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1. Introduction 
 

A power transmission network makes use of wooden, 

concrete, and steel lattice towers, but the latter are used 

more due to their high strength-to-weight ratio (Tort et al. 

2017). Transmission towers are truss structures responsible 

for a major part of the costs of the transmission line (Tort et 

al. 2017). Since a single transmission tower design is used 

several times in a transmission line, reducing its costs by 

optimization methods will greatly reduce the costs of the 

entire system (Souza et al. 2016). In recent decades, 

optimization in all fields of engineering has received much 

attention (Klansek et al. 2006, Yi et al. 2011, Lee et al. 

2012, Yi et al. 2012, Fiouz et al. 2013, Dizangian and 

Ghasemi 2016, Yi et al. 2017, Ghiasia and Ghasemi 2018) 

and since the general objective in many civil optimization 

problems is to reduce the weight of the desired structure 

under specific loads and constraints, and hence lessen the 

related costs, reducing the costs of transmission towers will 

greatly affect the electrical industry. 

Researches on the optimization of transmission towers 

include that of Rao (1995) who proposed an optimization 

method for the weight and geometry of high pressure 

transmission towers by studying a 400 kV double-circuit 

transmission tower under multiple-loading conditions. 

Using a reliability-based method, Natarjan and 

Santhakumar (1995) optimized the size and shape of 

transmission towers. Sheppard and Palmer (1972) used a 

dynamic method and  
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examined the number of panels and bracing patterns that 

created a light design to optimize transmission towers. 

Using a hybrid method of determining the optimum shape, 

cross-section, and materials of the bar elements, Taniwaki 

and Ohkubo (2004) studied a 218-member tower and 

optimized a truss transmission tower exposed to static and 

seismic loads. Sivakumar et al. (2004) used a genetic 

algorithm with discrete variables to optimize steel lattice 

transmission towers and showed that their proposed method 

was quite acceptable for large-scale problems. Using a 

combination of a topology optimization method and a 

simulated annealing program, Shea et al. (2006) optimized 

the topology, shape, and size of transmission towers for the 

structure weight reduction using discrete variable and 

reduced the weight by 16.7%. Mathakari et al. (2007) 

performed the reliability-based optimization of the shape, 

topology, and size of transmission towers using multi-

objective genetic algorithms under the wind load the 

pressure and direction of which were considered as random 

variables in the analyses. Proposing a GA with discrete 

variables, Guo and Li (2011) optimized the topology of 

high-voltage transmission towers through the TCO 

(topology combination optimization), LCO (layer 

combination optimization), CSSO (cross-section size 

optimization), and SCO (shape combination optimization) 

methods and showed that the first two methods performed 

better than the other two. Using multi-objective 

evolutionary algorithms, Noilublao and Bureerat (2011) 

simultaneously optimized the topology, shape, and size of 

3D truss towers. Paris et al. (2010) used continuous and 

discrete variables and studied the optimization of the size 

and shape of the high-pressure transmission towers. Using 

the ASCE10-97, Souza et al. (2016) proposed a 

transmission tower optimization method where they 

optimized the size, size and shape, and size, shape, and 
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topology using the FA (firefly algorithm) and BSA 

(backtracking search algorithm) that resulted in a 4.6% 

reduction in the structure weight. Using the SA (simulated 

annealing) algorithm, Couceiro et al. (2016) optimized the 

size and shape of transmission towers with respectively 

continuous and discrete variables in one real and two 

standard problems and the results showed a 40% reduction 

in the structure weight. 

Chunming et al. (2012) optimized the design of high 

voltage transmission towers using the NSGA-II (a genetic 

algorithm) where the elements’ section areas and materials 

were the design variables, the transmission tower 

construction cost was the economic objective, and the 

minimum displacement of the control point was the 

structural optimization objective. Using a two-phase SA 

algorithm, the PLS-TOWER Software, and the ASCE10-97 

Code, Tort et al. (2017) studied three 110, 220, and 400 kV 

transmission towers, optimized their sizes and shapes, and 

reduced their structure weights by about 10-26%. Kaveh 

and Ghazaan (2018) optimized three 47-, 160-, and 244-

member steel lattice towers under multiple loads with 

discrete variables using the CBO, ECBO, VPS, and 

MDVC-UVPS algorithms and showed (by the comparison 

of the results) that the latter performed the best.  

There are many stochastic optimization algorithms 

given significant attention to, in recent years. For the 

purpose of the present research, since the detailed analysis 

and design of transmission towers with all the in-depth 

construction remarks takes a considerable time efforts, its 

stochastic optimum design will obviously require a 

significant computational cost. Therefore, attempts were 

made to involve neural networks to substitute the analysis 

after being trained, as well as modifying the way in which 

constraints were handled in the ABC optimization 

algorithm, both of which were aimed to speed up the 

optimization process significantly. This paper aims to 

optimize the size, size and shape, and size, shape, and 

topology of steel lattice transmission towers using the 

MSTOWER Software (meant specifically for the analysis 

and design of transmission towers) to model, analyze, and 

design the primary tower. The optimization algorithm used 

in this research was first proposed by Karaboga (2005). It is 

a common metaheuristic algorithm called the artificial bee 

colony (ABC) and is inspired by the bees’ food search 

behavior in the nature. In recent years, this algorithm, 

codified in the MATLAB Software, has been used as an 

optimization tool and has shown good performance 

(Karaboga and Basturk 2007, Sonmez 2011, Gao et al. 

2012, Delgarm et al. 2016, Cui 2017). As mentioned before, 

this paper makes use of a combination of the RBF neural 

networks (that perform well in the approximation of 

functions) and the ABC algorithm to reduce the lengthy 

computational time. To compare the network-based results, 

optimization has also been done by the MSTOWER 

analyzer through linking it with the MATLAB code of the 

ABC algorithm and the results of the two optimization 

methods have been studied and compared. In this process, 

the design variables are of the discrete type and the member 

stress and slenderness are the design constraints. It is worth 

noting that the design requirements are based on the 

ASCE10-97 Code (2000) and the paper has been so 

organized as to describe the neural networks (and the RBF 

neural network) in Section 2, explain the general structure 

and formulation of the optimization problem in Section 3, 

define the optimization algorithm in Section 4, explain the 

two optimization methods used in this paper in Sections 5 

and 6, present the numerical examples in Section 7, and 

provide the conclusions in Section 8. 

 

 

2. Neural networks 
 

Nowadays, neural networks are quite popular in many 

research field (Ghaboussi and Wu 1998, Qu et al. 2003, Yi 

et al. 2013). These networks have been inspired by the 

biological neural systems and process the information 

similar to the brain (Tang 2006, Saxena and Pathak 2015). 

Aimed to generate outputs based on the given inputs, neural 

networks have such many applications as classification 

(Hore et al. 2016, Chatterjee et al. 2017), pattern 

recognition, optimization, prediction (Cheng et al. 2007,Tan 

et al. 2017), system identification, modeling, and control 

(Poggio and Girosi 1990).  

 
2.1 Radial basis function (RBF) neural network 

 
RBF neural networks are capable of identifying different 

patterns in a short time. Giroussei and Poggi (1990) and 
also Hartmann and Kepler (1990) proved that the RBF 
neural networks are strong structural approximations 
(Schilling et al. 2001, Huang et al. 2005). Their overall 
structure consists of three layers: 1) the input layer, where 
there is no processing, is defined as a vector and contains 
the main data, 2) the invisible or hidden layer that provides 
a nonlinear conformity between the input layer and a 
usually larger-dimension space and plays an important role 
in converting nonlinear patterns to separable linear 
ones(Meng et al. 2010). The nonlinear function used in the 
hidden layer is mainly a Gaussian one Eq. (1) and its 
parameters include the center and the width. 

∅(||𝑥 − 𝑢𝑗||) = 𝑒

−(||𝑥−𝑢𝑗||)

𝜎𝑗  
(1) 

where x is the input columnar vector, uj is the gravity vector 
related to the ith neuron, σj is the width factor of the jth 
kernel, and  || || shows the Euclidean distance. 

First, each sample-center distance in the hidden layer is 
computed; it then passes the Gaussian function and enters 
the feature space. And, 3) the output layer where the data 
created in the new space are multiplied by the 
corresponding synapse weights and then added together 
linearly. The output of these networks is a linear 
combination of the RBFs for the input parameters and 
neurons. In general, the objective in RBF neural networks is 
to minimize Eq. (2): 

𝑓(𝑥) =∑𝑤𝑖∅𝑖(𝑥)

𝑚

𝑖=1

 (2) 

where m is the number of the dimensions of the hidden 

layer and w is the synaptic weights. 

464



 

Practical optimization of power transmission towers using the RBF-based ABC algorithm 

 
Fig. 1 General form of RBF neural networks 
 

 

RBF neural networks are used in the function 

approximation, classification, prediction of time series, and 

system control, and their general form is as in Fig. 1. 

To reduce the lengthy computational time, this paper 

makes use of a combination of the ABC algorithm and RBF 

neural networks that perform well in the functions 

approximation. 
 
 

3. Optimization problem 
 

In optimization problems (formulated as follows), the 

design variables are so calculated, under specific 

constraints, as the objective function (usually the cost in 

structural problems) may reach its lowest value: 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒 ∶ 𝑚𝑖𝑛 𝑓(𝑥)   

(3) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑔𝑗(𝑥) ≤ 0 ,    𝑗 = 1,2, … , 𝑛 

ℎ𝑖(𝑥) = 0  ,   𝑖 = 1,2, … ,𝑚 

𝑥𝑘
𝑙 ≤ 𝑥𝑘 ≤ 𝑥𝑘 

𝑢   , 𝑘 = 1,2, … , 𝑙 

where f(x) is the objective function, x is a vector with l design 

variables, g(x) and h(x) are the equal and unequal constraints, 

𝑥𝑘 
𝑙  and 𝑥𝑘 

𝑢  are respectively the upper and lower bounds of 

the design variables, and n and m are respectively the number 

of unequal and equal constraints. In this paper, the objective 

function Eq. (4) is the weight of the power transmission tower: 

𝑤 = 𝜌∑𝑙𝑖𝐴𝑖 

𝑛𝑏

𝑖=1

 (4) 

where 𝜌 is the density of the desired material, 𝑛𝑏 is the 

number of elements of the transmission tower, and 𝑙𝑖and 

𝐴𝑖 are respectively the length and cross-sectional area of the 

ith member. 

 

3.1 Design variables 
 
In this paper, the size of the transmission tower is 

optimized by discrete design variables, being the elements’ 

cross-sectional areas, selected from a European Angle Profile 

Catalog list arranged in an increasing order of the cross-section 

areas. They were considered as design variables for size 

optimization and were stored in vector A. The base width was 

regarded as the shape design variable and stored as Wb in the 

design variables vector. The width of the other panels was 

obtained using the angle and height of the tower body. Its 

topology is optimized by dividing the tower into small portions 

with specific shapes, heights, and widths called panels, are 

considered in some parts of the tower, as design variables for 

the topology optimization problem. Therefore, the number of 

variables in a tower topology design is equal to the number of 

panels selected to change their topology. These design 

variables are stored in vector P. Accordingly, the design vector 

for an arbitrary tower optimization problem, consisting of size, 

shape and topology variables, is presented in Eq. (5). 

𝑥 = {𝐴1, … , 𝐴n, Wb, P1, … , Pm} (5) 

Where n and m are the number of cross sections and the 

number of topology changes of the panels, respectively. 
 

3.2 Design constraints 
 

In the transmission tower design, the members should be 

selected based on codes and so designed as to satisfy the 

constraints which, in this study, include the stress and 

slenderness Eqs. (6)-(7) and their allowable values are based 

on the ASCE10-97 Code (2000). 

𝑔1(𝑥) =
𝜎𝑖
𝜎𝑖
− 1 ≤ 0 ,     𝑖 = 1,2, … ,𝑚 (6) 

𝑔2(𝑥) =
𝜆𝑖

𝜆̅𝑖
− 1 ≤ 0  ,     𝑖 = 1,2, … ,𝑚 (7) 

where 𝜎𝑖  and 𝜆𝑖  (with allowable values 𝜎𝑖  and 𝜆̅𝑖) are, 

respectively, the stress and slenderness in the ith member. 
 

3.2.1 Members’ compressive strength 
A member compressive strength is, according to ASCE10-

97 (2000), the product of A (cross-sectional area) and FC 

(allowable compressive stress) shown in Eqs. (8)-(10): 

where E is the steel elasticity modulus, k is the effective 
length coefficient, l is the member’s unanchored length, r is 
the radius of gyration, Cc is the critical slenderness ratio, Fy 
is the yield stress, and Fcr is the critical stress found from 
Eq. (11): 

Fcr  =

{
  
 

 
 
 

      
 Fy                                           

[1.667-0.677
w t⁄

(w t⁄ )min
] Fy

0.0332π2E

(w t⁄ )2
                               

 

if  
w

t
≤
80Ψ

√Fy
 

if  
80Ψ

√Fy
≤
w

t
≤
144Ψ

√Fy
 (11) 

if  
w

t
≥
144Ψ

√Fy
 

𝑃𝐶 = 𝐹𝐶 . 𝐴  (8) 

𝐹𝐶 =

{
 
 

 
 [1 −

1

2
(
𝑘𝑙 𝑟⁄

𝑐𝑐
)

2

] 𝐹𝑐𝑟  

𝜋2𝐸

(𝑘𝑙 𝑟⁄ )2

 

 

 

𝑖𝑓  
𝑘𝑙

𝑟
≤ 𝐶𝑐 

(9) 

𝑖𝑓  
𝑘𝑙

𝑟
> 𝐶𝑐 

𝐶𝑐 = 𝜋√2𝐸 𝐹𝑦    ⁄   (10) 
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where 𝛹 = 1and 𝛹 = 2.62  in the ksi unit for  𝐹𝑦  and 

MPa, respectively. 

 

3.2.2 Members’ tensile strength 
An axially loaded member’s tensile strength (Eq. (12)) 

is Ft (tensile stress) × 𝐴𝑛𝑒𝑡   (net section area) where 

𝐴𝑛𝑒𝑡   = 𝐴𝑒𝑓𝑓 (effective section area) – area of holes in the 

section. 

 
3.2.3 Maximum slenderness ratio 
Slenderness limits for the leg and redundant members 

are not to exceed the following values: 

λmax= (
kl

r
)

max

=

{
 
 

 
 

150

 

200

 

250

  

for leg members 

(16) for other members 

for redundant members 

 
3.3 Penalty function 
 
A highly applicable method of converting a constrained 

to unconstrained optimization problem is to make use of the 

penalty function where each constraint is first normalized 

by dividing it by its allowable value and then fined 

according to how much it has violated each objective 

function constraint; p(x) (penalty function) and f(x) 

(modified objective function) are as follows: 

𝑃(𝑥) =∑(𝑚𝑎𝑥 (
𝑔𝑖(𝑥)

�̅�𝑖(𝑥)
− 1,0))2 

𝑚

𝑖=1

 (17) 

𝑓(𝑥) = 𝑤(𝑥) + 𝑟𝑝 × 𝑃 (18) 

where f(X) is the modified objective function and P and 𝑟𝑝 

are the penalty function and the related coefficient; in this 

research, the value of 𝑟𝑝 varies in each iter and is found by 

Eq. (19): 

𝑟𝑝 = 𝑚𝑎𝑥 (100,20 × (1 + 0.02 × (𝑖𝑡𝑒𝑟 − 1))) (19) 

In this paper, the origin of the penalization approach was 

extracted from the book by Belegundu and Chandrupatla 

(2014). However, a slight change was implemented within 

the penalization approach, allowing for more restraint to 

any violation of constraints as further going along the 

optimization procedure iteratively. This is to ensure a non-

penalized optimum solution at the end of the process, while 

avoiding any premature convergence at the early stages of 

the process. 

 

 

4. ABC optimization algorithm 
 
In the last few decades, metaheuristic algorithms have 

found a special place in engineering problems. One example is 

the artificial bee colony (ABC) algorithm which is based on 

the honey bees’ collective intelligence and clever behavior and 

is used in the constrained and unconstrained optimization 

problems. Inspired by the bees’ food-search behavior in the 

nature, the ABC algorithm was first presented by Karaboga 

(2005) as an optimization method. In this algorithm, bees are 

divided into three categories: 1) employed bees that discover a 

source and bring food from it, 2) onlooker bees that stay inside 

the hive and watch the employed bees to find food supplies by 

dancing, and 3) scout bees that search for food randomly 

around the hive. 

 
4.1 Steps in the ABC algorithm  
 
The ABC algorithm contains 4 main steps as follows: 

Step 1 – Initialization:  here, the problem objective 

function and required parameters are determined; the vector 

of the input parameters is defined according to Eq. (20): 

𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝐷}     𝑖 = 1,2, … , 𝑆𝑁 (20) 

where D is the number of the problem design variables and 

SN is the bees’ population number. 

Next, each design variable is selected randomly between 

its upper and lower bounds Eq. (21). 

𝑋𝑖𝑗 = 𝑥𝑚𝑖𝑛 𝑗 + 𝑟𝑎𝑛𝑑[0,1] × (𝑥𝑚𝑎𝑥 𝑗 − 𝑥𝑚 𝑖𝑛 𝑗), 

𝑗 = 1,2, … , 𝐷    𝑖 = 1,2, … , 𝑆𝑁 

(21) 

Step 2 – Employed bees: here, the employed bees 

search for a better food source around the food source at 

point Xij; Eq. (22) is used to determine the new food source. 

𝑉𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)           

𝑗𝜖{1,2, … , 𝐷}, 𝑘𝜖{1,2, … , 𝑆𝑁} ∧ 𝑘 ≠ 𝑗 
(22) 

where Vij is the new position vector, k is a random number, 

and 𝝋ij is another random number with a uniform 

distribution in the [-1, 1] interval. After determining the 

new position, its fitness level is found from Eq. (23): 

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓𝑖
                
 

1 + 𝑎𝑏𝑠(𝑓𝑖)     

  
𝑖𝑓 𝑓𝑖 > 0 

(23) 

𝑖𝑓 𝑓𝑖 ≤ 0 

Step 3 – Onlooker bees: here, the employed bees 

become onlooker bees after returning to the hive and start 

searching, with a specified probability, around one of the 

points found by the employed bees. Onlooker bees do their 

selection based on the probabilities calculated by the 

employed bees through Eq. (24): 

Pt=Ft.Anet     (12) 

Ft={

Fy         

0.90Fy   

  

if connected by both legs 

(13) 
if connected by single leg 

Anet=Aeff-h.t.nh  (14) 

Aeff={

A     
           
            

A-(b-a).t.nb

  

if connected by both legs or 

long leg only (15) 

if connected by short leg only 
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𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

 (24) 

Step 4 – Scout bees: here, those employed bees that 

cannot find a better solution after some pre-determined 

iterations become scout bees to enhance the efficiency of 

the ABC algorithm, and their obtained solutions are 

abandoned. By moving in random paths, the scout bees start 

searching for new food sources according to Eq. (21); 

accordingly, the food sources that are initially weak, or 

become so after utilization, are excluded. Studies have 

shown that execution of Step 4 will highly increase the 

likelihood of finding a general optimum solution. The 

process of optimization will be continued until converged. 

Two convergence criteria are in fact active in the process. 

First, if the changes on the optimum objective values are so 

negligible in 10 consecutive iterations. If so, we make sure 

the recorded optimum solution does not violate constraints, 

as a result of which completion of the process will be 

informed. The second option, being in fact a termination 

criterion, is that of the maximum iterations allowed. The 

process will therefore halt if either of the two criteria is 

reached.The step-by-step flowchart of the ABC 

optimization algorithm is shown in Fig. 2. 

 

 

5. RBF-ABC optimization 
 

In this method, as for the purpose of utilizing the RBF 

neural network, for each example separately, a database was 

required to train the network. Thus: 

1. A number of 300 Simulations were first generated 

randomly, using uniform distribution approach in the given 

parameters space for all design variables (size, shape or 

topology). 

2. The MSTOWER software was then involved to 

analyze the sampling points. 

3. 70% of the evaluated dataset were then employed to 

train the RBF network, a target of which reached when the 

MSE error is within the allowed set value of 0.001% error. 

4. The trained network was then tested on 30% of the 

remaining of the sampling points. The outcome is set as 

satisfactory if the maximum discrepancy of the network-

based results do not exceed a second predetermined desired 

fallout of 0.1%, in which case the RBF trained network 

substitute the MSTOWER software for the analysis. If not 

so, more sampling points would be added to the training 

dataset, a sequence of which is repeated until a satisfactory 

training and testing processes are encountered. 

The vector of the design variables of the optimization 

problem is the input to the network, and the transmission 

tower weight and the total constraint violations are its 

objective outputs. Accordingly, by selecting proper RBF 

network parameters, two RBF neural networks have been 

trained to replace the relevant analyzer in the transmission 

towers’ optimization process; they play important roles in 

reducing the volume of computations Since the more is the 

number of design variables, the more complex will the RBF 

network training become, effort has been made to avoid 

using a large number of design variables as far as possible. 

 

Fig. 2 Step-by-step flowchart of the ABC optimization 

algorithm 

 

 

To evaluate the learning rate and performance of the 

trained networks, the values of the mean square error 

(MSE), the mean absolute error (MAE) between the actual 

outputs and network, and the correlation coefficient (R2) 

have been calculated using Eqs. (25)-(27); the training 

program of the RBF neural network has also been coded in 

the MATLAB Software. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑡𝑖)

2

𝑁

𝑖=1

 (25) 

𝑀𝐴𝐸 =
1

𝑁
∑

|𝑦𝑖 − 𝑡𝑖|

𝑡𝑖

𝑁

𝑖=1

 (26) 

𝑅2 = 1 − (
∑ (𝑦𝑖 − 𝑡𝑖)

2𝑁
𝑖=1

∑ 𝑡𝑖
2𝑁

𝑖=1

) (27) 

where yi and ti are the network and actual outputs, 

respectively, and N is the number of pairs of 

training/testing. 
 

 

6. MSTOWER-ABC optimization 
 

To compare the results obtained from the RBF-ABC 

method, optimization has also been done using the 

MSTOWER-ABC method. This method is similar to the 

previous one with the only difference that the MSTOWER 

Software is used as the analyzer in the optimization process. 

MSTOWER is a specialized software package for the 

modeling of power transmission towers. It is advantageous  

start

Initial food source positions

evaluate the solutions

produce new solutions for the 

employed bees

evaluate the solutions

memorize the position of best 

solution

produce new solutions for the 

onlooker bees

evaluate the solutions

memorize the position of best 

solution

find the abandoned solutions

produce new solutions for the 

scout bees

   Is the termination criteria 

satisfied?

display final solution

Yes

No

end
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Table 1 Parameters of the ABC algorithm in the 

optimization process for both methods 

ABC Parameters CIGRÉ Tower 132 GMS kv Tower 

SN 30 30 

Maxcycle 100 150 

Limit 30 30 

ndim (0.1*nvar) (0.4*nvar) 

where SN = total number of bees, Maxcycle = max number 

of iterations, Limit = max number of unimproved iterations, 

and ndim = number of dimensions on which movements 

occur. 
 

 

because it not only has different codes related to all power 

transmission towers, but it can also model a tower easily 

either graphically or using standard panels available in the 

software; this paper does the modeling using the second 

method. The initial tower design is first modeled in the 

MSTOWER, then the ABC algorithm parameters are 

initialized, and finally, the design variables are randomly 

selected within the permissible range based on the desired 

optimization method (size, shape and size, shape, size, and 

topology). Next, the optimization process continues by 

linking the MATLAB with MSTOWER until the 

convergence criteria are met. The calculation time is quite 

lengthy in this method and may take several days. Fig. 3 

shows the general flowchart of both optimization methods. 
 

 

7. Numerical examples 
 

To illustrate the performance of the method presented in 

this paper, the CIGRÉ Tower (CIGRÉ 2009) and the 132 

GMS kV transmission tower were considered as two 

numerical examples and will now be explained in detail. 

The design requirements (ASCE10-97 (2000)) and load 

case (IEC 60652 (2002)) are similar for both examples and 

the parameters of the ABC algorithm in the optimization 

process for both methods are presented in Table 1. 
 

7.1 CIGRÉ Tower 
 

To validate the proposed method, this paper has used the 

CIGRÉ tower (CIGRÉ 2009) (Fig. 4) as a benchmark example 

for the modeling of which all the needed structural data are 

available. Souza et al. (2014) optimized its size and shape as 

well as its topology (Souza et al. 2016) Its structure is made of 

the ASTM A572 g 50 steel with 12 mm diameter bolts on 

which 8 different load cases (Table 2) have been applied. The 

original model has been designed and analyzed by the 

MSTOWER Software and the data needed to train and test the 

neural network (70% for training and 30% for tests) for 

optimization by the RBF-ABC method have been obtained 

through multiple analyses. After training the relevant neural 

networks, the tower was optimized once by the RBF-ABC 

method and once by the MSTOWER-ABC method. 
  

7.1.1 Size optimization 
To optimize the size of the CIGRÉ Tower (CIGRÉ  

Table 2 Loading applied to the CIGRÉ Tower 

Case Position Fx (N) Fy (N) Fz (N) 

1 A 0.00 0.00 0.00 

 B 0.00 0.00 -49033 

2 A 0.00 0.00 -49033 

 B 0.00 0.00 -49033 

3 A 0.00 0.00 0.00 

 B 49033 0.00 0.00 

4 A 49033 0.00 0.00 

 B 49033 0.00 0.00 

5 A 0.00 0.00 0.00 

 B 0.00 49033 0.00 

6 A 0.00 49033 0.00 

 B 0.00 49033 0.00 

7 A 0.00 0.00 0.00 

 B 49033 49033 -49033 

8 A 49033 49033 -49033 

 B 49033 49033 -49033 

 

Table 3 Available profiles for the size optimization of the 

CIGRÉ Tower 

L30X30X3 L40X40X5 L60X60X5 L60X60X8 

L35X35X3 L50X50X4 L55X55X6 L80X80X6 

L30X30X4 L55X55X4 L65X65X5 L70X70X7 

L40X40X3 L45X45X5 L70X70X5 L65X65X8 

L45X45X3 L40X40X6 L60X60X6 L75X75X7 

L35X35X4 L60X60X4 L75X75X5 L90X90X6 

L30X30X5 L50X50X5 L50X50X8 L70X70X8 

L50X50X3 L45X45X6 L65X65X6 L75X75X8 

L40X40X4 L65X65X4 L70X70X6 L100X100X6 

L35X35X5 L55X55X5 L55X55X8 L90X90X7 

L45X45X4 L50X50X6 L75X75X6  

 

Table 4 Neural network Statistical Criteria for the size 

optimization of the CIGRÉ Tower 

Statistical 

Criteria 

Total Weight Total Constraint Violation 

Train Data Test Data Train Data Test Data 

MSE 6.4×10-6 6.7×10-6 7.9×10-14 2.0×10-14 

MAE 2×10-3 2×10-3 1.2×10-7 7.8×10-8 

R2 0.997 0.997 0.999 0.999 

 

 

2009), it was first grouped into different groups (Fig. 4) and 

6 design variables were then defined accordingly; X = {A1, 

A2... A6} is the vector of the design variables (inputs to the 

neural network) where A is the number of the angle profiles 

selected from a discrete catalog list that includes 43 

European angle profiles(Table 3). Before starting the RBF-

ABC optimization process, 300 analyses were done by the 

MSTOWER Software to train the neural network and the 

tower weight and the total constraint violations of the  
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Fig. 3 General flowchart of both MSTOWER-ABC and RBF-ABC optimization methods 
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members (objective outputs of the neural network) were 

stored. The best trained network was then stored as the 

analyzer in the optimization process. 

Table 4 shows the errors in the training/test data and the 

related R2 (as shown, the trained neural network has good 

performance), and Table 5 shows the tower size 

optimization results found by the RBF-ABC and 

MSTOWER-ABC methods and their analyses time. 

According to Table 5, the optimized weights are 1203.11 

and 1198.2 kg and optimization times are 63.45 and 

1438.55 minutes with the RBF-ABC and MSTOWER-ABC 

methods, respectively. Since the optimized weights are 

close, it means that the neural network performs well 

because a time comparison of the two methods shows that it 

has reduced the analysis time effectively. Souza et al. (2016) 

optimized the CIGRÉ Tower (CIGRÉ 2009) differently by 

ignoring the redundant members in calculating the weight. 

However, the present paper has considered weight of the 

redundant members into account to compare the optimized 

tower weight (1201.6 kg) with that in Souza et al. (2016). 

The comparison showed that the weight found by the 

MSTOWER-ABC method was 0.29 % less (than those in 

Souza et al. (2016)). Fig. 5 shows the convergence diagram 

of the ABC optimization algorithm. 

 

 

7.1.2 Optimization of the size and shape 
To optimize the size and shape of the CIGRÉ Tower 

(CIGRÉ 2009) with the RBF-ABC method, two new 

networks were trained (and used as analyzers in the 

optimization process) for the tower weight and total 

constraint violations of the members using the stored data 

through 300 analyses performed by the MSTOWER. The 

MSE, MAE, and R2 values of the training/test data in Table 

6 show that the trained neural network has had a good 

performance. The tower base width has also been used (in 

both x and y directions alike) as design variable for the size 

and shape optimization. A change in the base width, 

according to the tower body slope, will also change the 

widths of the panels in the sloping body. Since the base 

width design variable has been selected discretely every 10 

cm in the range 3-5 m, the vector of the design variables has 

been defined as X={A1,A2,…,A6,Wb}where Wb is the width 

of the tower base. Fig. 6 and Table 7 show, respectively, the 

convergence diagram of the optimization algorithm and the 

optimization results obtained by both methods presented 

optimized in this paper. Table 7 shows that with the RBF-

ABC method, the optimized weight and the total 

optimization process time are 1148.273 kg and 64.328 

minutes and with the MSTOWER-ABC method, they are 

 
Note: (a) The numbers represent the grouping of tower 

elements 

(b) Pm, mth  design variable of topology 

optimization 
(c) Dimensions in meters 

Fig. 4 Initial modeling of the the CIGRÉ tower 
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Table 5 Comparison of the Size optimization results of 

RBF-ABC and MSTOWER-ABC for the CIGRÉ Tower 

Design Variables 
Methods 

RBF-ABC MSTOWER-ABC 

A1 L 40×40×3 L 40×40×3 

A2 L 45×45×3 L 40×40×3 

A3 L 45×45×4 L 45×45×4 

A4 L 55×55×4 L 55×55×4 

A5 L 60×60×4 L 60×60×4 

A6 L 75×75×7 L 75×75×7 

Weight (kg) 1203.113 1198.200 

Data generation 

time(min.) 
63.125 - 

Training time (min.) 0.166 - 

Optimization 

time(min.) 
0.160 1438.552 

 

 

Fig. 5 Convergence diagram of the size optimization of 

the CIGRÉ Tower 
 

 

1133.7 kg and 1751.01 minutes. As mentioned before, the 

weight optimized in Souza et al. (2016) with the 

Backtracking Search Algorithm (BSA) method was 1185.12 

kg which means that the weights obtained with the 

MSTOWER-ABC and RBF-ABC were respectively 4.3 and 

3.1% less than those in Souza et al. (2016). In shape 

optimization, a decrease in the base width of the 

transmission tower will narrow the tower shape and, hence, 

decrease the free lengths of the members. This will make 

the tower exhibit a better buckling-resistance behavior and 

cause members to get thinner. 
 

7.1.3 Optimization of the size, shape and topology 
Like previous RBF-ABC optimizations, a new analyzer 

was created for the tower weight and the total constraint 

violations of the members using the neural network training 

and the data stored from 300 MSTOWER Software 

analyses. The MSE, MAE, and R2 of the training/test data in 

Table 8 show that the trained neural network functions well. 

Panels’ shapes too have been considered as design variables 

to simultaneously optimize the tower size, shape, and 

topology; in some parts of the tower, shapes of the panels 

(selected from a standard list available in MSTOWER) 

change until a panel is selected that can yield the optimum 

solution.  

Table 6 Neural network Statistical Criteria for the size 

and shape optimization of the CIGRÉ Tower 

Statistical 

Criteria 

Total Weight Total Constraint Violation 

Train Data Test Data Train Data Test Data 

MSE 9.2×10-6 1.5×10-5 2.7×10-14 3.6×10-14 

MAE 2×10-3 2×10-3 9 ×10-8 9.2×10-8 

R2 0.996 0.990 0.999 0.999 
 

Table 7 Comparison of the Size and shape optimization 

results of RBF-ABC and MSTOWER-ABC for the CIGRÉ 

Tower 

Design Variables 
Methods 

RBF-ABC MSTOWER-ABC 

A1 L 40×40×3 L 40×40×3 

A2 L 35×35×3 L 40×40×3 

A3 L 40×40×5 L 45×45×4 

A4 L 55×55×4 L 50×50×4 

A5 L 60×60×4 L 60×60×4 

A6 L 80×80×6 L 75×75×7 

Wb (m) 3.500 3.500 

Weight (kg) 1148.273 1133.700 

Data generation time(min.) 63.540 - 

Training time (min.) 0.267 - 

Optimization time(min.) 0.521 1758.013 

Overall Time(min.) 64.328 1758.013 

 

 

Fig. 4 shows the three design variables selected for the 

topology optimization. This paper has prepared and used a 

list of 7 different panel shapes in the x and y directions: As 

shown in Appendix (a), The number of panel options for P1, 

P2 and P3 are 3, 2 and 2, respectively. The vector of the 

design variables for the simultaneous optimization of the 

size, shape, and topology has been defined as 

X={A1,A2,…,A6,P1,P2,P3,Wb} where A is the number of the 

angle profiles in the existing catalog list, P is the number of 

panel shapes in the existing list for the parts the shapes of 

which vary, and Wb is the tower base width. 

To evaluate the RBF-ABC method performance, 

optimization has also been done with the MSTOWER-ABC 

method and results of the comparison, the convergence 

diagram of the ABC algorithm, and the final result of the 

optimized tower have been shown in Table 9, Figs. 7 and 8, 

respectively; the latter also shows the panels that have 

changed during the topology optimization process. 

Topology affects the structure stiffness and panels’ 

variations and, hence, changes in the number of the tower 

forming members can increase the structure stiffness and, 

hence, reduce the tower weight. 

According to Table 9, the optimized weights are 1107.40 

and 1079.97 kg and optimization times are 71.945 and 

1826.017 minutes with RBF-ABC and MSTOWER-ABC 

methods, respectively. Since the optimized weights are 

close, it means that the neural network performs well 

because a time comparison of the two methods shows that it 

has reduced the analysis time effectively.  
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Fig. 6 Convergence diagram of the optimization of the 

size and shape of the CIGRÉ Tower 

 

Table 8 Neural network Statistical Criteria for the 

optimization of the size, shape, and topology of the CIGRÉ 

Tower 

Statistical 

Criteria 

Total Weight Total Constraint Violation 

Train Data Test Data Train Data Test Data 

MSE 3.4×10-4 8×10-3 6.2×10-6 2.1×10-3 

MAE 0.012 0.033 0.001 0.011 

R2 0.994 0.930 0.999 0.986 

 

Table 9 Comparison of the size, shape and topology 

optimization results of RBF-ABC and MSTOWER-ABC 

for the CIGRÉ Tower 

Design Variables 
Methods 

RBF-ABC MSTOWER-ABC 

A1 L 40×40×3 L 40×40×3 

A2 L 35×35×3 L 35×35×3 

A3 L 45×45×4 L 50×50×3 

A4 L 50×50×4 L 50×50×4 

A5 L 60×60×4 L 60×60×4 

A6 L 80×80×6 L 70×70×7 

Wb (m) 3.500 3.500 

Weight (kg) 1107.400 1079.970 

Data generation time(min.) 70.730 - 

Training time (min.) 0.267 - 

Optimization time(min.) 0.948 1826.017 

Overall Time(min.) 71.945 1826.017 

 

 

Since the best result obtained for the simultaneous 

optimization of the size, shape, and topology of the CIGRÉ 

Tower in Souza et al.’s paper (2016) has been 1143.52 kg, 

the weights obtained with the MSTOWER-ABC and RBF-

ABC methods are 5.6 and 3.2% less than those found in 

Souza et al. (2016). 

Bar graphs in Figs. 9 and 10 compare, respectively, the 

optimized weights and optimization times for the CIGRÉ 

Tower with the RBF-ABC, MSTOWER-ABC and BSA 

methods. 

 
Fig. 7 Convergence diagram of the optimization of the 

size, shape and topology of the CIGRÉ Tower 

 

 
Fig. 8 Final result of the size, shape and topology 

optimization of CIGRÉ Tower (all units are in meters) 
 

 

7.2 The 132 GMS kV transmission tower 
 

As a second example, a real, 45 m-high, 2625-member, 

14273.81 kg, 132 GMS kV tower has been studied in this 

paper (Fig. 11). The steel is st52, the bolt diameter is 17.5 

mm, and the applied load is as in Table 10 based on which 

110 load cases have been defined for this tower. It was first 

modeled and initially designed in the MSTOWER Software 

and then two neural networks were trained for the tower 

weight and total constraint violations of the members using 

the information from several different analyses. It is worth 

noting that two separate neural networks (considered as 

analyzers in the optimization process) were trained for each 

RBF-ABC optimization method (size, shape and size, and 

size, shape, and topology).  
 

7.2.1 Optimization of size  
The tower has been grouped according to Fig. 11 and a 

total of 17 design variables have been used to optimize its 

size. The variables are related to the members’ cross-

sectional areas and are selected from a discrete catalog list 

472



 

Practical optimization of power transmission towers using the RBF-based ABC algorithm 

 
Fig. 9 Weight comparison of the CIGRÉ Tower optimized 

with three different methods (size, size and shape, size, 

shape, and topology) 

 

 
Fig. 10 Comparison of the time required for the 

optimization of the CIGRÉ Tower with three different 

methods (size, size and shape, size, shape, and topology) 

 

 

of 58 European angle profiles (Table 11). The vector of the 

design variables has been defined as X={A1,A2,…,A17} and 

the analyzer used in the RBF-ABC optimization process has 

been trained using the weight and constraint violations 

found, after 500 analyses, from the MSTOWER. 
To evaluate the neural network, the MSE, MAE, and R2 

of the training and test data are shown in Table 12 based on 

which the trained neural network functions well. The 

convergence diagram and results found from the 

optimization with the RBF-ABC and MSTOWER-ABC 

methods are given in Fig. 12 and Table 13, respectively. 

As shown in Table 13, the optimized weights are 

11029.203 and 10922.35 kg and optimization times are 

279.36 and 4642.69 minutes with the RBF-ABC and 

MSTOWER-ABC methods, respectively. 

Since the optimized weights are close, it means that the 

neural network performs well because a time comparison of 

the two methods shows that it has reduced the analysis time 

effectively. 

 

7.2.2 Optimization of size and shape 
To optimize the size and shape of the 132 GMS kV 

transmission tower by the RBF-ABC method, the tower  

base width has been considered as the design variable and 

two new networks have been trained (and used as analyzers 

in the optimization process) for the tower weight and the 

members’ constraint violations using the data found from 

500 MSTOWER analyses. 

Table 10 Loading applied to the 132 kV transmission tower 

No. Load Case 
Conductor Loads (kg) 

Shield Peak 

Loads(kg) 

Trans Vertical Long Trans Vertical Long 

1 High wind 1081 633 - 540 308 - 

2 Heavy ice 204 1553 - 153 947 - 

3 Wind & ice 1549 1322 - 1095 699 - 

4 
Broken wire in 

heavy ice 
102 958 2338 77 568 2926 

5 
Unbalanced in 

wind & ice 
624 801 364 394 410 866 

 

Table 11 Available profiles for the size optimization of the 

132 kV transmission tower 

L30X30X3 L50X50X4 L65X65X5 L90X90X12 

L30X30X4 L50X50X5 L70X70X5 L100X100X6 

L30X30X5 L50X50X6 L70X70X6 L100X100X8 

L35X35X3 L50X50X8 L70X70X7 L100X100X10 

L35X35X4 L55X55X4 L70X70X8 L100X100X12 

L35X35X5 L55X55X5 L75X75X5 L110X110X8 

L40X40X3 L55X55X6 L75X75X6 L110X110X10 

L40X40X4 L55X55X8 L75X75X7 L110X110X12 

L40X40X5 L60X60X4 L75X75X8 L120X120X8 

L40X40X6 L60X60X5 L80X80X6 L120X120X10 

L45X45X3 L60X60X6 L80X80X8 L120X120X12 

L45X45X4 L60X60X8 L90X90X6 L130X130X10 

L45X45X5 L65X65X4 L90X90X7 L130X130X12 

L45X45X6 L65X65X6 L90X90X8  

L50X50X3 L65X65X8 L90X90X10  

 

Table 12 Neural network Statistical Criteria for size 

optimization of the 132 kV transmission tower 

Statistical 

Criteria 

Total Weight Total Constraint Violation 

Train Data Test Data Train Data Test Data 

MSE 4.1×10-5 1×10-4 2.3×10-4 4.3×10-4 

MAE 0.004 0.004 0.003 0.005 

R2 0.999 0.997 0.999 0.974 

 

 

To evaluate the neural network, the MSE, MAE, and R2 

of the training and test data are shown in Table 14 based on 

which the trained neural network functions well. 

The base width is the same in both the x and Y 

directions and a change in it will also change the panels’ 

widths in the tower sloping body. 

Since the base width design variable has been selected 

discretely every 10 cm in the range 9-11 m, the vector of the 

design variables has been defined as 

X={A1,A2,…,A17,Wb}where Wb is the width of the tower 

base selected randomly in a known interval. Table 15 shows 

the optimization results found from both methods. 

According to Table 15, the optimized weights are 

10813.63 and 10736.33 kg and optimization times are 

321.45 and 4652.85 minutes with the RBF-ABC and 

MSTOWER-ABC methods, respectively. Since the 
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optimized weights are close, it means that the neural 

network performs well because a time comparison of the 

two methods shows that it has reduced the analysis time 

effectively. The convergence diagram of the optimization 

algorithm is shown in Fig. 13. In shape optimization, a 

decrease in the base width of the transmission tower will 

narrow the tower shape and, hence, decrease the free 

lengths of the members. This will make the tower exhibit a 

better buckling-resistance behavior and cause members to 

get thinner. 

 

7.2.3 Optimization of the size, shape and topology 
Like previous optimizations, a new analyzer has been 

developed for the RBF-ABC optimization through 500 
analyses of the data stored in the MSTOWER. The MSE, 
MAE and R2 of the training/test data presented in Table 16 
show that the neural network is well-trained. For the 
simultaneous optimization of the size, shape, and topology, 
panels’ shapes have also been considered as design 
variables; as shown in Fig. 11, they go on varying in some 
portions of the tower until a panel is selected that yields the 
optimum solution. These panels are selected from a 
standard list available in the MSTOWER Software. 

 
Fig. 11 Initial modeling of the 132 kV transmission tower (all units are in meters) 
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Table 13 Comparison of the Size optimization results of 

RBF-ABC and MSTOWER-ABC for the 132kV 

transmission tower 

Design Variables 
Methods 

RBF-ABC MSTOWER-ABC 

A1 L 50×50×4 L 50×50×3 

A2 L 50×50×4 L 50×50×4 

A3 L 55×55×4 L 55×55×4 

A4 L 55×55×4 L 55×55×4 

A5 L 55×55×4 L 55×55×4 

A6 L 60×60×4 L 60×60×4 

A7 L 60×60×4 L 60×60×4 

A8 L 60×60×4 L 60×60×4 

A9 L 70×70×5 L 65×65×5 

A10 L 70×70×5 L 70×70×5 

A11 L 70×70×5 L 70×70×5 

A12 L 100×100×6 L 100×100×6 

A13 L 120×120×8 L 120×120×8 

A14 L 80×80×6 L 80×80×6 

A15 L 100×100×6 L 100×100×6 

A16 L 110×110×8 L 110×110×10 

A17 L 110×110×10 L 110×110×8 

Weight (kg) 11029.203 10922.350 

Data generation 

time(min.) 
277.750 - 

Training time (min.) 0.667 - 

Optimization time(min.) 0.946 4642.699 

Overall Time(min.) 279.363 4642.699 

 

Table 14 Neural network Statistical Criteria for the 

optimization of the size and shape of the 132 kV 

transmission tower 

Statistical 

Criteria 

Total Weight Total Constraint Violation 

Train Data Test Data Train Data Test Data 

MSE 2.5×10-5 5.8×10-4 1 ×10-4 3.7×10-3 

MAE 0.003 0.013 0.006 0.029 

R2 0.999 0.996 0.998 0.971 

 

 
Fig. 12 Convergence diagram of the optimization of the 

size of the 132 kV transmission tower 

Table 15 Comparison of the Size and shape optimization 

results of RBF-ABC and MSTOWER-ABC for the 132 kV 

transmission tower 

Design Variables 
Methods 

RBF-ABC MSTOWER-ABC 

A1 L 50×50×4 L 50×50×4 

A2 L 50×50×4 L 50×50×4 

A3 L 55×55×4 L 55×55×4 

A4 L 55×55×4 L 55×55×4 

A5 L 60×60×4 L 60×60×4 

A6 L 65×65×4 L 65×65×4 

A7 L 60×60×4 L 60×60×4 

A8 L 70×70×5 L 70×70×5 

A9 L 70×70×5 L 70×70×5 

A10 L 70×70×5 L 70×70×5 

A11 L 70×70×5 L 70×70×5 

A12 L 100×100×6 L 100×100×6 

A13 L 120×120×8 L 120×120×8 

A14 L 90×90×6 L 80×80×6 

A15 L 90×90×6 L 80×80×6 

A16 L 110×110×8 L 110×110×8 

A17 L 110×110×10 L 110×110×10 

Wb (m) 10.000 10.000 

Weight (kg) 10813.626 10736.330 

Data generation 

time(min.) 
319.833 - 

Training time (min.) 0.733 - 

Optimization time(min.) 0.882 4652.850 

Overall Time(min.) 321.448 4652.850 

 

 

In this paper number of panels to select from for 

topology optimization of 132 KV tower is 33 (As shown in 

Appendix (a) ) and the total design variable for size, shape 

and topology optimization is 31.The vector of design 

variables is defined as X={A1,A2,…,A17,P1,P2,…,P13,Wb} A 

is the number of the angle profiles selected from a discrete 

catalog list, P is that of the panels the shapes of which vary, 

and Wb is the width of the tower base selected randomly in 

a known interval. 

Resul ts  and analysis t ime of  RBF-ABC and 

MSTOWER-ABC optimization methods are shown in Table 

17. According to Table 17, the optimized weights are 

10671.79 and 10482.35 kg and optimization times are 

367.89 and 4665.04 minutes with the RBF-ABC and 

MSTOWER-ABC methods, respectively. Since the 

optimized weights are close, it means that the neural 

network performs well because a time comparison of the 

two methods shows that it has reduced the analysis time 

effectively. Figs. 14 and 15, and Table 18 show, respectively, 

the convergence diagram of the ABC algorithm, final result 

of the optimized tower (and panels changed in the 

optimization process), and the best results obtained from the 

three different optimization methods (and percent reduction 

of the structure weight compared to the initial design). 
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Fig. 13 Convergence diagram of the optimization of the 

size and shape of the 132 kV transmission tower 
 

Table 16 Neural network Statistical Criteria for the 

optimization of the size, shape and topology of the 132 kV 

transmission tower 

Statistical 

Criteria 

Total Weight Total Constraint Violation 

Train Data Test Data Train Data Test Data 

MSE 1.2×10-4 2.8×10-4 4 ×10-5 3.4×10-4 

MAE 0.005 0.007 0.001 0.002 

R2 0.999 0.998 0.999 0.995 

 

Table 17 Comparison of the size, shape and topology 

optimization results of RBF-ABC and MSTOWER-ABC 

for the 132 kV transmission tower 

Design Variables 
Methods 

RBF-ABC MSTOWER-ABC 

A1 L 50×50×3 L 50×50×3 

A2 L 40×40×3 L 40×40×3 

A3 L 55×55×4 L 55×55×4 

A4 L 60×60×4 L 60×60×4 

A5 L 60×60×4 L 60×60×4 

A6 L 65×65×4 L 65×65×4 

A7 L 60×60×4 L 65×65×5 

A8 L 60×60×8 L 70×70×5 

A9 L 60×60×4 L 60×60×4 

A10 L 70×70×5 L 70×70×5 

A11 L 70×70×7 L 70×70×7 

A12   L 80×80×6 L 75×75×6 

A13 L 110×110×8 L 110×110×8 

A14 L 80×80×6 L 80×80×6 

A15 L 100×100×6 L 100×100×6 

A16 L 120×120×8 L 120×120×8 

A17 L 120×120×10 L 120×120×10 

Wb (m) 10.000 10.000 

Weight (kg) 10671.787 10482.350 

Data generation 

time(min.) 

336.667 - 

Training time (min.) 0.815 - 

Optimization time(min.) 0.410 4665.044 

Overall Time(min.) 367.892 4665.044 

 
Fig. 14 Convergence diagram of the optimization of the 

size, shape, and topology of the 132 kV transmission 

tower 

 

 
Fig. 15 Final result of the size, shape and topology 

optimization of the 132 kV transmission tower (all units 

are in meters). 
 

 

As shown, the simultaneous optimization of the size, shape, 

and topology has highly reduced the structure weight. 

General comparisons of the RBF-ABC and MSTOWER-

ABC methods for the optimized weight and optimization 

process time (of the 132 kV transmission tower) are shown 

in the bar graphs of Figs. 16 and 17, respectively. 
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Fig. 16 Weight comparison of the 132 kV transmission 

tower optimized with three different methods (size, size 

and shape, size, shape, and topology) 

 

 
Fig. 17 Comparison of the time required for the 

optimization of the 132 kV transmission tower with three 

different methods (size, size and shape, size, shape, and 

topology) 

 

Table 18 Final result of the size, shape, and topology 

optimization of the 132 kV transmission tower 

Optimization 

Methods 
RBF & ABC MStower & ABC 

Weight (kg) Reduction 
Weight 

(kg) 
Reduction 

Size 11029.2 22.7 % 10922.3 23.4% 

Size and Shape 10813.6 24.2 % 10736.3 24.7 % 

Size, Shape and 

Topology 
10671.7 25.2 % 10482.3 25.5 % 

 

 

Topology affects the structure stiffness and panels’ 

deformations and, hence, the change in the number of the 

tower forming members can increase the structure stiffness 

and, hence, reduce the tower weight. 
 
 

8. Conclusions 

Since transmission towers are among the main 

infrastructures of the power industry in every country, their 

optimization can considerably reduce the relevant costs of 

this industry. This paper is aimed to address the 

simultaneous optimization of the size, shape, and topology 

of these towers through a practical method. To this end, first, 

a benchmark problem presented by CIGRÉ was reviewed 

and, then, a real case, a 132 kV suspension tower, was 

studied. Both towers were modeled, analyzed, and initially 

designed by the MSTOWER Software considering the 

design requirements of the ASCE10-97 Code (2000), and 

optimized by the artificial bee colony (ABC) algorithm. 

Since optimization with metaheuristic methods is quite time 

consuming, use was made of their combinations with neural 

networks and the towers were optimized using the 

MSTOWER-ABC method. In shape optimization, a 

decrease in the base width of the transmission tower will 

narrow the tower shape and, hence, decrease the free 

lengths of the members. This will make the tower exhibit a 

better buckling-resistance behavior and cause members to 

get thinner. 

Besides, topology will affect the structure stiffness and 

changes in the panels’ shapes and, hence, the change in the 

number of the tower forming members can increase the 

structure stiffness and thereby reduce the tower weight. A 

comparison of the results of the three optimization methods 

(size, size/shape, and size/shape/topology) in both the RBF-

ABC and MSTOWER-ABC methods shows that the 

simultaneous optimization of the size, shape, and topology 

of the towers plays a greater part in their weight loss. For 

the CIGRÉ Tower; however, a comparison of the results 

obtained in this paper with those of the BSA method 

showed that the proposed method could further minimize 

the structural weight by about 6% and the 132 kV tower 

was minimized in weight by up to 25% compared to the 

initial design. Closeness of the results based on RBF-ABC 

and MSTOWER-ABC techniques showed that optimization 

with the former method is quite promising and it can be 

applied to other types of transmission towers through more 

efforts and evaluation of other examples. 
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