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1. Introduction 
 

Structural health monitoring (SHM) refers to the process 

of implementing a damage detection and characterization 

strategy for engineering structures such as bridges, 

buildings, plates and mechanical systems and etc. An 

important application of Structural Health Monitoring is to 

improve the reliability of existing infrastructure. In 

structural health monitoring, the main challenging is how to 

evaluate the exact behavior of the structures.  
One of the characteristics of the mechanical systems or 

general physical phenomena is natural frequency. As long 
as the frequency of the structures and systems are showing 
their internal situation, there is a need to extract the exact 
frequency of the systems. Depending on the oscillation 
experiences of any forces or not, the frequency of the 
system can be called forced frequency and natural 
frequency. Natural frequency is the vibrational response of 
the oscillation when it is not subjecting to any external 
force. Resonance occurs when the forced vibration 
frequency is equal to the and natural frequency of an 
oscillation, which increases the amplitude of the system. It 
has become essential to obtain the natural frequency of the 
system in the design procedure.  

In a mechanical system, there are different elements 
used and combined to form it. These elements are behaving  
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linear o nonlinear based on their force-displacement 

relationship.  Developing a finite element modeling is a 

challenging task that could be able to predict the response 

of the structures accurately. The mathematical models and 

governing equations that represent the response of the 

system are usually presented as nonlinear partial differential 

equations. 

Finding an exact solution for nonlinear partial 

differential equations is still a challenge in science. 

Generally, it is not an easy task to prepare an analytical 

solution for nonlinear problems. Some scientists are studied 

different approximate analytical solutions to solve these 

kinds of equations in recent years. Based on the recently 

developed approaches, fuzzy Hermite-Hadamard inequality 

proposed and applied by Avazpour et al. (2016). Their 

proposed approach is effectively able to strong problems 

such (s,m)-Godunova-Levin functions via fractional 

integrals. This can be applied to find new inequalities for 

exclusive means such as geometric, arithmetic and 

logarithmic means which will be used to show the existence 

of ordinary differential equations and partial differential 

equations. They also extended their work by investigating 

some problems in fractional cases that have been considered 

widely (Avazpour,2018). They made inquiries about 

fractional Ostrowski inequality for the functions whose 

derivatives are preinvex, prequasiinvex and logarithmic 

preinvex. 

Olvera et al. (2015) proposed a new approach called 

enhanced multistage homotopy perturbation method 

(EMHPM). The method applied to find the approximate 

solution of differential equations with strong nonlinearities.  
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Hieu (2018) developed the governing equation of the 

nonlinear free vibration of microbeams. He considered the 

post-buckling of the pinned–pinned and clamped–clamped 

end conditions. An approximate solution using weighted 

averaging value was applied, and the results were discussed. 

Zhang et al. (2018) studied the analytical model of the 

vibration of rotors. They considered the interaction between 

the transition force, axial vibration, contact stiffness, and 

speed fluctuation is investigated. Joubari (2015), worked on 

the nonlinear vibration of tapered beams by Modified 

Iteration Perturbation Method (MIPM). Kalita et al. (2016), 

focused on the vibration of a thick rectangular plate and 

they tried to obtain the natural frequency of it and 

discussing the effects of rotary inertia. They made a 

comparison between the numerical, analytical and 

experimental data. Mohammadian et al. (2017) applied 

global residue harmonic balance method (GRHBM) for 

strongly nonlinear vibration problems.  

Omran et al. (2013) proposed the variational approach 

method as a powerful method to obtain the nonlinear 

frequencies of the nonlinear vibration problem with only 

one iteration. 

Panigrahi et al. (2014) studied the harmonic balance for 

large-amplitude vibrations in snap-through structures. The 

problem that they worked on was a nonlinear Duffing 

oscillator for its snap-through behavior at large-amplitude 

vibrations. 

In the last recent years, many authors have been 

working and developing analytical, semi-analytical 

approaches and also advanced nonlinear modelling of 

structures (Avazpour 2018, Avazpour et al. 2016, Avci et 

al. 2018, Bayat et al. 2012, Bennamia,2016, Dehghani et al. 

2019, Ellis et al. 2018, Ganji et al. 2009, Golafshani et al. 

2013, Hashemiparast et al. 2008, He,2008,2010, Hieu et al. 

2018, Hosseinzadeh et al. 2018, Jalili et al. 2018, Jamshidi 

et al. 2012, Javed et al. 2018, Jiang et al. 2016, Johnson et 

al. 2017, Joubari et al. 2014, Kahya et al. 2018, Kalita et al. 

2015,2016, Kia et al. 2016, Kutanaei et al. 2019, Martínez 

et al. 2019, Nayfeh,2011, Olvera et al. 2014, Sarokolayi et 

al. 2016, Tan et al. 2017, Tee et al. 2018,Wu et al.  2019, 

Zangooee et al. 2019, Zhao et al. 2019, Akgoz et al.  2014, 

Sun et al. 2016, Lu et al. 2019, Mackie et al. 2019, 

Martínez et al. 2019, Kroworz et al. 2019, Deng et al. 2018, 

Feng et al. 2019, Zhuang et al. 2019, Suresh et al. 2019, 

Bayat et al. 2017a,b, 2015). 
In this paper, a new approach, called Hamiltonian 

Approach (HA) is studied and applied to well-known 
nonlinear partial differential equations. The HA does not 
need any small parameters and any linearizations. 
Therefore, firstly the basic idea of the HA is presented, and 
the procedure of the Runge-Kutta’s algorithm is described 
in detail. Applications of the HA are examined on two 
problems and the results are compared with numerical 
solutions. It has been demonstrated that the HA can be a 
powerful approach to obtain the natural frequency of the 
nonlinear conservative systems. 

 

 

2. The basic idea of Hamiltonian Approach (HA) 
 

Recently, He (2010) has proposed the Hamiltonian 
approach to overcome the shortcomings of the energy 

balance method. This approach is a kind of energy method 
with a vast application in conservative oscillatory systems. 
In order to clarify this approach, consider the following 
general oscillator; 

( , , ) 0f   + =  (1) 

With initial conditions: 

(0) , (0) 0.A = =
 

(2) 

Oscillatory systems contain two critical physical 

parameters, i.e. the frequency ω and the amplitude of 

oscillation A. It is easy to establish a variational principle 

for Eq. (1), which reads; 

/ 4
2

0

1
( ) ( )

2

T

J F dt  
 

= − + 
 


 

(3) 

Where T is the period of the nonlinear oscillator,

F f .


 =


 

In the Eq (3), 
1

2
𝜃2̇ is kinetic energy and F(𝜃) potential 

energy, so the Eq (3) is the least Lagrangian action, from 

which we can immediately obtain its Hamiltonian, which 

reads: 

21
( ) ( ) constant

2
H F  = + =  (4) 

From Eq. (4), we have: 

0
H

A


=


 (5) 

Introducing a new function, 𝐻̅(𝜃), defined as: 

4

2

0

1 1
( ) ( )

2 4

T

H u F dt TH 
 

= + = 
 


 
(6) 

Eq. (5) is, then, equivalent to the following one 

0
H

A T

  
=      

(7) 

or 

( )
0

1

H

A 

  
= 

     

(8) 

From Eq. (8) we can obtain approximate frequency–

amplitude relationship of a nonlinear oscillator. 

 

 

3. The basic idea of Runge-Kutta’s Method  
 
For the numerical approach to verify the analytic 

solution, the fourth RK (Runge-Kutta) method has been 
used. This iterative algorithm is written in the form of the 
following formulation: 

( ) ( )0 0, ,f t t   = =
 

(9) 

𝜃 is an unknown function of time t which we would 
like to approximate. Then the RK4 method is given for this 
problem as below:  
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( )1 1 2 3 4

1

1
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+
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(10) 

For n = 0, 1, 2, 3, . . . , using 
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=
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(11) 

Where 𝜃𝑛+1  is the RK4 approximation of 𝜃(𝑡𝑛+1). The 

fourth-order Runge-Kutta method requires four evaluations 

of the right-hand side per step h. 

 

 

4. Applications 

 

In this section, we will present three examples to 

illustrate the applicability, accuracy, and effectiveness of 

the proposed approach. 

 

4.1 Example 1 
 

In this example, we consider the following nonlinear 

oscillator (Nayfeh 2011): 

( )22 2 221

12
0l r r r g cos    

 
+ + + = 

   

(12) 

With the boundary conditions of: 

(0) , (0) 0A = =
 

(13) 

In order to apply the Hamiltonian approach method to 

solve the above problem, the Taylor’s series expansion for  

2 41 1

2 24
cos 1   − +

 and by some manipulation in Eq. (19) 

we can re-write Eq. (12) in the following form. 

2 2 2 42 221

12

1 1

2 24
1 0l r r r g    

   
+ + + =   
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− +

  
(14) 

The Hamiltonian of Eq. (14) is constructed as 

2 2 2 2 2 2 4 61 1 1 1 1

24 2 2 8 144
l r g r g r gH r     − + − += −

 
(15) 

Integrating Eq. (15) concerning t from 0 to T /4, we 

have; 

2 2 2 2 2 2

4

/

6
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(16) 

Assume that the solution can be expressed as 

( ) ( )cost A t =
 

(17) 

Substituting Eq. (17) into Eq. (16), we obtain 

( ) ( ) ( )

( ) ( )

( )

/

2 2 2 2 2 2 4 2 2

2 2 4 4

6 6

2 2 2 2 2 2 4 2

4

0

/

2

2 2 4 4 6 6

2

0

1 1
sin sin cos

24 2

1 1
cos cos

2 8

1
cos

144

1 1
sin sin cos

24 2

1 1 1
cos cos cos

2 8 144

5

4

T

H

l A t r A t t

g r A t g r A t

g r A t

l A t r A t t

g r A t g r A t g r A t

dt

dt


   

 





− −
 
 
 
 

=  
 
 
 
 

 
 
 =
 

+ −

+

− −

+ −
 

+ 

=





6 2
2 4

4 2 2
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r A

g r A l A



 
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(18) 

Setting 

( )
2 3 5

7 3

1 1 1 5

4 4 8 256

35 1 1

36864 4 32

1
A A A A

H

A A

A

A
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(19) 

Solving the above equation, an approximate frequency 

as a function of amplitude equal to 

( )2 4

2 2 2

192 72 51

4 6
HA

r g A A

A r l


− +

+
=

 

(20) 

Hence, the approximate solution can be readily 

obtained: 

( )2 4

2 2 2

192 72 51
( ) cos

4 6

r g A A
t A t

A r l


 − +
 =
 + 
   

(21) 

The numerical solution (with the Runge-Kutta method 

of order 4) for the nonlinear equation is: 

2 2

2 2 2

( )
(0) 0

 =

1

12

y (0)=A

r r g cos
y y

l r

 









+
= − =

+
 

(22) 

 
4.2 Example 2  

 

We consider mathematical pendulum. The differential 

equation governing for the free oscillation of the 

mathematical pendulum is given by (Nayfeh 2011): 

( ) ( ) ( )2 0
g

cos sin sin
r

   −  + =
 

(23) 

With the boundary conditions of: 

( ) ( )0 , 0 0A = =
 

(24) 

In order to apply the Hamiltonian approach method to 

solve the above problem, the approximation 

2 41 1
cos 1

2 24
   − +

and   
31

sin
6

   −
 is used. 
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The Hamiltonian of Eq. (23) is constructed as 

2 2 2 2 4 2 6

2 8 2 4

1 1 1 1

2 2 6 48

1 1 1

1152 2 24

H

g g

r r

   

  
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(25) 

Integrating Eq. (25) with respect to t from 0 to T /4, we 

have; 
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(26) 

Assume that the solution can be expressed as 

( ) ( )cost A t =
 

(27) 

Substituting Eq. (27) into Eq. (26), we obtain 
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Setting 

( )
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2 7 3
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8 4 4 256

35

1
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3664 4 32
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r r

H

A
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(29) 

Solving the above equation, an approximate frequency 

as a function of amplitude equal to 

2 2 2 2 4 2 6 21 5 35 1

2 64 9216 8
HA

g g
A A A A

r r
 −  −   + −= + +

 
(30) 

Hence, the approximate solution can be readily 

obtained: 

2 2 2 2 4

2 6 2

1 5

2 64
( ) cos

35 1

9216 8

A A

t A t
g g

A A
r r



 
−  −  

 =
 

 + −
 

+

+ 

 

(31) 

The numerical solution (with the Runge-Kutta method 

of order 4) for nonlinear equation is: 

 

(I) 

 

(II) 

Fig. 1 Comparison of time response of the HA solution 

with RK solution (I): 6, 10, 3, 0.5A g l r= = = =  (II): 

3, 10, 5, 1A g l r= = = =
 

 

 

( ) ( ) ( )2

 = y (0)

( 0

=A

0)
g

y cos sin sin y
r

  

 

=  − =
 

(32) 

 

  

5. Results and discussions 
 

In the previous sections, the basic idea of the 

Hamiltonian approach has been presented, and the detail 

application and formulation of it on two well-known 

problems were applied. 

In this part the, results of the HA are comparing with 

numerical solutions. Figures 1 and 5 are showing the 

motion of the problems are periodic, and the graphs are 

presenting the displacement versus time for the first period 

of the motion. The results have an excellent agreement with 

numerical solutions. 

For each figure 1 and 5, the results are presented for 

different parameters to consider the accuracy of the 

proposed approach. Figure 2 represents the variation of the 

frequency of respect to r for the fixed values of A, g, and l. 

It can be observed from this figure that by increasing the r, 

HA RK

time
0 1 2 3 4 5 6 7 8

 (t)

0.4

0.2

0

0.2

0.4

HA RK

time
0 1 2 3 4 5 6 7 8

 (t)

1

0.5

0

0.5

1
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Fig. 2. Comparison of the frequency corresponding to 

various parameters of r    4, 10, 5A g l= = =  
 

 
Fig. 3. Comparison of the frequency corresponding to 

various parameters of l     4, 10, 0.5A g r= = =  

 

 
Fig. 4. Comparison of the frequency corresponding to 

various parameters of A 10, 5, 1g l r= = =  
 

 

the frequencies are increased until its maximum value 

which is 2.2 and decreasing by increasing r. Figures 3 and 4 

are the effects of l and A on the frequency of the system, the 

increases on l decreases the frequency, and the frequency 

response has symmetric behavior by increasing A, the 

maximum value is 2.2. 

 

(a) 

 

(b) 

Fig. 5 Comparison of time response of the HA solution 

with RK solution (a): 4, 10, 3, 2A g r = =  = =       

(b): 2, 10, 3, 0.5A g r = =  = =  

 

 
Fig. 6. Comparison of the frequency corresponding to 

various parameters of   4, 10, 1A g r= = =  
 

  

 In examples 2, the variation of the frequency respect to 

  is the same trend as we had for the amplitude of in 

example 1. The maximum values of the frequency in this 

example is 3, and it has symmetric behavior respect to   

equal to zero. The variation of the frequency respect to r is 

r
1 2 3 4 5


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1.6

1.7

1.8

1.9

2.0

2.1
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l
1 2 3 4 5


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2
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3

3.5

4

4.5

A
1.5 1 0.5 0 0.5 1 1.5



1
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1.4

1.6

1.8

2

HA RK

time
0 1 2 3 4 5 6

 (t)

0.6

0.4

0.2

0

0.2

0.4

0.6

HA RK

time
0 1 2 3 4 5

 (t)

1.5

1

0.5

0

0.5

1

1.5


3 2 1 0 1 2 3



1.5

2
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3
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Fig. 7. Comparison of the frequency corresponding to 

various parameters of r 3, 10, 2A g = =  =  

 

 
Fig. 8. Comparison of the frequency corresponding to 

various parameters of amplitude 10, 3, 1g r=  = =  

 

 

decreasing by increasing r, with positive curvature and the 

same trend is related to A, but the main difference is, in this 

case it has a negative curvature. It can be seen that by 

applying accurately a mathematical tool, the effects of the 

essential parameters are easily obtained and the variation of 

them is captured. 

 The HA is a powerful mathematical tool, that does not 

need any linearization and small parameters and doesn't 

have the limitation of the traditional methods. This 

approach can be easily extended to any kind of conservative 

oscillation. 

 

 

 6. Conclusion 
 

In this paper, The Hamiltonian approach has been 

implemented successfully for studying highly nonlinear 

vibration problems. The detail procedure and application of 

the proposed approach have been presented and the results 

were verified with the numerical solution. By the gained 

results, it has been shown that the results are in agreement 

with the numerical solution. The effects of the critical 

parameters were shown on the frequency response of the 

problems. Only one iteration of the HA leads us to a highly 

accurate solution to the problems. The proposed method can 

be extended to other kinds of conservation problems. 
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