graphical optimization were performed to obtain the most appropriate cutting parameters to 

produce the lowest surface roughness with minimal tool vibration and maximum material removal rate using desirability function 

approach. Finally, confirmation experiments were performed to verify the pertinence of the developed mathematical models. 
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parameters through experimental methods and 

mathematical as well as statistical models have grown 

substantially in order to achieve a common goal of 

improving higher machining process efficiency.    

To achieve the desired surface finish, a good predictive 

model is required for stable machining. The number of 

surface roughness prediction models available in the 

literature is very limited (Suresh et al. 2002). Most surface 

roughness prediction models are empirical and are generally 

based on experimental investigation. In addition, it is very 

difficult in practice to keep all factors under control as 

required to obtain reproducible results (Van Luttervelt et al. 

1998).  

Several researchers have made attempts to predict and 

understand the effect of various machining parameters 

during turning of hardened steel for optimization different 

performance parameters such as surface roughness, cutting 

tool vibration, material removal rate, tool wear, cutting 

force and power consumption, etc.    

Neseli et al. (2011) applied response surface 

methodology to optimize the effect of tool geometry 

parameters on surface roughness in hard turning of AISI 

1040 steel with P25 cutting tool. Asiltürk and Akkus (2011) 

selected the optimum cutting conditions to get the lowest 

surface roughness in hard turning of AISI 4140 steel. The 

study used a coated carbide cutting tool with the L9 

orthogonal array. Optimal cutting parameters were 

determined using Taguchi method. Keblouti et al. (2017) 

established the correlation among cutting and response 

parameters in turning of AISI 52100 bearing steel using 

RSM. They optimized the process parameters in order 

to maximize productivity. Hessainia et al. (2013) proposed 

an optimum range of cutting parameters for surface 

roughness, cutting tool vibration and force by establishing a 

mathematical model using RSM. Bhardwaj et al. (2014) 

developed first-order and quadratic models for prediction of 

surface roughness and determined optimum cutting 

parameters using RSM in turning of EN 353 steel. Bouziane 

et al. (2018) determined the best machining conditions to 

reduce surface roughness by desirability function approach. 

They also used RSM to establish required correlation 

among the experimental and predicted values. Recently, 

keblouti et al. (2019) established the RSM approach in 

turning of hardened 4140 steel. They reported good surface 

quality and minimum flank wear with optimum machining 

parameters. Meddour et al. (2015) conducted the 

experiments on hard turning of AISI 52100 steel to predict 

mathematical models for surface roughness and cutting 

forces using RSM and concluded that these models 

provided good results. Finally, optimization and verification 

of surface roughness were carried out. Upadhyay et al. 

(2013) focussed on developing an empirical model for the 

prediction of surface roughness using different cutting 

parameters and tool vibrations. Kirby et al. (2004) used 

multiple linear regression analysis and analysis of variance 

(ANOVA) for showing a good relationship between feed 

rate and tool vibrations for estimation of surface roughness. 

It is found that only vibration is unable to predict surface 

roughness correctly.  

Literature related to multiobjective optimization of 

surface roughness, cutting tool vibration and material 

removal rate during turning of hardened E19 steels under 

dry cutting conditions with coated carbide cutting tools are 

limited. Face centred central composite design (FCCD) of 

RMS was used to study the interaction effects of cutting 

speed, feed rate and depth of cut. This paper is devoted to 

the development of a mathematical model and carry out 

experimental study in order to obtain the most appropriate 

cutting parameters to produce the lowest surface roughness 

with minimal tool vibration and maximum material removal 

rate during hard turning of E19 steel with coated carbide 

tools.  
 

 

2. Experimental details 

 
2.1 Workpiece material and tool inserts 
 

EN19 alloy steel of 80 mm in diameter and a length of 

300 mm were chosen as workpiece materials for the present 

experimentation. The nominal chemical composition of 

EN19 steel is shown in Table 1. This workpiece material 

was selected found on its applications in automotive, 

crankshafts, spindles, connecting rods, pump, gear shafts, 

tie rods and bolts requiring high resistance. The 

microstructures of raw materials are shown in Fig. 1. The 

ferrite-pearlite microstructure is characterized by its 

lamellar pearlite structure with embedded pure ferrite.  

 

Table1 Nominal chemical composition of EN19 steel (wt %) 

Chemical composition Fe C Si Mn Ni Cr Mo 

Measured values 96.86  0.38  0.21  0.91  0.23  1.04  0.23 

 

 

Fig. 1 Microstructure of the EN19 steel (Etching: Nital 

0.2%) 

 

 

Fig. 2 The workpieces used 
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Fig. 3 Coated carbide insert (GC3015) 

 

 

Initially, the workpiece materials were applied to heat 

treatment at 850°C (austenisation temperature) for 1 hour 

and oil quenched. Thereafter, tempering was done at 330°C 

for 1.5 hours followed by air cooling. A standard workpiece 

hardness of 50 HRC was obtained after heat treatment. The 

workpieces used in the experiment are shown in the Fig. 2. 

The cutting tool used was coated carbide inserts 

(Sandvik’s Grade GC3015) in accordance with ISO 

designation of SNGA 120408T01520. The inserts were 

clamped onto a tool holder with a designation of 

PSBNR2525M12. The cutting tool used is shown in Fig 3. 

Combination of the insert and the tool holder resulted in 

negative rake angle  = -6°, clearance angle  = 6°, negative 

cutting edge inclination angle  = -6° and cutting edge 

angle r = 45°. 

 

2.2 Experimental procedure 
 

The experiment was conducted on universal lathe TOS 

TRENCIN model SN40C, with cutting tool inserts of 

SNGA 120408 having nose radii of 0.8 mm. The workpiece 

material is an EN19 alloy steel bars is used in this 

experiment. These bars are nominally of 80 mm diameter 

and were cut to 300 mm length. The measurements of 

arithmetic surface roughness (Ra) for each cutting condition 

were obtained from a Surftest 201 Mitutoyo roughnessmeter. 

The length examined is 24 mm with a basic span of 3 mm. 

The measurements were repeated at three equally spaced 

locations around the circumference of the workpieces and 

the result is an average of these values for a given 

machining pass.Vibration Digital Meter (VM-6360), with 

measuring ranges: 0-199 mm/s velocity, 0-20g acceleration 

and 1-1999 μm displacement has been set to record 

vibration signals in cutting tool.  

Radial vibrations have been recorded by mounting a 

uni-axial accelerometer sensor the tool holder in the radial 

direction. Fig. 4 depicts the overview of the experimental 

setup, measurement process and analysis procedure that was 

followed during the present study. 

 
2.3 Experimental design 
 

In the present work, experiments were designed by 

using a face central composite design (FCCD) and 

regression technique in response surface methodology 

(RSM) for three parameters with three levels of each 

parameter. The design expert 7.0 software was utilized for 

analysis and optimization using RSM. Experiments were 

carried out and the influence of these machining parameters  

 

Fig. 4 Experimental design diagram 

 

Table 2 Levels of cutting parameters 

Symbol Factors Unit 
Level 

-1 0 1 

Vc Cutting speed m/min 40 80 120 

f Feed rate mm/rev 0.08 0.16 0.24 

ap Depth of cut mm 0.4 0.8 1.2 

 

 

on surface roughness (Ra), radial cutting tool vibration (Vy) 

and material removal rate (MRR) was investigated. The 

experimental parameters and their levels are listed in Table 

2. 

FCCD is used to determine the optimum values of 

parameters (Vc, f and ap). The numbers of experiments in 

this method (FCCD) are 2k + 2k + n. Note that k and n are 

the numbers of factors and center points, respectively. 

FCCD design is required to 19 experiments (23 (factorial 

points) + 23 (axial points) + 5 (central points)) with 

cutting speed (Vc), feed rate (f) and depth of cut (ap). Fig. 5 

shows the generation of a central composite design for three 

factors. In this figure, we assumed a zero central point for 

each factor. Also, the design is symmetric around this point. 

A series of experiments according to the experimental plan 

and FCCD design for surface roughness (Ra), radial cutting 

tool vibration (Vy) and material removal rate (MRR) are 

presented in Table 3. The statistical analysis was carried out 

in three phases. In the first phase, analysis of variance 

(ANOVA) was used to analyze the effect of parameters and 

their interactions with the response variables. The second 

phase is concerned with quadratic regression for the 

building of analytical models showing the variation of 

outputs. The last one is used for the optimization of results. 

The second phase is concerned with quadratic regression for 

the building of analytical models showing the variation of 

outputs. Finally, confirmation experiments were carried out 

to examine the robustness of the developed model. 
 
2.3.1 Response surface methodology 
RSM is an optimization technique that applies 

mathematical and statistical methods for building an 

empirical model. This technique optimizes a response as the 

output variable. Note that the output variables are 

influenced by several independent variables as the input 

variables. In this method, changes are made in the input  
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Fig. 5 Generation of a FCCD design for three factors 

 

 

variables in order to identify the reasons for changes in the 

output response. The experimental data were analyzed by 

the response surface regression procedure using the 

following second-order polynomial equation: 
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Where y is the response, xi and xj are the coded 

independent variables. When normalized centred 

representations (coded levels) are used to represent factor 

levels, b0, bi, bii and bij are the mean values of responses, 

linear, quadratic and interaction constant coefficients, 

respectively. Each coefficient (except interactions) allowed 

estimation of the change in the mean response per unit 

increase in x when all other factors were held constant.  

 

2.3.2 Analysis of variance 
In this investigation, the analysis of variance (ANOVA) 

is performed to determine which machining parameter 

significantly affects the technological parameters of hard 

turning process and also to find the relative contribution of 

machining parameters in controlling the response 

parameters. To proceed with the ANOVA, the method of 

least squares is used. The results of this experiment in the 

form of ANOVA are presented. An ANOVA summary table 

is commonly used to summarize the test of the regression 

model as well as the test of the significance factors. A 

“Model F-Value” is calculated from a model mean square 

divided by a residual mean square. It is a test of comparing 

a model variance with a residual variance. If the variances 

are close to the same value, the ratio will be close to one 

and it is less likely that any of the factors have a significant 

effect on the response. In addition, if the “Model P-Value” 

is very small (less than 0.05) then the terms in the model 

have a significant effect on the response.  
 
 

3. Results and discussion 

 

The combined effects of cutting parameters (Vc, f, and 

ap) on the generated surface obtained when hard turning 

EN19 alloy steel on responses of Ra, Vy and MRR were 

 

Fig. 6 Chips produced while hard turning of EN19 steel 
 

 

investigated. These responses are reported in Table 3. 

Tables 3 reports the values of the best surface roughness 

(Ra) which is achieved with the combination of lowest feed 

rate, 0.08 mm/rev, in the medium value of cutting speed, 80 

m/min and in the medium value of depth of cut, 0.8 mm. 

This is explained by the slow elimination of small chip 

thickness, resulting in a continuous removal of the material 

that contributes to the improvement of surface quality. 

However, the highest values of surface roughness is 

observed for high feed rate of 0.24 mm/rev. This is 

explained by the rapid removal of matter, the change of the 

chip morphology and the distance between the scratches 

that degrade the machined surface. The material removal 

rate (MRR) is calculated by Eq. (2) (Saidi et al. 2019): 

 min3cmapfVcMRR =  (2) 

Where, MRR is the material removal rate (cm3/min). The 
highest MRR was 34.6 cm3/min obtained at the highest 
levels of inputs due to more volume of material removed. 
Fig.6 presents the chips were collected during the 
experiment numbers of 3, 4, 9, 11, 14, and 17 respectively.  

Rubbing between tool and chip interface was one of the 
major factors affecting the chip morphology. Significant 
changes in the form, the colour and the curvature of the 
chips were also observed due to the cutting temperature and 
friction at the tool-chips interface during hard turning of 
dual phase EN19 steel under dry conditions with coated 
carbide (GC3015) inserts. 

In Table 3 the surface roughness (Ra), tool radial 
vibration (Vy) and material removal rate (MRR) were 
obtained in the range of 0.92−2.64 m, 0.48−1.59 mm/s and 
−34.6 cm3/min, respectively. All three technological 
parameters (Ra, Vy and MRR) are influenced mainly by the 
feed rate. 

 

3.1 Statistical analysis 
 

The results of ANOVA for machinability models using 
coated carbide (GC3015) cutting tools are summarized in 
Tables 4, 5 and 6. A data variance analysis of surface 
roughness (Ra), radial cutting tool vibration (Vy) and 
material removal rate (MRR) was carried out. The main 
purpose was to analyze the influence of the cutting speed 
(Vc), the feed rate (f), and the depth of cut (ap) on the total 
variance of the results. 
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Table 3 Experimental results for Ra, Vy and MRR 1.28 

N° 

  Cutting conditions     Response parameters 

Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 

Ra 

(m) 

Vy 

(mm/s) 

MRR 

(cm3/min) 

1 80 0.16 0.8 1.16 0.88 10.2 

2 40 0.08 0.4 1.35 0.58 1.28 

3 80 0.24 0.8 2.18 1.59 15.4 

4 120 0.16 0.8 1.76 1.17 15.4 

5 40 0.24 1.2 2.44 1.35 11.5 

6 80 0.16 0.8 1.21 0.75 10.2 

7 120 0.08 1.2 1.14 0.63 11.5 

8 120 0.24 1.2 2.54 1.42 34.6 

9 80 0.16 0.4 1.29 0.55 5.12 

10 80 0.16 1.2 1.16 0.52 15.4 

11 120 0.24 0.4 2.64 1.12 11.5 

12 120 0.08 0.4 0.96 0.48 3.84 

13 80 0.16 0.8 1.19 0.77 10.2 

14 40 0.24 0.4 2.44 1.25 3.84 

15 80 0.16 0.8 1.23 0.98 10.2 

16 80 0.16 0.8 1.18 0.96 10.2 

17 40 0.16 0.8 1.92 0.86 5.12 

18 40 0.08 1.2 1.11 0.59 3.84 

19 80 0.08 0.8 0.92 0.73 5.12 

 

Table 4 ANOVA results of surface roughness (Ra) 

Source 
Sum of 

squares 
df 

Mean 

square 
F-Value Prob> F Cont. % Remark 

Model 6.21 9 0.69 51.9 < 0.0001 − Signif. 

Vc 0.0048 1 0.0048 0.365 0.561 0.076 No Signif. 

f 4.57 1 4.57 344.36 < 0.0001 72.19 Signif. 

ap 0.0084 1 0.0084 0.634 0.447 0.133 No Signif. 

Vc x f 0.0545 1 0.0545 4.10 0.0735 0.86 No Signif. 

Vc x ap 0.0128 1 0.0128 0.964 0.352 0.20 No Signif. 

f x ap 0.0002 1 0.0002 0.0151 0.905 0.003 No Signif. 

2Vc 0.677 1 0.677 51.03 < 0.0001 10.69 Signif. 

2f 0.118 1 0.118 8.88 0.0154 1.86 Signif. 

2ap 0.0376 1 0.0376 2.83 0.127 0.59 No Signif. 

Residual 0.119 9 0.0133 − − − − 

Cor Total 6.33 18 − − − − − 

 

 
The ANOVA is performed to establish the statistical 

significance of the regression models, model terms. It is 

done by comparing “Prob>F” to 0.05 or in other words at 

95% of confidence level. Tables 4, 5 and 6 show that 

surface roughness (Ra), radial cutting tool vibration (Vy) 

and material removal rate (MRR) models are significant 

with Prob > F values less than 0.0001. The proportion of 

contribution of each model term was calculated. 

Table 5 ANOVA results of radial vibration (Vy) 

Source 
Sum of 

squares 
df 

Mean 

square 
F-Value Prob> F Cont. % Remark 

Model 1.87 9 0.208 16.2 < 0.0001 − Signif. 

Vc 0.0036 1 0.0036 0.280 0.609 0.18 No Signif 

f 1.38 1 1.38 107.42 < 0.0001 69.34 Signif. 

ap 0.0281 1 0.0281 2.18 0.174 1.422 No Signif 

Vc x f 0.0001 1 0.0001 0.0006 1.0001 0.005 No Signif 

Vc x ap 0.0145 1 0.0145 1.12 0.317 0.728 No Signif 

f x ap 0.0072 1 0.0072 0.559 0.474 0.361 No Signif 

2Vc 0.0453 1 0.0453 3.51 0.0936 2.276 No Signif 

2f 0.205 1 0.205 15.9 0.00318 10.30 Signif. 

2ap 0.337 1 0.337 26.2 0.00063 16.93 Signif. 

Residual 0.116 9 0.0129 − − − − 

Cor Total 1.99 18 − − − − − 

 
 

The ANOVA for average surface roughness parameter is 

presented in Table 4. The F-value for the model is 51.9 and 

there is less than 0.0001% chance that this large F-value is 

due to noise only. The significant model terms are f, Vc 2 

and f 2, which have Prob>F value less than 0.05. Percentage 

contribution of each factor and their interaction terms have 

been calculated. From the ANOVA results it is clearthat the 

effect of depth of cut on surface roughness (Ra) is not 

statistically significant and the variation of surface 

roughness with depth of cut is minimal as reported in 

previous investigators; however, the effect of feed rate on 

surface roughness is of statistical importance. The percent 

contribution gives a better understanding for the 

interpretation of the results, which shows that the 

contribution due to the feed rate is 72.19%. This can be 

explained by the feed rate increase generates helicoid 

furrows which are deeper and broader, resulting from tool 

shape and movement combination between the tool and 

workpiece. On the other hand, this phenomenon is 

explained by the reduce of feed caused low cutting forces, 

which results less vibration, providing a better surface 

finish (keblouti et al. 2019). It can also be seen from Table 

4 that the quadratic effect Vc2 was found to be the second 

most significant factor with a contribution of 10.69% 

followed by quadratic effect  𝑓2 with a contribution of 

1.86 %. Dilbag and Venkateswara (2007) reported that the 

surface roughness are most sensitive to the interaction of 

feed rate and nose radius followed by the quadratic effect 

𝑓2with a contribution of 6.45 %. 

From the analysis of Table 5, P-values greater than 0.05 

indicate model terms are not significant. In this case cutting 

speed, depth of cut and all interaction between these terms 

are not significant model. The Model F-value of 16.21 

implies the model is significant. There is only a 0.02% 

chance that an F-value this large could occur due to noise. 

Based on obtaining results, feed is the most significant 

factor on the cutting tool radial vibration (Vy) evolution. 

This is consistent with the surface roughness results 

analysis subsection in this study.  

Besides, it can be noted that a strong effect of cutting 

tool radial vibration on the surface roughness evolution. In  
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Table 6 ANOVA results of material removal rate (MRR) 

Source 
Sum of 

squares 
df 

Mean 

square 
F-Value Prob> F Cont. % Remark 

Model 944 9 105 72 < 0.0001 − Signif. 

Vc 262 1 262 180 < 0.0001 27.37 Signif. 

f 262 1 262 180 < 0.0001 27.37 Signif. 

ap 262 1 262 180 < 0.0001 27.37 Signif. 

Vc x f 52.4 1 52.4 36 0.0002 5.47 Signif. 

Vc x ap 52.4 1 52.4 36 0.0002 5.47 Signif. 

f x ap 52.4 1 52.4 36 0.0002 5.47 Signif. 
2Vc 0 1 0 0 1 0 No Signif 

2f 0 1 0 0 1 0 No Signif 
2ap 0 1 0 0 1 0 No Signif 

Residual 13.12 9 1.46 − − − − 

Cor Total 957 18 − − − − − 

 

 

the same manner, the main effect of feed rate factor (f) and 

the quadratic effects 𝑓2as well as ap2 are significant model 

terms. It can be seen that the feed rate (f) is the most 

important factor affecting the cutting tool radial vibration 

(Vy). Its contribution is 69.34% followed by the quadratic 

effect ap2 with a contribution of 16.93 % whereas the the 

quadratic effect 𝑓2 contribute only 10.30%. Sahoo et al. 

(2007) reported that feed rate and the quadratic effect of 

spindle speed are most influencing parameters for tool 

vibration. Recently, keblouti et al. (2019) indicated that 

feed rate (f) and squared term of feed rate 𝑓2only the both 

factors have statistical and physical significance on the 

cutting tool radial vibration (Vy) during hard turning. 

Finality from analysis of the influence of Table 6, it can 

be apparently seen that all cutting parameters (Vc, f, and ap) 

have statistically significant on MRR with the same 

contribution (27.37%). The interactions (Vc×f, Vc×ap and 

f×ap) were found to be less significant rate with the same 

contribution (5.47 %), while all quadratic effects 

(Vc2, 𝑓2and ap2) does not statistically significant on MRR. 

Kaladhar et al. (2012) reported that the depth of cut is found 

to be the most significant factor affecting the material 

removal rate (MRR) with a contribution of 61.31%, and that 

the cutting speed was found to be the second most 

significant factor with a contribution of 20.40% followed by 

feed rate with a contribution of 5.38 %.  

The normal probability plots of the residuals (i.e. error = 

predicted value from model−actual value) surface 

roughness (Ra), radial cutting tool vibration (Vy) and 

material removal rate (MRR) are shown in Figs.7 (a), (b) 

and (c), respectively. Figs.7 (a), (b) and (c) reveal that the 

residuals lie reasonably close to a straight line, giving 

support that the terms mentioned in the model are 

significant (Montgomery 2001). 

The perturbation plot helps us to compare the effect of 

all the factors at a particular point in the design space. The 

response is plotted by changing only one factor over its 

range while holding of the other factors constant. A steep 

slope or curvature in a factor shows that the response is 

sensitive to that factor. A relatively flat line shows 

insensitivity to change in that particular factor. If there are  

 
 

 
 

 

Fig. 7 Normal probability plot of residuals for Ra (a), Vy 

(b) and MRR (c) 
 

 

more than two factors, the perturbation plot could be used 

to find those factors that most affect the response. These 

influential factors are good choices for the axes on the 

contour plots. The perturbation plot shows the effect 

ofcutting parameters (Vc, f, and ap) on All three 

technological parameters (Ra, Vy and MRR) are shown in 

Figs.8 (a), (b) and (c). The figures depict that optimization 

point of this system occurs at the maximum level for all 

machining parameters. The degree of curvature for each 

curve shows the level of decrement, which occurs in a log 

or linear pattern. It is observed from the perturbation plot 

that the feed rate (f) has large effect on the surface 

roughness (Ra), tool radial vibration (Vy) and material  
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Fig. 8 Perturbation plot for various responses (a) Ra, (b) 

Vy and (c) MRR  

 

 

removal rate (MRR) as the curvature of it is steep slope. The 

perturbation plot is presented in Fig. 8(a) which reveals that 

the surface roughness increases significantly with increase 

in the feed rate. This is anticipated as it is well known that 

for a given tool nose radius, the theoretical surface 

roughness is proportional to the square of the feed rate. It is 

seen that cutting speed (Vc) and feed rate (f) contribute to 

the highest increment of surface roughness compared to 

depth of cut (ap). However, the increment in surface 

roughness by cutting speed (Vc) is a negative quadratic 

model where it increases until a certain level is achieved 

and then, decreases. Fig. 8(b) shows the perturbation graph 

which gives the deviation of each machining parameter with 

tool radial vibration (Vy). It is seen that feed rate (f) is most 

sensitive to tool radial vibration (Vy), the cutting speed (Vc) 

and the depth of cut (ap) are less sensitive to tool radial 

vibration (Vy). It also can be noted that the effect of all 

factors on the tool radial vibration is non-linear. For MRR in 

Fig. 8(c), all factors show with same linear perturbation 

where all factors increase the MRR as its level increases 

from minimum to maximum level. This direct proportional 

relationship occurs due to the higher chip tool interface area. 

 
3.2 Regression equations 
 

The relationship between the machining parameters and 

the performance measures was modeled by quadratic 

regression. The insignificant terms were excluded, except 

the main effects. Thus, reduced and improved Ra, Vy and 

MRR prediction models was generated. The regression 

equations obtained were as follows. 

The surface roughness (Ra) model is given below in        

Eq. (3). Its coefficient of determination (R2) is 98%.   

Ra = 2.83 – 0.0564 Vc – 3.87 f + 0.925 ap 3.11E–04 Vc2
 

 + 32.5 f 2 
(3) 

The tool radial vibration (Vy) model is given below in    

Eq. (4). Its coefficient of determination (R2) is 94%.  

Vy = 0.485 – 0.0145 Vc – 9.79 f + 3.28 ap + 42.8 f 2  

 – 2.20 ap2 
(4) 

The material removal rate (MRR) model is given below 

in Eq. (5). Its coefficient of determination (R2) is 98%.   

MRR = 10.2 – 0.128 Vc – 64.02 f – 12.8 ap + 0.8 Vc f        

+ 0.16 Vc ap + 80.01  f ap 
(5) 

The relationship between the predicted and the actual 

values are shown in Figs. 9(a), (b) and (c). There is a small 

percentage error between the predicted and actual results. 

The experiment values are clearly in agreement with the 

predicted values. 

 

 3.3 3D Response surface plots 
 

A graphical analysis was carried out using design expert. 

The surface plots obtained for the most influential factors 

related to the surface roughness (Ra), tool radial vibration 

(Vy) and material removal rate (MRR) in hard turning with 

respect to the machining parameters is presented. Figs. 10–

13 show the variation of surface roughness, tool radial 

vibration and material removal rate with the machining 

parameters namely cutting speed, feed rate and depth of cut. 

Fig.10 shows the variation of surface roughness with feed 

rate and cutting speed. It is seen that feed rate has 

significant effect on surface roughness and its variation is 

very high when compared to other parameters. With the 

increasing feed rate, the raised chip load leaded to 

aggravated friction at the interface of rake face–chip while 

the cutting temperature raised to melt material in the cutting 

zone. The influence of cutting speed at low feed rate (0.08–

0.12 mm/rev) on surface roughness can be nearly neglected, 

indicating a steady cutting process. In addition, with the 

increasing cutting speed, the surface roughness becomes 

more sensitive to the changes in feed rate. It is confirmed 

that cutting speed increasing in the range of 40–100 m/min,  
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Fig. 9 Actual vs. predicted value for Ra (a), Vy (b) and 

MRR (c) 
 
 

the probable reason for the decreased surface quality is that 

the mass chips gathered at the tool rake face unable to 

exhaust resulting in high cutting force. When the cutting 

speed increases from 100 to 120 m/min, the cutting 

temperature reaches to a certain threshold that caused the 

material softening, thereby inducing the surface quality 

deterioration. Fig.11 shows the variation of surface 

roughness with feed rate and depth of cut. It is established 

that feed rate has the highest impact on surface roughness. 

The surface roughness does not vary much with depth of cut 

at higher feed rate ranges, but tends to decrease almost with 

increasing depth of cut at lower values of feed rate. This can 

be explained by the improvement in surface roughness with 

increase in depth of cut can be related to increase in the 

temperature of chip leading to its softening and lowering 

frictional forces, thereby improving the surface finish. 

Similar results were reported by Thomas et al. (1996), 

particularly when machining within the built-up range.       

Fig. 12 depicts the 3D response surface and contour plot 

behavior of tool radial vibration with cutting speed and feed 

rate. For higher values of feed rate and cutting speed, the 

tool radial vibration is considerably high. It is seen that feed 

rate has the highest impact on tool radial vibration. As feed 

rate increases, that results increase in undeformed chip 

thickness, and undeformed chip thickness is directly 

proportional to cutting force. Therefore, if cutting force 

increases it will affects the stability and damping 

characteristics, which cause tool radial vibration. The 

variation of material removal rate (MRR) with cutting speed 

and feed rate is shown in Fig.13. It also can be noted that 

the effect cutting speed and feed rate on the material 

removal rate is linear. It is confirmed that the both factors 

increase the material removal rate (MRR) as its level 

increases from minimum to maximum level with the same 

degree of influence. This direct proportional relationship 

occurs due to the higher chip tool interface area. 

 
3.4 Validation of the regression models  
 

In order to verify the accuracy of the mathematical 

models of the surface roughness (Ra), tool radial vibration 

(Vy) and material removal rate (MRR), three groups of 

experiment data are randomly selected within the range of 

the levels defined in experiment and tested to compare with 

the results predicted by the mathematical models. The 

process parameters and validation results of the 

mathematical models are presented in Table 7. The 

predicted values and the actual experimental values were 

compared and the percentage error was calculated. The 

percentage error range between the actual and predicted 

value for response factors (Ra, Vy and MRR) are as follows: 

Ra = −3.75 to 6.61%, Vy = −9.61 to 9.52% and MRR = 

−4.34 to 5.07%. It can be said that the empirical models 

developed were reasonably fairly well. 
 

 

4. Optimization multiple response 
 

The desirability function approach is one of the most 

widely used methods for optimization of multiple response 

processes in diverse field of applied science and 

engineering (Akhnazarova and Kafarov, 1982). This 

approach involves first, specification of the individual 

desirability function (di) for each response (Yi) by assigning 

to the predicted values a score ranging from 0 (very 

undesirable) to 1 (very desirable). This transformation can 

be represented as: 

  21iYccd i2i1i
i

,))(exp(exp =+−−=  (6) 
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Table 7 Validation results of the mathematical model 

N° 

Cutting conditions Ra (m) Vy (mm/s) MRR (cm3/min) 

Vc 

(m/min) 

f 

(mm/rev) 

ap 

(mm) 
Pred Actual 

Error 

(%) 
Pred. Actual 

Error 

(%) 
Pred. Actual 

Error 

(%) 

1 60 0.12 1 1.078 1.12 -3.75 0.69 0.63 9.52 6.99 7.2 -2.91 

2 120 0.22 0.5 2.355 2.23 5.60 1.14 1.11 2.70 13.87 13.2 5.07 

3 90 0.16 0.4 1.354 1.27 6.61 0.47 0.52 -9.61 5.51 5.76 -4.34 

  
(a) Response surface (b) Contour plots 

Fig. 10 Effect of feed rate and cutting speed on surface roughness 

  
(a) Response surface (b) Contour plots 

Fig. 11 Effect of feed rate and depth of cut on surface roughness 

 
 

(a) Response surface (b) Contour plots 

Fig. 12 Effect of feed rate and cutting speed on tool radial vibration 
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For a one-sided transformation, di will increase as Yi 

increases and di will have a role in the maximisation of Yi 

(note that the minimisation of Yi implies the maximisation   

of −Yi). Individual desirability of all of the responses can be 

combined to get a single value of desirability. 

Where the coefficients ci1 and ci2 are determined by 

assigning for two values of Yi the corresponding values of di, 

preferably in the range 0.2 < di < 0.8 (Akhnazarova and 

Kafarov, 1982). Subsequently, the individual desirability 

scores for the predicted values for each response are 

combined by computing their geometric mean that 

represents the overall desirability function (D) (Chakraborty 

and Bordoloi, 2006, Akhnazarova and Kafarov, 1982): 

n1
n

1i

n1
i

n21
ddddD 






== 
=

)(   (7) 

DFxF −=)(  (8) 

Where di is the desirability defined for the i th targeted  

output and n is the number of responses in the measure. For 

simultaneous optimization, each response must have a low  

and high value assigned to each goal.  

Desirability function approach has been used for 

multiple response factors (Ra, Vy, and MRR) optimization 

using design expert software. The optimization module 

searches for a combination of factor levels that 

simultaneously satisfies the requirements placed on each of 

the responses and factors in an attempt to establish the 

appropriate model. During the optimization process the aim 

was to find the optimal values of machining parameters in 

order to produce the lowest surface roughness (Ra) with 

minimal tool radial vibration and maximum material 

removal rate during the hard turning. The constraints used 

during the optimization process are summarized in Table 8. 

The optimal solutions are reported in Table 9 in order of 

decreasing desirability level. The desirability value of 0.773 

corresponds to the lowest value of surface roughness with 

minimal tool radial vibration and maximum material 

removal rate in the given range of parameters. Ramp 

function graph of most desirable solution are shown in  

 

 

Table 8 Constraints for optimization of cutting parameters 

Conditions Objective 
Lower 

 limit 

Upper 

 limit 
Importance 

Vc (m/min) in range 40 120 3 

f (mm/rev) in range 0.08 0.24 3 

ap (mm) in range 0.4 1.2 3 

Ra (µm) Target = 0.92 0.92 2.64 5 

Vy (mm/s) Minimized 0.48 1.59 3 

MRR (cm3/min) Maximized 1.28 34.6 3 

 

Table 9 Optimal solutions 

N˚ 
Vc  

(m/min) 

      f  

(mm/rev) 

 ap  

(mm) 

 Ra  

 (µm) 

    Vy  

 

(mm/s) 

MRR  

(cm3/min) 
Desirability 

1 95.2   0.125 1.2 
  

0.925 

  

0.499 
   14.5 0.773 

2 95.2   0.126 1.2 
  

0.932 

  

0.501 
   14.6 0.773 

3 95.2   0.13 1.2 
  

0.958 

  

0.512 
   15 0.772 

4 90.6   0.13 1.2 
  

0.928 

  

0.492 
   14.2 0.771 

5 74   0.158 1.2 
  

1.110 

  

0.563 
   14 0.715 

 

 

Fig. 14. Ramp graph show what shall be the value of 

machining parameters (Vc, f and ap) to obtain optimal 

solution. For clear assessment, desirability value of each 

individual factor and responses associated with the 

modeling are shown in Fig. 15. 

The surface roughness was found with more desirability 

(0.9972) than the tool radial vibration (0.9833) and the 

material removal rate (0.3970) due to imposed higher 

importance on surface roughness.  

The optimal solutions are reported in Table 9 in order of 

decreasing desirability level. The desirability value of 0.773 

corresponds to the lowest value of surface roughness with 

minimal tool radial vibration and maximum material 

removal rate in the given range of parameters. Ramp 

function graph of most desirable solution are shown in  

        

(a) Response surface (b) Contour plots 

Fig. 13 Effect of feed rate and cutting speed on material removal rate 
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Fig. 14 Ramp function graph of most desirable solution 

 

 

Fig. 15 Bar chart of the optimization 

 

 

Fig.14. Ramp graph show what shall be the value of 

machining parameters (Vc, f and ap) to obtain optimal 

solution. For clear assessment, desirability value of each 

individual factor and responses associated with the 

modeling are shown in Fig. 15. The surface roughness was 

found with more desirability (0.9972) than the tool radial 

vibration (0.9833) and the material removal rate (0.3970) 

due to imposed higher importance on surface roughness. 

The result of graphical optimization is illustrated in Fig. 

16. The graphical optimization plot also known as an 

overlay plot is a convenient tool where by superimposing or 

overlaying critical response contours on a contour graph, 

the models can be visually searched for the best 

compromise or optimum factor settings. The overlay plot 

highlights the "sweet spot" with multiple responses regions 

where response criteria can be met or requirements 

simultaneously meet the critical properties.  

The contours are plotted at the limits specified by the 

criteria (0.92 ≤ Ra ≤ 2.64, 0.48 ≤ Vy ≤ 1.59 and 1.28≤ MRR 

≤ 34.6). Furthermore, the graphical optimization displays 

the area of feasible response values in the factor space 

shaded yellow. From this analysis it is found that the cutting 

speed, 95.2 m/min; feed rate, 0.125 mm/rev and depth of 

cut, 1.2 mm are the optimum values of machining 

parameters while the optimum value of surface roughness, 

tool radial vibration and material removal rate are 0.925 m, 

0.499 mm/s and 14.5 cm3/min, respectively. 

Fig.17 shows a 2D contour plot of the overall 

desirability function D(x) for the (Vc, f) plane when ap is 

fixed at 1.2 mm. The maximum value of function D(x) 

=0.773 located in the factor space shaded blue 

approximately the optimal solution, indicating that small 

 

Fig. 16 Overlay plot of most desirable solution 

 

 

Fig. 17 Contour plots of desirability function 

 

 

variations in the region of: cutting speed, 95.2 m/min; feed 

rate, 0.125 mm/rev and depth of cut, 1.2 mm are predicted 

to not change the overall desirability drastically. However, 

the importance of performing confirmatory runs at the 

estimated optimal operating conditions should be 

emphasized.  

 

 

5. Conclusions 
 

In this study, the application of statistical analysis on the 

hard turning of EN19 alloy steel under dry conditions with 

coated carbide (GC3015) inserts had carried out the 

mathematical models of the surface roughness, tool radial 

vibration and material removal rate to investigate the 

influences of machining parameters. In order to find the 

optimum value of machining conditions to produce the 

lowest surface roughness with minimal tool radial vibration 

and maximum material removal rate, the second-order 

regression model associated with desirability function 

optimization was used. The following conclusions can be 

drawn from this study: 

•  The surface roughness is most prominently 

influenced by the feed rate (72.19 %), followed by 
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quadratic effect of cutting speed (10.69 %) and lastly by 

quadratic effect of feed rate (1.86 %). The surface 

roughness increases with the increase of feed rate and 

almost decreases at medium cutting speeds. 

•  The tool radial vibration was found to be influencing 

the surface roughness during hard turning process. 

Variation in surface roughness was noted to be directly 

proportional to the tool radial vibration. Machining 

parameters such as feed rate, wall deflection were found to 

be influencing the surface roughness through the cutting 

forces. As the feed rate increases, the thickness of the 

undeformed chip increase. This results in increase in cutting 

force variation, which cause tool vibration and ultimately 

affects the quality of machined surface. 

•  Generally speaking, the cutting speed, feed rate and 

depth of cut are the three factors increase the material 

removal rate as its level increases from minimum to 

maximum level with same linear perturbation. This direct 

proportional relationship occurs due to the higher chip tool 

interface area. 

•  Normality tests on the residuals of the second-order 

regression models ensure that the models have extracted all 

applicable information from the experimental data, and 

these tests also validate the adequacy of the models. 

• The average percentage error obtained by 

confirmation experiments was determined to be 5.32%, 7.27% 

and 4.10% for surface roughness (Ra), tool radial vibration 

(Vy) and material removal rate (MRR), respectively; which 

proves the reliability of the mathematical models 

established. Thus the mathematical models are 

recommended to be employed in practice.  

•  Desirability based multi-response optimization 

asserted that the optimum value of machining conditions to 

produce the lowest surface roughness with minimal tool 

radial vibration and maximum material removal rate are in 

the region of: cutting speed, 95.2 m/min; feed rate, 0.125 

mm/rev and depth of cut, 1.2 mm; with estimated surface 

roughness of 0.925 m, tool radial vibration of 0.499 mm/s 

and material removal rate of 14.5 cm3/min.  

 

 

Acknowledgment 
 

This work was achieved in the Advanced Technologies 

in Mechanical Production Research Laboratory (LRTAPM), 

Badji Mokhtar-Annaba University, Algeria in collaboration 

with Mechanics and Structures Research Laboratory (LMS), 

May 8th 1945 University, Guelma, Algeria. The authors 

would like to thank the laboratory technicians at Imetal-

Annaba metallurgical complex for their help concerning the 

preparation of specimens as well as equipment’s for 

spectrometry analysis and metallography observations.  
 
 

References 
 

Akhnazarova, S. and Kafarov, V. (1982), Experiment Optimization 

in Chemistry and Chemical Engineering, Mir Publishers, 

Moscow. 

Asiltürk, I. and Akkuş, H. (2011), “Determining the effect of 

cutting parameters on surface roughness in hard turning using the 

Taguchi method”, Meas., 44(9), 1697-1704. 

https://doi.org/10.1016/j.measurement.2011.07.003. 

Azizi, M.W., Belhadi, S., Yallese, M.A., Mabrouki, T. and Rigal, 

J.F. (2012), “Surface roughness and cutting forces modeling for 

optimization of machining condition in finish hard turning of 

AISI 52100 steel”, J. Mech. Sci. Technol., 26(12), 4105-4114. 

https://doi.org/10.1007/s12206-012-0885-6. 

Bhardwaj B., Kumar R. and Singh P.K. (2014), “Prediction of 

surface roughness in turning of EN 353 using response surface 

methodology”, Trans. Indi. Inst. Met., 67, 305-313. 

https://doi.org/doi:10.1007/s12666-013-0346-7. 

Bouziane, A., Boulanouar, L., Azizi, M.W. and Keblouti, O. 

(2018), “Analysis of cutting forces and roughness during hard 

turning of bearing steel”, Struct. Eng. Mech., 66(3), 285-294. 

https://doi.org/doi: 10.12989/sem.2018.66.3.285. 

Çiçek, A., Kıvak, T. and Ekici, E. (2015), “Optimization of drilling 

parameters using Taguchi technique and response surface 

methodology (RSM) in drilling of AISI 304 steel with 

cryogenically treated HSS drills”, J. Intel. Manuf., 26(2), 295-

305. https://doi.org/10.1007/s10845-013-0783-5. 

Chae J., Park S.S. and Freiheit T. (2006), “Investigation of micro-

cutting operations”, Int. J. Mach. Tool. Manuf., 46, 313-332. 

https://doi.org/10.1016/j.ijmachtools.2005.05.015. 

Chakraborty, S. and Bordoloi, R. (2006), “Concurrent optimization 

of a computer vision systems multiple responses”, Int. J. Adv. 

Manuf. Tech. 28, 577–583. https://doi.org/10.1007/s00170-004-

2380-4. 

Dilbag, S.P. and Venkateswara, R.A. (2007), “A Surface roughness 

prediction model for hard turning process”, J. Adv. Manuf. 

Technol., 32, 1115–1124. https://doi.org/10.1007/s00170-006-

0429-2. 

Dimla, Sr D.E. (2004), “The impact of cutting conditions on 

cutting forces and vibration signals in turning with plane face 

geometry inserts”, J. Mater. Process. Technol., 155, 1708–1715. 

https://doi.org/10.1016/j.jmatprotec.2004.04.148 

Hessainia, Z., Belbah, A., Yallese, M.A., Mabrouki, T. and Rigal, 

J.F. (2013), “On the prediction of surface roughness in the hard 

turning based on cutting parameters and tool vibrations”, Measur., 

46(5),1671-1681. https://doi.org/10.1016/j.measurement.2012.12.016. 

Junaid Mir, M. and Wani, M. F. (2018) “Modelling and analysis of 

tool wear and surface roughness in hard turning of AISI D2 steel 

using response surface methodology”, J. Ind. Eng. Comp., 9, 63-

74. https://doi.org/10.5267/j.ijiec.2017.4.004. 

Kaladhar, M., Venkata Subbaiah, K. and Srinivasa Rao, Ch. 

(2012), “Parametric optimization during machining of AISI 304 

austenitic stainless steel using CVD coated duratomictm cutting 

insert”, Int. J. Indus. Eng. Comput., 3, 577–586. 

https://doi.org/10.5267/j.ijiec.2012.04.002. 

Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. 

(2017), “Effects of coating material and cutting parameters on 

the surface roughness and cutting forces in dry turning of AISI 

52100 steel”, Struct. Eng. Mech., 61(4), 519-526. 

http://dx.doi.org/10.12989/sem.2017.61.4.519. 

Keblouti, O., Boulanouar, L., Azizi, M.W. and Yallese, M.A. 

(2017), “Modeling and multi-objective optimization of surface 

roughness and productivity in dry turning of AISI 52100 steel 

using (TiCN-TiN) coating cermet tools”, J. Ind. Eng. Comp., 8, 

71–84. https://doi.org/10.5267/j.ijiec.2016.7.002. 

Keblouti, O., Boulanouar, L., Azizi, M.W. and Bouziane, A. 

(2019), “Multi response optimization of surface roughness in 

hard turning with coated carbide tool based on cutting 

parameters and tool vibration”, Struct. Eng. Mech., 70(4), 395-

405. https://doi.org/doi:10.12989/sem.2019.70.4.395. 

Kirby, E.D., Zhang, Z. and Chen, J.C. (2004), “Development of an 

accelerometer-based surface roughness prediction system in 

turning operations using multiple regression techniques”, J. Ind. 

Technol., 20, 1–8. 

512

https://doi.org/10.1016/j.measurement.2011.07.003
https://doi.org/10.1016/j.ijmachtools.2005.05.015
https://doi.org/10.1007/s00170-006-0429-2
https://doi.org/10.1007/s00170-006-0429-2
https://doi.org/10.1016/j.jmatprotec.2004.04.148
http://dx.doi.org/10.5267/j.ijiec.2016.7.002


 

Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity 

Marinescu, I., Ispas, C. and Boboc, D. (2002), “Handbook of 

machine tool analysis”, Marcel Dekker, New York. 

Meddour, I., Yallese, M.A., Khattabi, R., Elbah, M. and 

Boulanouar, L. (2015), “Investigation and modeling of cutting 

forces and surface roughness when hard turning of AISI 52100 

steel with mixed ceramic tool: cutting conditions optimization”, 

Int. J. Adv. Manuf. Technol., 77, 1387–1399. 

https://doi.org/10.1007/s00170-014-6559-z. 

Montgomery, D.C. (2001), Design and Analysis of Experiments, 

John Wiley & Sons Inc, New York.  

Neşeli, S., Yaldız, S. and Türkes, E. (2011), “Optimization of tool 

geometry parameters for turning operations based on the 

response surface methodology”, Meas., 44(3), 580–587. 

https://doi.org/10.1016/j.measurement.2010.11.018 

Saidi, R., Fathallah, B.B., Mabrouki, T., Belhadi, S. and Yallese, 

M. A. (2018), “Modeling and optimization of the turning 

parameters of cobalt alloy (Stellite 6) based on RSM and 

desirability function”, Int. J. Adv. Manuf. Tech., 100, 2945-2968. 

https://doi.org/10.1007/s00170-018-2816-x. 

Sahoo, P., Pratap, A., and Bandyopadhyay, A. (2017), “Modeling 

and optimization of surface roughness and tool vibration in CNC 

turning of aluminum alloy using hybrid RSM-WPCA 

methodology”, Int. J. Indus. Eng. Comput., 8(3), 385-398. 

https://doi.org/10.5267/j.ijiec.2016.11.003. 

Suresh, P., Rao, P.V. and Deshmukh, S. (2002), “A genetic 

algorithmic approach for optimization of surface roughness 

prediction model”, Int. J. Mach. Tools Manuf., 42, 675–680. 

https://doi.org/10.1016/S0890-6955(02)00005-6. 

Thomas, M., Beauchamp, Y., Youssef, A.Y. and Masounave, J. 

(1996), “Effect of tool vibration on surface roughness during 

lathe dry turning process”, Comput. Industrial Eng., 31(3-4), 

637-644. https://doi.org/10.1016/S0360-8352(96)00235-5. 

Tounsi N. and Otho, A. (2000) “Identification of machine-tool–

workpiece system dynamics”, Int. J. Mach. Tool. Manuf., 40, 

1367-1384. https://doi.org/10.1016/S0890-6955(99)00123-6. 

Umamaheswarrao, P., Ranga Raju, D., Suman, K.N.S and Ravi 

Sankar, B. (2018), “Hybrid optimal scheme for minimizing 

machining force and surface roughness in hard turning of AISI 

52100 steel”, Int. J. Eng. Sci. Tech., 11(3), 19-29. 

http://dx.doi.org/10.4314/ijest.v11i3.3. 

Upadhyay, V., Jain, P.K. and Mehta, N.K. (2013), “In-process 

prediction of surface roughness in turning of Ti-6Al-4V alloy 

usingcutting parameters and vibration signals”, Meas, 46(1), 

154-160. https://doi.org/10.1016/j.measurement.2012.06.002. 

Van Luttervelt, C., Childs, T., Jawahir, I., Klocke, F., Venuvinod, P. 

and Altintas, Y. (1998), “Present situation and future trends in 

modelling of machining operations progress report of the CIRP 

working group ‘modelling of machining operations”, CIRP Ann, 

47, 587–626. https://doi.org/10.1016/S0007-8506 (07)63244-2. 

Yıldırım, Ç.V., Kıvak, T. and Erzincanlı, F. (2019), “Tool wear and 

surface roughness analysis in milling with ceramic tools of 

Waspaloy: a comparison of machining performance with 

different cooling methods”, J. Brazilian Soc. Mech. Sci. Eng., 

41(2), 83. https://doi.org/10.1007/s40430-019-1582-5. 

 

 

CC 

513

https://doi.org/10.1007/s00170-014-6559-z
https://doi.org/10.1016/j.measurement.2010.11.018
https://doi.org/10.1016/S0890-6955(02)00005-6
https://doi.org/10.1016/S0360-8352(96)00235-5
https://doi.org/10.1016/S0890-6955(99)00123-6
http://dx.doi.org/10.4314/ijest.v11i3.3
https://doi.org/10.1016/j.measurement.2012.06.002



