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1. Introduction 
 

In the field of structural mechanics, a "shell" refers to a 

curved and three-dimensional element, which is thin in one 

direction. Although shells are thin and light, they can 

tolerate out-of-plane loads owing to their curvature. 

Numerous researchers and scholars have continuously been 

investigating the behavior of thin-walled and thick-walled 

cylindrical shells under different loadings. Given the 

desirable proportion between weight and mechanical 

strength of the structure, cylindrical shells are one of the 

most widely used engineering structures. This feature has 

been utilized in many engineering fields such as mechanics. 

Vibrational and dynamic behavior of cylindrical shells 

constitutes one of the most widely applied engineering 

fields. The most important step in the examination of 

dynamic behavior in cylindrical shells is to find natural 

frequencies and mode shapes. That is because the entire 

dynamic behaviors of a structure are explored on the basis 

of these two properties. Therefore, it is crucial to 

thoroughly investigate natural frequencies and mode shapes 

in order to carry out an optimal design. Conducting various 

experiments, researchers have found that the theory of thin- 

walled shells used for a thick-walled cylinder can give rise 

to fault in determining the natural frequencies. In other  
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words, the classical theory of thin-walled shells cannot help 

achieve sufficient accuracy to solve the thick-walled shells 

problems. That is because this theory underestimates the 

deflection and overestimates the natural frequency. A thick-

walled shell is distinct from a thin-walled shell. One 

difference is the transverse shear deformation effect, which 

cannot be discarded in thick-walled shells.  

Due to the difficulty of using the three-dimensional 

theory of elasticity, the approximated theories are used by 

researchers for analysis of the shells. The first-order shear 

deformation theory (FSDT) is one of them, which has been 

adopted by many researchers to cover the effect of shear 

deformation on thick shells. In the shear deformation theory 

employed in this paper, the displacement field in the 

thickness direction is approximated by a linear function of 

thickness (z) (Mirsky, and Hermann 1958). Suzuki. et al. 

1981 analyzed the axisymmetric vibrations of a cylinder 

with variable thickness in the axial direction under clamped 

and simple boundary conditions. In their paper, they used 

the classical shell theory (CST) and the theory of improved 

thick shells. They solved the vibrational equations by 

applying the power series method. Soedel (1982) 

generalized the CST by including the effects of rotary 

inertia and shear deformation. He used the method of 

separation of variables to solve the equations of motion, to 

achieve natural frequencies. Bhimaraddi (1984) proposed a 

higher-order theory to obtain the natural frequencies of 

circular cylindrical shells. Trigonometric functions were 

employed to generate separable solutions with unknown 

coefficients. Suzuki and Leissa (1986) obtained the natural 

frequency and mode shape of variable-thickness cylindrical 

shells. The motion equations contained three differential 
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equations with variable coefficients. They demonstrated 

that the mode shapes of thickness-variable cylindrical shells 

were similar to that of constant-thickness cylindrical shells, 

but their natural frequencies were different. They developed 

a solution based on sine functions with respect to time and 

power series with respect to spatial coordinate. Wong and 

Bush (1993) used the asymptotic expansion to examine the 

vibrations of cylindrical shells. In this method, the 

longitudinal, circumferential and radial displacements, as 

well as the shell frequency, were expanded based on the 

thickness-to-radius ratio. Buchanan and Yii (2002) studied 

the effects of homogeneous boundary conditions on 

vibrations of thick-walled cylindrical shells using the finite 

elements (FE) method. Pellicano (2007) assumed the 

longitudinal, peripheral and radial displacement functions 

for a cylindrical shell with simple and clamped boundary 

conditions combined with the harmonic functions and 

Chebyshev polynomials. He compared the results against 

the experimental and numerical results. El-Kaabazi and 

Kennedy (2012) examined the natural frequencies and 

mode shapes of a thin cylinder with variable thickness using 

Donnell, Timoshenko and Flugge’s theory for the clamped, 

simple and free supports. They calculated the undamped 

natural frequencies using a numerical algorithm. Using the 

Rayleigh method, Lee and Kwak (2015) analyzed the 

vibrations of circular cylindrical shells, while comparing 

different shell theories. They indicated that Donnell's theory 

was not accurate enough to calculate natural frequencies. 

Moreover, there was no difference between the other 

theories examined in that study. Cammalleri and Costanza 

(2016) presented a closed-form solution to determine the 

natural frequencies of a thin cylinder with clamped-end 

supports. The governing equations were extracted using the 

modified Love’s theory together with Donnell's 

assumptions and finally analyzed through a semi-analytic 

method. Zhao et al. (2018) proposed a closed-form solution 

to analyze an anisotropic cylinder taking into account the 

general boundary conditions based on Donnell's theory. 

Zhang et al. (2018) examined the vibrations of a relatively 

thick cylindrical shell under general boundary conditions 

with the improved Fourier cosine series. 

The viscoelastic materials are characterized by 

properties falling between elastic solid and viscous fluid. 

The mechanical behavior of these materials simultaneously 

indicates the rigidity level of an elastic body and the effects 

of friction loss associated with the viscous fluid. Such 

behavior results in the time-dependent mechanical 

properties. The viscoelastic materials have been 

increasingly used in various engineering due to their unique 

physical and mechanical properties. A great interest has 

been created in engineers to study and use viscoelastic 

materials because of their damping behavior. Cox (1968) 

investigated the wave propagation in a thick, viscoelastic 

tube containing a Newtonian fluid. He considered the 

constant thickness and non-uniform moving load in his 

formulation. The equations were extracted through the 

theory of elasticity and then were solved analytically. 

Hamidzadeh and Sawaya (1995) achieved the equations 

governing the free vibrations of thick composite cylinders 

made of viscoelastic layers. They adopted the three-

dimensional wave propagation theory and then provided a 

solution by numerical methods. Zhang et al. (2010) carried 

out a quasi-static analysis of thick cylinders with a constant 

viscoelastic thickness under the impact uniform internal 

pressure and axial load, separately. The governing 

equations were derived based on the three-dimensional 

elasticity theory and then were solved by separation 

variables method. Mohammadi and Sedaghati (2012) 

applied the FE method for vibrations of a multilayer silicon 

shell with a viscoelastic core for thin and thick cores. They 

investigated the transient vibrations for both linear and 

nonlinear models. It was observed that the nonlinear model 

has more strong damping than the linear one. Eratl et al. 

(2014) examined the effect of rotary inertia on the 

dynamical behavior of linear viscoelastic cylindrical and 

conical helicoidal rods using the FE method. Yang et al. 

(2015) explored the damping and free vibrations of thick 

multilayer cylindrical shells with viscoelastic core under 

different boundary conditions. Layer-wised and sandwich 

hypotheses were adopted to describe composite layers and 

viscoelastic material. They used a new term for 

displacement field, where the middle layer was expanded as 

a combination of standard Fourier series and auxiliary 

functions. In addition, they obtained natural frequencies and 

loss coefficients through a parametric study. Then, they 

obtained the characteristic equation of the system using the 

modified Ritz method. Poloei et al. (2017) studied the 

nonlinear vibrations of a microbeam with a viscoelastic 

coating by considering the Euler-Bernoulli beam theory 

under electrostatic excitation. They used the linear mode 

shape for discretization. Khadem et al. (2017) used the 

perturbation method for vibrations analysis of viscoelastic 

annular plate through the FSDT. Barati (2017) presented a 

dynamic model for nanoplates on the viscoelastic 

foundation. He considered the porosity, hygrothermal 

loading, and size-dependent effects and solved the 

governing equations with the Galerkin method. Jithin et al. 

(2018) examined the mechanical properties of a thick-

walled hollow viscoelastic cylinder under multi-axial stress 

conditions. Mokhtari et al. (2018) conducted a dynamic 

analysis of isotropic multilayer cylindrical shells with a 

fractional viscoelastic core. They adopted Donnell-

Mushtari’s theory to obtain the structural equations in the 

outer layer. In modeling the properties of viscoelastic 

material, this paper used the Zener model owing to its better 

consistency with experimental results. The governing 

equation was solved using the Rayleigh-Ritz method. 

Barretta et al. (2018) used a size-dependent elasticity theory 

to investigate the free vibrations of Timoshenko FG elastic 

nano-beams. The FG properties were in the thickness 

direction with a power law formula. So the motion 

equations were two coupled PDE with constant coefficients. 

They presented an analytical solution for these equations 

with different boundary conditions. Similar work has been 

performed by Apuzzo et al. (2018) for an elastic Euler- 

Bernoulli nano-beam and Barretta et al. (2018) for 

longitudinal vibrations of a rod. 

The survey in the literature shows that most papers 

concerning the dynamic analysis of cylindrical shells used 

the CST theory for an analytical solution or numerical 
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methods to the three-dimensional theory of elasticity. Also 

for viscoelastic properties, the Kelvin model taking into 

account. In this paper, the governing equations are extracted 

through the FSDT for the elastic thick-walled cylinders. 

Then, the equations are extended into the viscoelastic 

cylindrical equations by the operator method. Finally, the 

frequency analysis is conducted by solving four coupled 

partial differential equations. Accordingly, the innovations 

of this research contain the achievement an analytical 

procedure for investigating the free vibrations of thick-

walled viscoelastic cylinder for different viscoelastic 

models; investigating the effect of clamped and simply 

supported boundary conditions on the frequency and mode 

shapes of viscoelastic thick-walled cylinder for the first 

Zener model; exploring the effect of neglecting the 

transverse normal strain on the frequency of the viscoelastic 

cylinders and surveying the effect of mechanical and 

material properties on the frequencies for the Zener’s 

models. 
 

 

2.Equations of motion 
 

2.1 Physics of the problem 
 

As shown in Fig. 1, we consider a cylindrical shell with 

the inner radius ri, the outer radius ro. The shell has the 

length L, the middle radius R and a constant thickness h. 

The reference plane for deformation has been considered to 

be the middle plane, on which the orthogonal coordinate 

system (x,θ,z) has been located. The displacement 

components of each point on the cross section in the axial 

direction x, circular direction θ, and the radial direction 

have been designated as Ux, Uz, and respectively. The 

boundary conditions are applied at the two edges. There is 

no external load in the analysis of free vibrations. The 

geometric parameters have been displayed in Fig. 1. 

 

2.2 Extraction of elastic cylindrical motion 
equations 

 

In the first stage, we extracted the equations of motion 

for the elastic cylinder using Hamilton’s principle. Then,  

 

 

these equations were extended into the viscoelastic state. 
The equations were based on the FSDT. Also for the 
extracting the equations of motion we assumed that the 
shell is homogeneous, isotropic with constant thickness; the 
problem is axisymmetric i.e 𝜕/𝜕𝜃 = 0 with small 
displacement, and the stress-strain relations are in 
accordance with Hooke's law. The shell is viscoelastic and 
the first and second Zener’s models, as well as the Kelvin-
Voigt and Maxwell models, are adopted for viscoelastic 
modeling.  

According to Fig. 1, the location of each point in the 
longitudinal cross-section shell (e.g. m) is defined by two 
parameters of x and r where r represents the distance from 
the axis and it is equal to: 
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(1) 

Where z is the distance from the middle-plane. The 
displacement field for the axisymmetric cylinder according 
to the FSDT by considering the transverse normal strain 
provides as the following: 
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(2) 

u(x,t) and w(x,t) represent the displacement of a point on 
the middle plane (z=0) with the length dimension. φ(x,t) is 
the angle of cross-section rotation on the x-z plane, while 
ψ(x,t) is the transverse normal  strain, which is 
dimensionless. Moreover, t represents the time. 

 Mathematically, Eqs. (2) can be regarded as the Taylor 
expansion of Ux(x,t) and Uz(x,t) around z=0, where just two 
terms are included. According to the strain-displacement 
equations for the small shell deformation, non-zero 
components of strains in the axisymmetric state are as 
follows (Boresi et al. 2010): 
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Fig. 1 A cylindrical shell, its longitudinal section and coordinate system (three dimensional and longitudinal section) 
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Assuming that the behavior of materials is linear, the 

constitutive equations based on Hooke's law for 

homogeneous and isotropic materials are as follows (Boresi 

et al. 2010): 

( ) kjizxiIII ikjii =−+++=   ,,,  ,)( 212 

( ) 32,34,2. 2121 GKIGKIII ijij −=+=−= 
 

(4) 

Where K, G are the bulk and the shear modulus. The 

stress resultants are defined as follows: 
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(5) 

The term (1+z/R) in the stress resultants is not neglected 

because the cylinder is thick-walled. Ks is the shear 

correction factor. It is assumed that Ks =5/6 (Vlachoutsis 

1992). More detail about the shear correction factor has 

been reported in the Appendix. 

By replacing Eqs. (3), (4) into Eqs. (5), the values of 

resultants can be obtained in terms of displacement 

components. The strain energy is calculated as follows: 
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(6a) 

The kinetic energy is calculated as the following: 
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(6b) 

Equations of motion are achievable using the Hamilton 

principle. According to Hamilton’s principle in a time 

interval of (t1, t2), we have (Rao 2007). 
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(6c) 

δ is the variational operator. By replacing Eqs. (6a), (6b) 

into Eq. (6c), the governing equations and the boundary 

conditions can be determined: 
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The prime and dot specify derivatives relative to x and t, 

respectively. Eq. (7e) represents the boundary conditions. 

The following desired cases are defined for each edge: 

•  For clamped edge: u=0, w=0, φ=0, ψ=0. 

•  For simply supported edge: u=0, w=0, Mx=0, Mxz=0. 

•  For free edge: Nx=0, Nxz=0, Mx=0, Mxz=0.  

By replacing the resultants Eqs. (5) into Eqs. (7a)- (7d), 

equations of motion are obtained in terms of displacement 

components: 
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Where   4..1,, =iAL iii are as follows: 
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The equations of motion of thick elastic cylindrical shell 

include a system of four coupled partial differential 

equations with constant coefficients. By assuming the 

material behavior as viscoelastic in shear and elastic in 

bulk, the equations are extended for viscoelastic materials. 

 

2.3 Extended equations for viscoelastic cylinders 
 

In order to describe the viscoelastic behavior of a 

system, the deviatoric and dilatational parts of stress tensor 

are separated. For the shear part, we have (Skrzypek and 

Ganczarski 2015): 

ijij QP  11 =
 

(9) 

P1 and Q1 represent viscoelastic operators τij and εij  

represent shear stress and strain. The bulk and shear 

modulus are determined as follows: 
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(10) 

Where K0 is the elastic bulk modulus. Since this paper 

comparatively evaluated four popular viscoelastic models, 

the following parametric form has been considered for 

reducing the formulation: 

DJJQDJJP 431211 , +=+=
 

(11) 

Where tD =  is the time derivative operator. 

Moreover, J1 to J2 obtain from Table 1 according to 

selected viscoelastic model. By replacing Eqs. (10), (11) 

into Eqs. (8a)-(8d) and applying the differential operator, 

the equations of motion for the viscoelastic thick cylindrical 

shell is obtained in terms of displacement components. 
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In these equations, the derivation operators of Ξj for 

j=1…4 and Λj are defined as follows: 
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θji for i=0,1 are expressed in the following forms. 
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3. Analytical solution 
 

The theory of differential equations is essentially based 

on the determination of system’s eigenvalues and 

eigenvectors. The equations of motion for the viscoelastic 

thick cylindrical shell, including four third-order (relative to 

time) and second-order (relative to spatial coordinate) 

partial differential equations, homogeneous with constant 

coefficients. The eigenvalues are natural frequencies and 

eigenvectors are mode shapes of the shell. The equations of 

motion can be represented as the following form: 

Table 1 Different viscoelastic models 

No. Model J4 J3 J2 J1 

1 

Maxwell 

 

    

2 

Kelvin- Voigt 

 

    

3 

Zener (First type) 

 

    

4 

Zener (Second type) 

 

    

2 0 G1 1

2 G2 0 1

22 G 2 21GG 21 11 GG +

1222 GG+ 22G 11 G 1
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2

2
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(13) 

Where {y} includes the dependent functions of 

equations system. Matrix elements [B1̅̅ ̅] to [B8̅̅ ̅] are 

coefficients of terms in  Eqs. (12a)-(12d). For solving the 

above system of equations, we consider the solution as 

follows: 

  ( )  tiexVy =
 

(14) 

Where ω and V(x) represent the complex frequency and 

mode shape, respectively. By replacing Eq. (14) into Eqs. 

(13), the following system of equations is obtained. 

   ( )    ( )    

     ( )    ( )4

3

65

2

10

0382

2

27 0

−+−=

=+



++




+





i

V
x

V
i

x

V
i

 

(15) 

The solution of Eq. (15), which is a system of 

differential equations with constant coefficients, can be 

considered as follows: 

( )    xeAxV =
 

(16) 

{A} is the eigenvector while β is the eigenvalue. By 

replacing Eq. (16) into Eqs. (15), we have: 

   ( )    ( )      003827

2 =++++ Aii 
 

(17) 

For a non-zero solution, the determinant of coefficients 

matrix Eq. (17), has to equate to zero, i.e: 

   ( )    ( )  ( ) 0det 03827

2 =++++  ii
 

(18) 

Eq. (18) is the dispersion equation, and its solution 

specifies eight eigenvalues βj, j=1..8 and eigenvectors. For 

each eigenvalue, there is an eigenvector determined by Eq. 

(17). These eigenvalues and eigenvectors include ω. After 

finding the eigenvalues and eigenvectors, the general form 

of Eq. (15) is determined as follows: 

( )    x

j
j

j
jeACxV




=

=
8

1  

(19) 

Where the constants Cj are determined from the 

boundary conditions. By applying the boundary conditions  

 

Table 3 Coefficients of Prony’s series 

Model qi τ G0 

Maxwell 1 
1G



 

G1 

First Zener’s model 
21

1

GG

G

+
 21 GG +



 

G1 

Second Zener’s model 
21

1

GG

G

+
 1G



 

G1+ G2 

 
 

on two edges of cylindrical shells, an algebraic equations 

system is derived with eight homogeneous equations that 

can be formulated in the following matrix form. 

    0=Cax
 (20) 

Where {C} includes Cj, j=1..8 elements. In order to  

obtain a non-trivial solution, it is necessary to vanish the 

determinant of coefficients matrix Eqs. (20). 

  0det =ax  (21) 

This determinant leads to a complicated algebraic 
equation in terms of ω that can be solved numerically 
through the Bisection algorithm. The calculated frequency 
is a complex number as ω= ωN+iαd, which ωN = Re(ω) is 
the natural frequency and αd = Im(ω) is the decay rate of 
displacement (damping). “Re” and “Im” represent the real 
and imaginary parts of a complex number, respectively. 
After determining the values of complex frequency, the 
mode shapes are determined through Eqs. (15). From eight 
Eqs. (20), just seven equations are independent. Moreover, 
C2-C8 can be obtained in terms of C1 from Eqs. (15). The 
system response is as follows: 

  ( )  ..1 CC
ti

exVCy +=


 
(22) 

Where C.C. represents the complex conjugate of the 

proceeding terms. 
 

3.1 Effect of transverse normal strain 
 

The statement ψ(x,t) in the equations of motion is the 
transverse normal strain. By setting ψ(x,t)=0 in the 
equations of motion and removing the fourth equation, we 
achieve three equations without the effect of normal strain. 
This has been discussed in the Results section. 

 

 

4. Numerical solution 
 

Abaqus and Ansys are two popular commercial 

packages for FE analysis. Ansys does not support the linear  

Table 2 Characteristics of cylinder 

Length (m) L=0.775 Poisson's ratio ν=0.3 

Middle radius (m) R=0.155 Shear correction factor Ks=5/6 

Thickness (m) h=R/10 Density (Kg/m3) ρ=7800 

Elasticity modulus (Pa) E=2.550e8 Viscoelastic coefficient (Pa·s) η=2.744e6 

Bulk modulus (Pa) K0=2.125e8 Viscoelastic modulus (Pa) G1=9.808e7,  G2=2.450e7 
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modal analysis for viscoelastic structures. So we employed 

Abaqus software for numerical analysis. Abaqus uses the 

Prony series for introducing the viscoelastic material 

properties. So in order to model the viscoelastic behavior in 

shear state, the elasticity modulus G has been defined based 

on the Prony series. The bulk modulus in constant in our 

study and it has been determined using elastic Young’s 

modulus and Poisson’s ratio in the software. Abaqus 

calculates the bulk modulus through K0=E/3(1-2ν). The 

shear behavior is as the following: 

( ) ( )( )0

1

1 1 exp /
n

i i

i

G t G q t 
=

 
= − − − 

 


 
(23) 

G0 is the instant modulus at t=0.  We use just one term 

of the series, i.e n=1 and the modulus ratio qi and the 

relaxation time τ for different mentioned models have been 

introduced in Table 3. The shear modulus in the Kelvin-

Voigt model does not define with a Prony’s series. 

 

 

Also in the FE modeling, the axisymmetric elements 

with four sides and eight nodes have been used. So it is 

sufficient to draw just the longitudinal section of the shell in 

the software environment (Fig. 1). The specifications of the 

cylinder have been presented in Table 2. 

 

 

5. Results and discussion 
 

In order to explore the efficiency of the presented 

formulation, some numerical examples were investigated. 

We considered a thick-walled cylindrical shell with 

geometric properties and materials listed in Table 2. All the 

calculations are based on the data reported in this table 

except that the mentioned values. The calculations were 

conducted on the mathematical software Maple 15. In the 

case studies, the results of natural frequencies were 

provided for different viscoelastic models. Then, we  

Table 4 Dimensionless natural frequencies- Viscoelastic (S-S)  

 First Second Third 

Elastic (G=G1) 6.7478 10.4795 10.9480 

Elastic (G=G1) (FE) 6.1611 10.3296 10.9037 

Second Zener’s model 7.4373 11.6256 12.0695 

Second Zener’s model (FE) 6.7693 11.5073 12.1841 

First Zener’s model 6.7524 10.4763 10.9500 

First Zener’s model (FE) 6.0625 10.2960 10.8890 

Maxwell (G1) 6.7412 10.4464 10.9513 

Maxwell (G1) (FE) 6.0554 10.2935 10.8984 

Kelvin-Voigt (G1) 17.2418 25.1395 27.3565 

Table 5 Effect of elasticity modulus G1 on first frequency of Zener’s models (S-S)  

Elasticity Modulus(G1)→ 9.81e6 1e7 3.81e7 6.81e7 9.81e7 1e8 3.81e8 9.81e8 

First Zener’s model 2.1345 2.1549 4.0655 5.6344 6.7464 6.8914 13.6056 21.6143 

First Zener’s model (FE) 1.9148 1.9372 3.7740 5.0456 6.0554 6.1168 11.9314 19.1487 

Second Zener’s model 3.5253 3.5431 5.2245 6.4553 7.4373 7.4936 13.7266 21.6756 

Second Zener’s model (FE) 3.5813 3.5913 4.8376 5.8836 6.7693 6.8224 12.3091 19.3864 

Table 6 Effect of elasticity modulus G2 on first frequency of Zener’s models (S-S)  

Elasticity Modulus (G2)→ 2.45e2 2.45e3 2.45e4 2.45e5 2.45e6 2.45e7 2.45e8 

First Zener’s model 6.7895 6.7895 6.7895 6.7895 6.7893 6.7464 6.7697 

First Zener’s model (FE) 6.0554 6.0554 6.0554 6.0554 6.0554 6.0554 6.0554 

Second Zener’s model 6.7534 6.7534 6.7540 6.7592 6.8071 7.4373 11.1403 

Second Zener’s model (FE) 6.0554 6.0554 6.0631 6.0631 6.1303 6.7693 11.3256 

Table 7 Effect of thickness-to-radius ratio on frequencies of first Zener’s model 

h/R→ 0.01 0.05 0.1 0.12 0.15 0.2 0.5 0.75 1 1.5 2 

First frequency 6.7024 6.7545 6.7524 6.7516 6.7710 6.7749 6.7961 6.8225 6.6696 6.3678 5.7538 

First frequency (FE) 6.6873 6.4779 6.1622 6.0324 5.8447 5.5443 4.3126 3.6614 3.2167 2.6432 2.3176 

Second frequency 10.3640 10.4285 10.4763 10.4799 10.5284 10.5633 11.0177 11.4259 11.6707 11.9186 11.1631 

Second  frequency  

(FE) 
10.3832 10.3774 10.3774 10.3000 10.2423 10.1066 9.0858 8.4810 8.1028 7.6556 7.3924 
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surveyed the effects of changing in the geometrical 

parameters, mechanical properties, supports conditions, and 

the effect of transverse normal strain on the natural 

frequencies. 

 

5.1 Frequency analysis 
 

Table 4 provides the values of three natural frequencies 

obtained from the mathematical analysis of the cylindrical 

shell with simply supported edges for different viscoelastic 

models. In order to explain the difference between the 

viscoelastic and elastic behaviors in thick-walled cylindrical 

shells, we presented the natural frequency of the elastic 

shell too. The frequencies were rendered dimensionless 

through 𝜔̅ = 𝜔(𝑅2/ℎ)√𝜌/𝐾0. According to Table 4, the 

frequency of the viscoelastic material is not greater than the 

elastic case in general and it depends on the type of 

viscoelastic model, the viscoelastic coefficient, and 

elasticity modulus. The comparison of the frequency values 

obtained using different viscoelastic models with the FE 

analysis shows a good agreement between the results. The 

difference percentage is an absolute value of ((AFE − AAN)/ 

AFE), where AFE represent the results of the FE and AAN 

represents the results of the analytical solution. In this 

paper, the boundary conditions were indicated by two 

symbols, i.e. the first is at x=0 and at is x=L. The symbols 

C, S indicate clamped and simple supports respectively so 

C-S stands of the clamped at x=0 and simply supported at 

x=L and so on. Furthermore, the dimensionless parameters 

ℎ̅ and 𝑅̅ have been defined as ℎ̅ = ℎ/𝑅 and 𝑅̅ = 𝑅/𝐿.  

Evidently, under identical conditions, the natural 

frequency in the second model is about 12% higher than 

that in the first Zener model. 

 

 

By setting G1=∞ in the first Zener’s model, a Kelvin-

Voigt model is obtained. Also for G2=0, it is converted to a 

Maxwell model. Comparing of the Kelvin-Voigt and 

Maxwell models shows that the natural frequency in 

Kelvin-Voigt case is higher than the series state. In Tables 

5,6, it has been explained that the variation of   G1 can 

affect significantly on the frequencies but G2 has a small 

variation on the frequency. So the results of the first Zener’s 

model is close to the Maxwell model.  

Table 5 reports the natural frequency variations with the 

modulus of elasticity G1 for Zener’s models, taking into 

account simply supported edges. As can be seen, an 

increase in G1 leads to the greater natural frequency. As the 

values of G1 grow, an abrupt increase occurs in natural 

frequency for a special range. The results are in a good 

agreement with the FE.  

Table 6 represents the natural frequency variations with 

the modulus of elasticity G2 for Zener’s models. The 

calculations suggested that as elasticity modulus G2 varies 

within 2.45e2 < G2 < 2.45e8, there is no significant change 

in the natural frequency of first Zener’s model. In the 

second Zener’s model, however, the frequency is constant 

within 2.45e2 < G2 < 2.45e7. As for G2 > 2.45e7 the natural 

frequency increases abruptly. Also Tables 5,6 show that the 

effect of G1 is more important than G2 on the frequencies in 

the studied range. 

 Table 7 demonstrates the effects of thickness on the 

frequencies of the viscoelastic cylinders with simple 

supports. It is seen that, when the cylinder near toward a 

solid cylinder (rod), the difference between the results 

increases. Also, this table shows a validity range for the 

FSDT theory so that the results are valid for h/R < 0.1 in 

this study. Note that increasing the thickness can affect the 

Table 8 Natural frequencies with and without transverse normal strain effect (S-S) 

Mode number First Second 

1.0=h  

First Zener’s model 

0
 6.7524 10.4763 

0=
 6.9449 10.6078 

FE 6.0625 10.2960 

Second Zener’s model 

0
 7.4373 11.6256 

0=
 7.6286 11.7714 

FE 6.7693 11.5073 

9.0=h  

First Zener’s model 

0
 6.6985 11.6178 

0=
 6.8582 11.6039 

FE 3.4526 8.3028 

Second Zener’s model 

0
 7.3131 12.5834 

0=
 7.4931 12.7928 

FE 3.3770 8.8710 

8.1=h  

First Zener’s model 

0
 5.91549 11.4378 

0=
 6.2119 12.011 

FE 2.4648 7.5139 

Second Zener’s model 

0
 6.5734 12.5928 

0=
 6.7603 13.0933 

FE 2.4038 8.1606 
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stiffness and mass of the shell simultaneously thus it is not 

possible to judge that increasing of the thickness will 

essentially increase the frequency. 

Table 8 expresses the natural frequencies corresponding 

to the first two modes of motion. When the effect of 

transverse normal strain is neglected, the results are 

discrepant by about 5%. It seems that for the specified input 

data, this effect is more important for thicker shells and 

higher vibrational modes. In the valid defined range, this 

parameter does not have a significant effect on the results.  

 Fig. 2 displays the effect of length variations on the 

first and second frequencies of the viscoelastic cylinder 

(first Zener’s model) with simply supported edges. The 

natural frequency chart has been presented in terms of 𝑅̅. 

According to the graph, frequency increases as 𝑅̅ grows 

i.e. when the cylinder shortens. The frequency variations at 

greater lengths are negligible in the second natural 

frequency. Meanwhile, the frequency variations at greater 

lengths increases in the first frequency. These variations can 

be approximated by polynomial functions for the 

frequencies in the studied range. The first and second 

frequencies variations can be stated as linear and parabolic 

form respectively.  

In Table 9, there are three natural frequencies for the 

cylindrical shell, considering first Zener’s model with  

 

 

Table 9 Natural frequencies for first Zener’s model under 

different boundary conditions 

Mode number First Second Third 

C-C 6.8106 10.5794 11.0205 

C-C (FE) 6.8013 10.5674 10.9940 

C-S 6.7904 10.5228 10.9833 

C-S (FE) 6.4567 10.4559 10.9474 

S-S 6.7524 10.4763 10.9500 

S-S (FE) 6.0625 10.2960 10.8890 

 

Table 10 Effect of viscoelastic coefficient η on first and second 

frequencies and damping for first Zener’s model(S-S) 

 ni→ 1 2 3 4 5 

First mode 
 3.1423 3.1419 3.1508 3.5718 6.7341 

 
0 0.0031 0.0315 0.0357 0.0673 

Second mode 
 4.7934 4.7955 4.7891 5.1405 9.7624 

 
0 0.0096 0.0479 0.0514 0.0976 

 ni→ 6 7 8 9 10 

First mode 
 6.7524 6.7471 6.7477 6.7478 6.7478 

 
0.0675 0.0135 0 0 0 

Second mode 
 10.4704 10.4816 10.4795 10.4795 10.4795 

 
0.0942 0.0210 0 0 0 



d



d



d



d

 
Fig. 2 Effect of radius-to-length ratio on first and second natural frequencies for first Zener’s model Mode#1: 𝜔1̅̅̅̅ =
𝑎1. 𝑅̅ + 𝑏1 ; Mode#2: 𝜔2̅̅̅̅ = 𝑏2. 𝑅̅

2 + 𝑐2. 𝑅̅ + 𝑑2  FE: a1=27.330, b1=0.627; Analytical: a1=31.470, b1=0.373 FE: b2=-

185.200, c2=93.950, d2=-1.039; Analytic: b2=-188.600, c2=93.060, d2=-0.542 

 
Mode#1 (analytical) 

 
Mode#1 (FE) 

Fig. 3 First axial and radial modes for a cylindrical shell with first Zener’s model (S-S, analytical and FE) 
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different boundary conditions. As expected, C-C has the 

maximum frequency. Also, the agreement between the FE 

and analytical solutions for the simply supported case is less 

than the others. In fact, in an analytical solution, the number 

of mathematical operation is larger than C-C and C-S. 

Damping (Imaginary part of complex frequencies) is a 

criterion for amplitude decay. Table 10 displays the effect 

of different values of the viscoelastic coefficient on 

damping. 

 “ni” represents the power of viscoelastic coefficient 

which is defined as η=2.744exp(ni.ln(10)), 1< ni<10. 𝜔̅ is 

dimensionless frequency and αd is damping (section 3). 

Table 10 indicates that the damper becomes a rigid 

connector for large values of ni. According to this Table, for 

η > 2.744e7 and η < 2.744, there is very small and nearly-

zero damping. Also, Table 10 displays the effect of 

changing the viscoelastic coefficient η on the natural 

frequency assuming simply supported edges. The results 

indicated that natural frequency remains nearly constant 

within η > 2.744e7 and η < 2.744e3. Moreover, the 

frequency decreases for 2.744e3 < η < 2.744e7 as the 

viscoelastic coefficient decreases for the studied range. 

Figs. 3 provide the axial and radial modes for cylindrical 

shells with first Zener’s model and the simply supported 

boundary conditions. The mode shapes of the FE results 

have been drawn for comparison too.  

 

 

6. Conclusions 
 

This paper attempted to analyze the free vibrations of 

viscoelastic cylindrical shells with constant thickness for 

different viscoelastic models under various boundary 

conditions. In this research, the equations governing the 

system dynamics were obtained by the FSDT with 

transverse normal strain effect. Then, the equations were 

extended based on the operator method from elastic to 

viscoelastic. Finally, the obtained partial differential 

equations with constant coefficients were solved through 

the elementary theory of differential equations. By 

examining the tables and graphs, the following results were 

obtained for free vibrations of case studies: 

•  The natural frequency of the viscoelastic thick-

walled shell is higher than elastic shells just in certain 

viscoelastic models. 

•  By discarding the transverse normal strain from the 

displacement field equation, a little effect on the natural 

frequency of the system is shown in the present study. 

•  Under identical conditions, the natural frequency in 

the second Zener’s model was about 10% higher than the 

frequency in the first Zener’s model. 

•  For models containing two elements of spring and 

damper, the frequency of the Kelvin-Voigt model was 

larger than the frequency of the Maxwell model. 

•  In the first Zener’s model, G1 has a significant effect 

on the natural frequencies at the studied range. 

•  The change in the modulus of elasticity G2 does not 

considerably effect the frequency within        2.45e2 < 

G2 < 2.45e7. 

•  As the viscoelastic coefficient for the first Zener’s 

models dropped in 2.744e3 < η < 2.744e7, the natural 

frequency decreases. 

•  As the thickness increases, the second frequency 

increases within the interval of ℎ̅ < 0.75 and decreases 

within the interval 0.75 < ℎ̅ < 2. 

•  As the cylinder is shortened, the natural frequency 

rises. Frequency changes due to increased length at the 

second natural frequency are associated with a nearly sharp 

increase. 

•  The natural frequency was examined in three 

different boundary conditions. As expected, the maximum 

and minimum natural frequencies were achieved by C-C 

and S-S, respectively. 
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Appendix 
 

•  Elastic material 

On the basis of the elementary beam theory for a 

rectangular cross-section the shear stresses τxz are given 

according to the quadratic parabola: 

23 2
1 ( )

2

z

xy

Q z

A h


 
= − 

   
(a1) 

Because the FSDT formulation uses linear variation in 

the thickness direction the shear stress distribution in the 

section is constant which is not compatible with the 

elasticity theory. So it is usual to apply a correction factor in 

obtained shear stress to compensate for the constant 

distribution effect of the stress.  Most researchers adopted 

that this correction factor depends on the aspect ratio and 

Poisson’s ratio. Moghtaderi et al. (2018), Čanađija et al. 

(2016) and Romano et al. (2012) proposed some analytical 

relations for the shear correction factor for elastic and FG 

materials. A typical formula for an elastic rectangular cross-

section is as follows (en.wikipedia.org/wiki/Timoshenko_ 

beam_theory): 

10(1 )sK  = + )  (+
  (a2) 

•  Viscoelastic material 

In this case, the correction factor is a function of time 

(t). By the procedure mentioned in the paper, we convert 

Eq. (a2) to the viscoelastic form. For the first Zener’s model 

it results in: 
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and its solution is: 
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Where Ks(0) is the value of correction factor at t=0 

which corresponds to the value Ks in the elastic case. The 

above equation has a nearly constant value for long times. 

For steady state solution (t→∞) and we have: 
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(a5) 

For the case studies, it has the approximate value 

Ks=0.8537. So It seems that Ks =5/6 is an appropriate 

average value in this work. 
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