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1. Introduction 

 
Recently, the micro-electro-mechanical systems (MEMS) 

and nano-electro-mechanical systems (NEMS) such as 

nanoresonators with ultra-high resonant frequencies are 

widely used in various industries and applications. Some of 

the main applications of MEMS/NEMS can be listed as: 

ultra-high sensitive sensing, molecular transportation, 

molecular separation, high-frequency signal processing, and 

biological imaging (Arash et al. 2015). The temperature and 

thermal effects have a main role in the operation of 

micro/nano structures such as micro/nano 

electromechanical systems (MEMS/NEMS). In micro/nano 

scale, when a device (such as resonators) is working, the 

temperature of body may be changed by the generated 

internal heat. Also, in some engineering applications, the 

micro/nano structures are subjected to thermal shock 

loading such as high rate laser pulses. It means that it is 

needed to consider the interactions between temperature 

field and elasticity field to have a realistic analysis of the 

structures. Regarding the thermoelasticity analysis in solids, 

there is a very important phenomenon, which is called the 

second sound effect in solids. This effect arises the thermal  

wave propagation with finite speed in solids. In this regards, 
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there are some very well-known coupled thermoelasticity 

theories such as Lord-Shulman (LS) theory (Lord and 

Shulman 1967), Green-Lindsay (GL) theory (Green and 

Lindsay 1972) and Green-Naghdi (GN) theory (with and 

without energy dissipation) (Green and Naghdi 1992, Green 

and Naghdi, 1993). The concepts behind the above 

mentioned theories were explained in detail by Hetnarski 

and Eslami (2009) and Ignaczak and Ostoja-Starzewski 

(2010) in their books. The above mentioned theories are 

valid in macroscopic scale and there are some published 

works on the application of the above mentioned theories in 

macro scale such as application of GN theory (Hosseini et 

al. 2011, Abbas 2014, Hosseini 2014a,b, Ezzat and El-Bary 

2017, Moradi-Dastjerdi and Payganeh 2017, Fang et al. 

2017, Abouelregal and Zenkour 2017, Hosseini and Zhang 

2018, Hosseini 2018). So, it is very important that the small 

scale effects are taken into account in heat conduction and 

also in thermoelasticity analysis.  

There are so many published works with considering the 

small scale effects in the engineering calculations such as 

bending analysis of micro/nano beams (Akbaş 2016a, 

Akbaş 2018c), free and forced vibrations of micro/nano 

beams (Akbaş 2016b, Zakeri et al. 2016, Akbaş 2017a,b, 

Akbaş 2018a,b, Akbaş 2019), linear dynamic analysis in a 

nano beam (Abbondanza et al. 2016) and buckling analysis 

of axially pressurized nanotubes (Malikan 2019). Some 

advanced theories of beams and plates have been developed 

and used to illustrate the static, dynamic and thermal 

buckling problem in macro scale and also in micro and nano 

structures considering the small scale effects in the 
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calculations (Bensaid et al. 2017, Bensaid and Guenanou 

2017). The nonlocal strain gradient based higher order 

refined beam models has also developed for size dependent 

dynamic analysis taking into account the interaction with 

elastic foundation (Bensaid et al. 2018a).  A new and 

simple HSDT was proposed by Bensaid et al. (2018a) for 

nonlinear thermal stability responses in FG plates. Thermal 

stability analysis of nano beams with considering small 

scale effects and thermal buckling analysis in FG-CNT 

reinforced composites resting on elastic foundations have 

been studied in 2018 and 2019 using an effective solution 

method (Bensaid and Bekhadda 2018, Bensaid and Kerboua 

2019). 

Some of the existing researches have been focused on 

the considering the small scale effect in the heat conduction. 

It is very important to know the behavior of heat flow and 

thermal wave in solids in nano scale. In this regards, there 

are some research works in which some heat conduction 

models were proposed with considering the small scale 

effects such as (Guyer and Krumhansl 1966, Sobolev 1994, 

Tzou 1996, Tzou and Guo 2010, Ma 2012). In some of the 

previous works, the small scale effect was consider in heat 

conduction by modification the classical heat conduction 

equations (Sobolev 1994, Tzou 1996), the dual-phase-lag 

(DPL) model of heat conduction (Tzou and Guo 2010), by 

developing a model for prediction of the effective thermal 

conductivity (Ma 2012), a model based on the phonon gas 

dynamics (Dong et al. 2014) and using Suykens’s nonlocal-

in-time kinetic energy method (El-Nabulsi 2018) or 

deriving the laws of thermodynamics in terms of internal 

powers for nonlocal materials  (Fabrizio 2011). Recently, 

the heat conduction of nanofluid has been studied by some 

researchers (Rana et al. 2016, Olofinkua 2018, Ansari et al. 

2018) using the above mentioned theory and methods. By 

reviewing the previous published works and also the above 

mentioned papers and the cited works by them, it can be 

clearly concluded that the heat conduction models with 

considering the size effects have been developed for 

employing in the analysis of nano structures. 

Eringen (1974) proposed the linear theory of nonlocal 

thermoelasticity based on his theory on nonlocal elasticity 

in 1972 (Eringen and Edelen 1972) and then Balta and 

Suhubi (1977) modified Eringen’s model for formulating 

the nonlocal thermoelasticity with considering the 

temperature rate. The nonlocal theory in thermoelasticity 

was developed by researchers for various uncoupled and 

coupled thermoelasticity analysis such as sensitivity 

analysis of nonlocal classical coupled thermoelasticity 

(Meriç 1988), nonlocal thermoelastic wave propagation in 

plates (Inan and Eringen 1991), proving a reciprocity 

theorem and a uniqueness theorem for nonlocal uncoupled 

and classical coupled thermoelasticity (Dhaliwal and Jun, 

1994), proposing the strategies based on a unified 

thermodynamic framework for nonlocal thermoelasticity 

analysis (Polizzotto 2003) and also based on the irreversible 

thermodynamic (Jou et al. 2010a,b). 

Some coupled thermoelasticity analysis have been 

carried out in nano scale by some researchers considering 

the small scale effect only in elasticity field (Bougoffa et al. 

2010, Zenkour et al. 2014, Berezovski et al. 2014, Zenkour 

and Abouelregal 2014, Yu et al. 2015, Zenkour et al. 2015, 

Rezazadeh et al. 2015, Zenkour 2017, Ebrahimi and Haghi 

2017, Zenkour 2018, Bostani and Karami Mohammadi 

2018). The analysis were based on the application of some 

coupled thermoelasticity theories such as classical theory 

(Bougoffa et al. 2010), DPL (Zenkour et al. 2014), Piola–

Kirchhoff formulation (Berezovski et al. 2014), LS theory 

for FG nanobeams (Zenkour and Abouelregal 2014), 

Caputo fractional derivative (Yu et al. 2015), GN theory 

without energy dissipation for a nano beam (Zenkour et al. 

2015). In the above mentioned published works, the size 

effect was considered only in elasticity field. Some of them 

employed the Eringen nonlocal elasticity theory to take into 

account the small scale effect as nonlocality in the 

formulations (Zenkour et al. 2014, Zenkour and 

Abouelregal 2014, Zenkour et al. 2015). 

For coupled thermoelasticity analysis of nano structures 

such as nano beam resonators subjected to shock loading, 

some theories such as the LS and GN (without energy 

dissipation) theories without considering small scale effect 

in heat conduction were employed to assess the 

thermoelastic wave and thermoelastic damping in nano 

structures (Rezazadeh et al. 2015, Zenkour 2017, Ebrahimi 

and Haghi 2017, Zenkour 2018, Bostani and Karami 

Mohammadi 2018, Tan and Chen 2019, Barretta et al. 2018, 

Ebrahimi et al. 2017). It is very important to note that the 

nano size effect has a main role in the thermoelastic wave 

propagation analysis in nano structures. Ardito et al. (2008a, 

b) studied on the effects of small scale on the thermoelastic 

damping in MEMS by introducing the nonlocal coupled 

thermoelasticity based on the Zener’s formula and nonlocal 

Eringen theory of elasticity. They concluded that the 

considering nonlocality in elasticity not sufficient to 

quantitatively explain the damping MEMS. So, it means 

that the considering of small scale effect only in elasticity 

field doesn’t give a realistic behaviors of temperature field 

influenced by small scale effect. It is needed to propose a 

heat conduction model to take into account the size effect. 

There are some very well-known model for considering 

the small scale effect in elasticity field to derive the 

governing equations. Some of them have been successfully 

used for coupled and uncoupled thermoelasticity of nano 

structures such as Eringen nonlocal theory (Zenkour et al. 

2014, Zenkour and Abouelregal 2014, Zenkour et al. 2015,  

Rezazadeh et al. 2015, Zenkour 2017, Ebrahimi and Haghi 

2017, Zenkour 2018, Bostani and Karami Mohammadi 

2018, Ardito et al. 2008a,b, Zenkour and Abouelregal 2019), 

modified strain gradient elasticity (Bostani and Karami 

Mohammadi 2018), the modified couple stress theory 

(Ebrahimi et al. 2017, Tan and Chen 2019, Kumar and Devi 

2017) and stress-driven nonlocal integrals (Barretta et al. 

2018). Using the existing models for considering the small 

scale effect in elasticity, some researchers proposed some 

models for considering the small scale effect in uncoupled 

and coupled thermoelasticity. Recently, Yu et al. (2016, 

2017) developed the proposed heat conduction model 

considering the small scale effect by Guyer and Krumhansl 

(1966) to derive the formulations for uncoupled and 

classical coupled thermoelasticity (Yu et al. 2016) and the 

288



 

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale… 

Zener, Lifshitz, and Roukes’ damping models for the 

analysis of Size-dependent damping in a nanobeam (Yu et 

al. 2017). 

By reviewing the published literatures such as the above 

mentioned papers on the coupled thermeolasticity analysis 

in nano scale, it can be clearly found that the size effect has 

been commonly considered only in elasticity. There are a 

few cases in which the size effect was taken into account in 

both elasticity and heat conduction based on the coupled 

thermoelasticity theories except the GN theory. The GN 

theory of coupled thermoelasticity was employed for the 

analysis of coupled thermoelasticity in nanobeam by 

considering the small scale effect only in elasticity 

(Zenkour et al. 2015, Zenkour 2017, Zenkour and 

Abouelregal 2019). In this regards, Hosseini (2018) 

proposed an analytical solution for coupled thermoelasticity 

analysis in a heat-affected nano beam resonator based on 

GN theory with considering the nonlocality only in 

elasticity. So, the coupled thermoelasticity analysis in nano 

scale based on GN theory with considering small scale 

effect in both elasticity and heat conduction can be 

considered as a new research topic. 

By reviewing the published papers in this subject that 

some of them were reviewed in the previous paragraphs, it 

can be concluded that some analytical solutions have been 

used for size dependent elasticity and thermoelasticity 

analysis in which the small scale effect has been taken into 

account only in elasticity field. The employed analytical 

solutions based on some theories for considering small scale 

effect such as nonlocal Eringen theory, modified couple 

stress theory and other ones are effective methods for the 

assumed boundary conditions. In the thermoelasticity 

analysis of micro/nano sized structures, there is a research 

gap on the size dependent coupled thermoelasticity analysis 

based on Green–Naghdi (GN) theory. In other words, the 

carried out studies on the size dependent coupled 

thermoelasticity analysis based on the Green-Naghdi theory 

take into account the size effect only in the equations of 

motion (elasticity field) without considering the size effect 

in heat conduction (without considering the size effect in 

energy balance equation). 

In this paper, a new modified model based on GN theory 

and Eringen elasticity theory is proposed for nonlocal 

coupled thermoelasticity in nano scale with considering the 

nonlocality in both elasticity and heat conduction. The 

proposed model is employed for coupled thermoelasticity 

analysis in a nanobeam resonator subjected to thermal 

shock loading using an analytical solution. The effects of 

small scale parameter on the transient behaviors of lateral 

deflection and temperature fields have been studied in detail. 

In other words, the main differences and novel points of the 

proposed GN-based model in this research can be 

summarized as: a) considering the small scale effect in heat 

conduction by proposing a nonlocal model based on the GN 

theory with energy dissipation, b) developing an analytical 

solution to find the temperature and lateral deflection in the 

closed forms for a nano beam, c) studying on the effects of 

some parameters such as small scale parameter, height of 

nano beam and the intensity value of thermal shock loading 

on the transient behaviors of fields’ quantities. 

2. Governing equations based on nonlocal GN 
theory 

 

The fundamental equations of the generalized coupled 

thermoelasticity based on Green – Naghdi theory (with 

energy dissipation) without considering nonlocality in the 

formulations can be written as (Green and Naghdi 1992, 

Green and Naghdi 1993), 

The equation of motion: 

.   + =b U
 

(1) 

The strain-displacement relation: 

( )
1

( )
2

 =  + U U
 

(2) 

The stress-strain relation (without considering size 

effects): 

  = −C
 (3) 

The energy balance equation: 

0. = −q R T S
 

(4) 

The entropy relationship: 

0

:


 
 

= + 
 

c
S T

T
 

(5) 

The employed heat conduction equation (without 

considering size effects) in GN theory (type III) was given 

as (Green and Naghdi 1992, 1993, Hetnarski and Eslami 

2009): 

* = −  − q K K
 

(6) 

where ρ is mass density, σ is stress tensor, U is the 

displacement vector, b is the body force vector per unit 

mass, q is the heat flux vector, T0 is the reference 

temperature, θ is defined as θ = 𝑇̂– 𝑇0 , which 𝑇̂ is the 

absolute temperature, S is the entropy per unit volume, R is 

the internal heat source per unit volume per unit time, ε is 

the strain tensor, β is the second order tensor of stress-

temperature moduli, K and K* are the second order tensors 

of thermal conductivity and GN theory new material 

constant, C is the forth order tensor of elastic moduli and c 

is the specific heat. The del operator (), the superscript dot 

(.), (.) and the superscript prime (/) indicate the gradient of 

a function, the differentiation with respect to time, the 

divergence operator and the transpose of a matrix, 

respectively. 
To have a realistic analysis of coupled thermoelasticity 

in micro/nano scale, it is very important to take into account 
the size effects in the calculations. In this regards, there are 
some models that have been proposed to consider the small 
scale effects in elasticity analysis such as nonlocal stress 
gradient elasticity model (Eringen 2002, Polizzotto 2014), 
strain gradient elasticity model (Aifantis 1999) and the 
modified couple stress theory Yang et al. (2002). One of the 
very well-known theories for considering the small scale  
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effects is nonlocal elasticity theory, which is based on the 
stress gradient and proposed by Eringen (2002). Also, it is 
very necessary to consider the small scale effects in heat 
conduction for coupled thermoelasticity analysis. Some 
researchers proposed some models for nonlocal heat 
conduction, which the small scale effects are taken into 
account by considering the nonlocality in heat conduction.  

A modified model based on Green-Naghdi theory is 
proposed for the generalized coupled thermoelasticity in 
micro/nano scale by considering the nonlocality in both heat 
conduction and elasticity. To derive the governing 
equations of nonlocal coupled thermoelasticity, the Eqs. (3) 
and (6) should be rewritten as follows by considering small 
scale parameter (e0a) (Eringen 2002). 

2 2

01 ( )    −  = −  Ce a 
 

(7) 

The Eq. (7) was proposed by Eringen for nonlocal 

elasticity analysis (Eringen 2002). A new modified model 

based on the presented model for nonlocal heat conduction 

in the higher order simple material by Guyer and 

Krumhansl (1966), Polizzotto (2003) and Yu et al. (2016) is 

proposed and extended here for heat conduction in Green-

Naghdi theory with energy dissipation as 

2 2 2 *

0 01 ( ) 2( ) .   −  −  = −  −  q q K Ke a e a
 
(8) 

For the stress and heat flux gradient type, which the 

condition tr(Q)=0 is satisfied (Yu et al. 2016) (the term Q 

is the flux of heat flux and tr(Q) is the trace of matrix Q), 

the proposed model can be written as: 

2 2 *

01 ( )   −  = −  −  q K Ke a
 

(9) 

The Eqs. (8) and (9) are the new proposed model for 

heat conduction in GN theory of coupled thermoelasticity 

with considering small scale effect. The proposed model 

can be written for GN theory without energy dissipation for 

the higher order simple material as 

2 2 2

0 01 ( ) 2( ) .  −  −  = −  q q Ke a e a
 

(10) 

or, 

2 2 2

0 01 ( ) 2( ) .  −  −  = −  q q Ke a e a
 

(11) 

and for the stress and heat flux gradient type as 

2 2

01 ( )  −  = −  q Ke a
 

(12) 

or, 

 

 

2 2

01 ( )  −  = −  q Ke a
 

(13) 

The Eqs. (11) and (13) are the proposed and extended 

models by Guyer and Krumhansl (1966), Polizzotto (2003) 

and Yu et al. (2016) for heat conduction with considering 

small scale effects. 

 

 

3. Nonlocal GN-based coupled thermoelasticity for 
micro/nano beam resonator 

 

The governing equations of coupled thermoelasticity for 

a micro/nano beam resonator with considering nonlocality 

only in elasticity was proposed by Hosseini (2018). In the 

presented problem (Hosseini 2018), a micro/nano beam 

resonator with length l, width b and thickness h was 

considered with the x, y and z axes, which are defined along 

the longitudinal, width and thickness directions as 0 ≤ 𝑥 ≤

𝑙, −
𝑏

2
≤ 𝑦 ≤

𝑏

2
 and −

ℎ

2
≤ 𝑧 ≤

ℎ

2
, respectively (see Fig. 1). 

So, in this paper, the governing equations are derived for 

coupled thermoelasticity based on GN theory for the above 

mentioned micro/nano beam resonator with considering 

nonlocality in both heat conduction and elasticity. The 

displacement field based on the nonlocal Ryleigh beam 

theory (NRBT) is given by Hosseini (2018): 

( , )
( , , ) ,

( , , ) 0 , ( , , ) ( , )

x

y z

w x t
u x y z z

x

u x y z u x y z w x t


= −



= =

 (14) 

where t stands for the time. The governing equation of 

motion in terms of the nonlocal bending moment Mnl(x,t) 

and deflection is (Kiani 2015, Hosseini 2018): 

( )22 4

2 2 2 2

( , )( , ) ( ,
0

)
nlMw w

A I
t t x

x tx t x t

x


  
− − = 

      

(15) 

The nonlocal constitutive stress-displacement relation 

can be obtained from Eq. (7) as follow (Kiani 2015): 

( )

2

2

2
2

0 2

( , , )
( , , )

( , )
( , , )

nl

x xnl

x x

T

x z t
x z t

w

x

x t
Ez x z t

e a

x
 





−




−


= −

 (16) 

where 

 

Fig. 1 The assumed nano beam in the problem, which is subjected to thermal shock loading 
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( )1 2TT E = −
, 

0
ˆ( , , ) ( , , ) = −x z t T x z t T

 

 

and αT is the thermal expansion coefficient. The term 

𝜎𝑥𝑥
𝑛𝑙(x,z,t) stands for the nonlocal stresses. The terms A, I, ρ, 

E and v are the cross-sectional area, second area moment of 

inertia, density, elastic modulus and Poison’s ratio of the 

assumed micro/nano beam resonator, respectively. The Eq. 

(16) can be written in terms of thermal and bending moment 

as (Hosseini 2018): 

( )
2

2

0 2

2

2

( , ) ( , )
( , ) ( , )

nl
n l

T T

M
M e a

x

x t w x t
x t EI M x t

x



− −




− =

  
(17) 

where, 

( ) ( )
2

2

, , , . .

h

T

h

M x t x z t z dA

−

= 
 

(18) 

Using Eqs. (11) and (13), it is obtained that: 

( ) ( )
4 4 6

2 2

0 04 2 2 2 4

22

2 2
0T

T

e
w

E
w w

A e a I a I
t x t x

w
A

t x

I
x

M

 

 

 −
 

+ +
  

+


  



 



+ =

 (19) 

From Eq. (4), the energy balance equation with the 

absence of R (the internal heat source per unit volume per 

unit time) is: 

0. = −q T S
 

(20) 

or, 

0. = −q T S
 

(21) 

It is assumed that the micro/nano beam resonator is very 

thin and there is no any heat flow across the upper and 

lower surfaces of the beam and also the heat flux is only 

along longitudinal direction without any variations along 

other directions. Substituting the Eq. (5) into (21) and using 

the Eqs. (9), the energy balance equations based on GN 

theory with energy dissipation for the assumed micro/nano 

beam resonators with considering the nonlocality in heat 

conduction can be obtained as    

( ) ( )

2 2 2 2
*

2 2 2 2

22 4
2

2

2

0 02 40T

x z x z

w w
c

k

e a eT z
x x

a
x

   


− 


 −

    
+ + + 





 
 
    

   
= − 



 


   

 
(22) 

where  

K = Ik  or, K =i j i jk  (23) 

** =K I  or, 
**K  =i j i j  (24) 

The term I is the identity tensor. The temperature 

increment θ (x,z,t) can be assumed to vary along the 

thickness direction of very thin nano beam in term of sin(pz) 

(Elsibai 2011), where 𝑝 =
𝜋

ℎ
: 

( , , ) sin( )( , )x z t x tT pz =
 

(25) 

By substitution the Eq. (25) into Eqs. (19) and (22) and 

integration form both equations, the following equations 

can be obtained as: 

( ) ( )

( )

4 2 4
2 2

0 04

2

2

2 4

2 2

0sinT

h

h

w w
A e a I e a I

x x

T
Aw

w
EI

x

z p
x

z dA

 

 

−

+
  

+
 


+



+ =


 −




 (26) 

( ) ( )

( ) ( )

2 2 2
* * 2

2

2 2

2 2 2
2

2

2 2

sin sin

   sin sin

h h

h h

h h

h h

z pz dA T p z pz dA
x

k z pz dA k T p z pz dA
x

T

T

 

− −

− −


−




+ −



 
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( ) ( )
22 2

2

0 2

2 2

2
2 2 2

0 0 0

2

2

4

2

2

2

4

sin ( ) sin

   ( )

h

T

h h

h

h

h

T

h h

c z pz dA c e a z pz dA
x

w
T z dA T e a z dA

T

x x

T

 

 



−

− −

− −


= −



 
+

 

 

 

 

(27) 

or, 

( )
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 (29) 

The Eqs. (28) and (29) are the governing equations of 

size-dependent coupled thermoelasticity in a micro/nano 

beam resonator based on the GN theory with considering 

nonlocality in both heat conduction and elasticity. The Eq. 
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(29) is derived using the proposed new modified model for 

GN-based heat conduction with considering small scale 

effects. 

To find an analytical solution, the Laplace 

transformation technique is employed in respect to time. 

The homogenous initial conditions for all of field’s 

variables are supposed and the transformed governing 

equations are: 
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 (31) 

where the terms 𝑤̅  and 𝑇̅  can be defined by the 

Laplace operator ( )  as: 

( ) ( ) ( )
0

, ,s , stT x t T x T x t e dt



−  = =  
 

(32) 

( ) ( ) ( )
0

, ,s , stw x t w x w x t e dt



−  = =  
 

(33) 

Using the proposed non-dimensional parameters by 

Hosseini (2018), the governing equations can be rewritten 

in dimensionless forms. 

*

2
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(34) 

The term 𝑉∗ stands for the reference velocity, which 

can be defined as 𝑉∗ = √
𝐸

𝜌
. The Eqs. (30) and (31) in the 

dimensionless forms are: 

4 4 2 2
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For the sake of brevity, the hat (^) is omitted for 

dimensionless variables in Eqs. (35) and (36) as: 
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4. Analytical solution 

 

Hosseini (2018) proposed an analytical solution for 

coupled thermoelasticity in a micro/nano beam resonator 

with considering only the nonlocality in elasticity. Using 

the proposed approach by Hosseini (2018), it is possible to 

find another analytical solution for the current problem. 

From Eq. (40), it is possible to obtain the second derivative 

of temperature in terms of temperature and the second and 

fourth derivatives of deflection as: 

( ) ( ) ( )
2 2

1 2 32 2

4

4
 −

  
= +

  

w w
s T s s

x x x

T

 

(41) 

where  
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(42) 

It can be seen that the second derivatives of temperature 

depends to temperature, the second derivative of deflection 

and the fourth derivative of deflection. Comparing to the 

research work of Hosseini (2018) (considering nonlocality 

only in elasticity), the fourth derivative of deflection is 

added to Eq. (41) when the nonlocality is considered in both 
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heat conduction and elasticity. Additionally, the coefficients 

η1(s), η2(s) and η3(s) are influenced by nonlocal parameter 

(e0a). 

By substitution the Eq. (41) into Eq. (39), it is obtained: 
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The temperature can be obtained in the term of 

deflection as: 
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Also, the second derivation of T respect to x takes the 

following form: 
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Substitution of Eqs. (45) and (46) into Eq. (41) gives a 

governing equation in term of lateral deflection as: 
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(48) 

An analytical solution can be proposed as: 
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(50) 

Substitution Eq. (49) into Eq. (45), the following 

analytical solution can be found for temperature, too. 
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The terms λ1(s), λ2(s) and λ3(s) are defined as 
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(53) 
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The unknown coefficients C1(s), C2(s), C3(s), C4(s), C5(s) 

and C6(s) should be determined by the boundary conditions 

of the problem. The same initial and boundary conditions 

with those assumed by Hosseini (2018) are considered for 

the problem as: 

(x,0) (x,0) 0 , (x,0) (x,0) 0
w T

w T
t t
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= = = =
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(54) 

and, 
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(55) 

After using Laplace transform, the above boundary 

conditions take the forms as: 
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w s s
x


= =


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(56) 

The boundary conditions at the other end of the 

micro/nano beam x=l take the form in Laplace domain as: 
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(57) 

By substituting the Eqs. (49) and (51) into boundary 

conditions, the following set of equations are obtained to 

calculate the unknown coefficients C1(s), C2(s), C3(s), C4(s), 

C5(s) and C6(s).  

3 31 1 2 2

3 31 1 2 2

3 31 1 2 2

1

2 2 2 2 2 2

1 1 2 2 3 3 2

1 2 3 4 5 6 3

4

2 2 2 2 2 2

1 1 2 2 3 3 5

1 2 3 4 5 6 6

1 1 1 1 1 1 ( )

( )

( )

( )

( )

( )

−− −

−− −

−− −

 
 
 
      
 
 
 
 

       

P l P lPl Pl P l P l

P l P lPl Pl P l P l

P l P lPl Pl P l P l

C s

P P P P P P C s

C s

e e e e e e C s

P e P e P e P e P e P e C s

e e e e e e C s

*

0

0

( )

0

0

0

  
  

   
    

=  
   
   
   
    

T s

 

(58) 

or, 
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(59) 

 
 

After calculating the unknown coefficients C1(s), C2(s), 

C3(s), C4(s), C5(s) and C6(s), it is possible to calculate the 

coefficients K1(s), K2(s), K3(s), K4(s), K5(s) and K6(s) using 

Eqs. (52). The fields’ variables 𝑤̅(𝑥, 𝑠) and 𝑇̅(𝑥, 𝑠) are 

obtained from Eqs. (49) and (51) in Laplace domain. Using 

the following approach, which is based on Talbot inversion 

Laplace transformation, the deflection and temperature are 

computed in time domain. 
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where the term “M” stands for number of samples and 
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5. Numerical results and discussion 
 

The verification of the proposed method was carried out 

by Hosseini (2018) with comparing between the obtained 

results from proposed analytical solution for e0a=0 and the 

presented method and data by Hetnarski and Eslami (2009) 

for a 2D domain at steady state conditions. If the small scale 

parameter e0a is assumed to be zero, the above mentioned 

verification can be also valid for the current problem. So, 

the obtained results in this problem (with considering 

nonlocality in both heat conduction and elasticity) at long 

times are compared with those reported by Hetnarski and 

Eslami (2009), which can be observed in Fig. 2. When the 

small scale parameter e0a is assumed to be e0a = 0, the 

obtained results are the same with those reported by 

Hosseini (2018). In long times, the behaviors of temperature 

field are converged to temperature distribution in steady 

state. A good agreement can be found in Fig. 2. 

 

Fig. 2 The comparison between the obtained results for long times and e0a=0 with those obtained by Hetnarski and Eslami 

(2009) for steady state heat conduction analysis. 
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A gold (Au) nano beam resonator is assumed for the 

problem to show the ability of the proposed method for the 

nonlocal coupled thermoelasticity analysis. So, the same 

mechanical properties with those assumed by Elsibai, et al. 

(2011) and Hosseini (2018) are considered for the analysis. 

𝛼𝑇 = 14.2 × 10−6K−1, 𝜌 = 1930kg/ m3, 𝑇0 = 293 K,  

k = 317Wm−1K−1  

𝐶𝑣 = 130Jkg−1, 𝐸 = 180 Gpa, 𝑣 = 0.44 

(62) 

The dimensions of the nano beam are assumed to be: 

9

9 9

20*10 ,

8*10 12*10 , 0.5

l m

m h m b h

−

− −

=

  =
 (63) 

In the research work of Hosseini (2018), the function 

T*(t) =2H(t) or 𝑇̅∗(s) =
2

𝑠
 was assumed in the boundary 

conditions. So, this boundary conditions are employed in 

this article as first example. It was shown in a research work 

by Hosseini (2018) that the variation of small scale 

parameter (e0a) didn’t have any significant effects on the 

distribution of temperature because the nonlocality in heat 

conduction was not considered. So, in this paper, the 

nonlocality is assumed in the heat conduction using a new 

modified model based on GN theory. By assuming the 

function T*(t) = 2H(t) or 𝑇̅∗(s) =
2

𝑠
 in boundary conditions,  

 

 
the dimensionless temperature distributions along 

longitudinal direction are drawn in Fig. 3 for various values 

of small scale parameter e0a. As it can be clearly observed 

in Fig. 3, the variation in value of e0a creates a significant 

effect in the distribution diagrams of dimensionless 

temperature.  

Also, the variation of e0a influences the time history of 

dimensionless temperature, which can be seen in Fig. 4. It 

means that the considering of nonlocality in both heat 

conduction and elasticity influences the transient behaviors 

of dimensionless deflection and temperature. In other words, 

the proposed new modified model based on the GN theory 

has a high capability for the coupled thermoelasticity 

analysis in nano scale with considering small scale effects.  

As second example, it is assumed that one of the beam 

ends is excited by sinusoidal thermal shock loading. So, the 

function T*(t) is assumed in the boundary conditions as 

follow: 

*

0*
0

0

sin( ) ,
( )

0 ,




= 
 

F t t t
tT t

t t
 

(64) 

Using Laplace transformation, the 𝑇̅∗(s)  can be 

obtained as: 

 

Fig. 3 Effects of small scale parameter on the distribution of dimensionless temperature along dimensionless axial distance 

for first example 

 
Fig. 4 Effects of small scale parameter on the time history of dimensionless temperature for first example 
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(65) 

It this paper, it is assumed that t0 = 1.  

 

5.1 Lateral deflection’s analysis 
 

The Figs. 5-8 show the transient behaviors of lateral 

deflection of the assumed micro/nano beam resonator 

subjected to sinusoidal thermal shock loading with 

considering F*=1. Fig. 5 depicts the distributions of 

dimensionless lateral deflection along axial distance for 

certain value of e0a at various time instants. The effects of 

variation in the value of e0a on the dimensionless lateral 

deflection (elasticity field) can be observed in Figs. 6 and 7, 

which the distribution along longitudinal direction and time 

history of dimensionless lateral deflection are shown, 

respectively. It can be clearly found that the maximum 

values in the diagrams of distribution of dimensionless 

lateral deflection are decreased, when the value of e0a is 

increased. A similar behavior can be also observed in Fig. 7  

 

 

for time histories of dimensionless lateral deflection. It 

means that the small scale parameter e0a influences the 

elasticity fields. The proposed new modified GN model for 

nonlocal coupled thermoelasticity with considering 

nonlocality in both elasticity and heat conduction simulates 

transient behaviors of elasticity in small scales. The same 

results were obtained in the research work of Hosseini 

(2018) for elasticity field. But the main difference of the 

proposed new GN-based model is for the analysis of 

temperature field. Other parameters such as the geometrical 

physical factors of the structure, the thermal and mechanical 

boundary conditions, type of thermal effect as well as its 

intensity value influence the transient behaviors of lateral 

deflection of the assumed nano beam. For example, Fig. 8 

shows the distributions of dimensionless lateral deflection 

along axial distance for certain value of e0a at a certain time 

for various values of beam height. It can be observed when 

the value of beam height is increased the maximum value of 

dimensionless lateral deflection is decreased. In the next 

section, the effect of beam height on the temperature field 

will be discussed in detail. The effect of intensity value of 

thermal loading as thermal boundary conditions on the 

transient behaviors of dimensionless lateral deflection can 

be found in Fig. 9 in which the d istributions of 

dimensionless lateral deflection along axial distance are 

drawn for various values of F*. When the value of F*is  

 
Fig. 5 The distribution of dimensionless lateral deflection along dimensionless axial distance at various time instants for 

second example 

 
Fig. 6 Effects of small scale parameter on the distribution of dimensionless lateral deflection along dimensionless axial 

distance for second example 
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increased, the values of dimensionless lateral deflection are 

increased. Based on the coupling effects between 

temperature and displacement fields in GN theory of 

coupled thermoelasticity, the temperature field is influenced 

by changing in displacement field. So, it is needed to 

discuss the temperature field based on the obtained results 

using the proposed new GN-based model of coupled 

thermoelasticity.  

 
 

5.2 Temperature field’s analysis 
 

In Figs. 10-12, the temperature field in the assumed 

micro/nano beam resonator is assesses for various values of 

e0a to find the small scale effects on the temperature field. 

The distribution of dimensionless temperature along 

longitudinal direction of the micro/nano beam resonator are 

drawn in Fig. 10 at various time instants for a certain value 

of small scale parameter as e0a = 2*10-9. In the proposed  

 
Fig. 7 Effects of small scale parameter on the time history of dimensionless lateral deflection for second example 

 
Fig. 8 Effects of the nano beam height on the distribution of dimensionless lateral deflection along dimensionless axial 

distance for second example. 

 
Fig. 9 Effects of the thermal loading intensity on the distribution of dimensionless lateral deflection along dimensionless 

axial distance for second example 
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Fig. 10 The distribution of dimensionless temperature along dimensionless axial distance at various time instants for second 

example 

 
Fig. 11 Effects of small scale parameter on the distribution of dimensionless temperature along dimensionless axial distance 

for second example 

 
Fig. 12 Effects of small scale parameter on the time history of dimensionless temperature for second example 

 
Fig. 13 Effects of the nano beam height on the distribution of dimensionless temperature along dimensionless axial distance 

for second example 

298



 

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale… 

 

 

new modified model based on GN theory, the small scale 

parameter e0a e0a is taken into accounts in both elasticity 

and heat conduction. So, the transient behaviors of 

dimensionless temperature should be affected by variation 

in the value of e0a. To show the effects of e0a on the 

temperature field, the distribution of dimensionless 

temperature along longitudinal direction of the assumed 

beam resonator are illustrated in Fig. 11 for various values 

of e0a. It can be concluded that the value of e0a influences 

the temperature field employing the proposed new modified 

model. The time histories of dimensionless temperature for 

x=0.5 are presented in Fig. 12 for different values of e0a. 

When the value of e0a is increased, the maximum value of 

dimensionless temperature is increased. To find the effects 

of geometrical parameters such as height of nano beam on 

the transient behaviors of temperature field, the 

dimensionless temperature distributions along axial distance 

are illustrated in Fig. 13 for various values of nano beam 

height. It can be clearly observed that nano beam height 

influences the transient behaviors of temperature field but 

not as much as the effect it has on the elasticity field. The 

effects of intensity value of thermal loading on the 

dimensionless temperature field can be assessed using Fig. 

14 in which the dimensionless temperature distributions 

along axial distance are depicted for various values of F*. 

The dimensionless temperature at every point on nano beam 

is increased by increasing the value of F*. It is very 

important to note that the obtained transient behaviors of 

dimensionless temperature and elasticity fields are based on 

the applied thermal and mechanical boundary conditions in 

the problem (sinusoidal thermal shock loading). By 

comparing between the presented results in this paper and 

the reported results based on other type of thermal and 

mechanical boundary conditions such as reported data by 

Hosseini (2018) based on a similar thermal shock loading in 

first example of this article, it can be concluded that the 

transient behaviors of temperature and elasticity field are 

different for both problems. It means that the type of 

thermal loading and also thermal and mechanical boundary 

conditions influence the transient behaviors of both 

temperature and elasticity fields. The proposed new model 

based on GN theory with energy dissipation has a high  

 

 

capability to show the effects of small scale on the transient 

behaviors of both lateral deflection and temperature, 

considering various thermal and mechanical boundary 

conditions and also various types of thermal shock loading.   
 

 

6. Conclusion 
 

A new modified model based on GN theory with energy 

dissipation is proposed for nonlocal coupled 

thermoelasticity analysis of micro/nano beam resonator 

considering the nonlocality in both elasticity and heat 

conduction. The governing equatiosn are derived using GN 

theory and Eringen nonlocal theory. An analytical solution 

is presented to study on the transient behaviors of lateral 

deflection and temperature fields. The main results of the 

research can be outlined as: 

•  The governing equations of size-dependent coupled 

thermoelasticity with enegy dissipation in micro/nano scale 

are formulated considering the small scale effects in both 

elasticity and heat conduction.  

•  Employing the proposed analytical solution, it is 

possible to present the dimensionless temperature and 

lateral deflection in the closed forms. The presented closed 

forms for fields’ variables can be used for other analysis of 

micro/nano beam resonators such as band structure analysis 

of thermoelastic wave propagation in nano metamaterials. 

•  The effects of small scale parameters on the transient 

behaviors of both dimensionless lateral deflection and 

temperature are obtained and studied in detail when the 

energy is dissipated.  

•  Two types of thermal shock loading are assessed in 

the problem using the proposed new modified model and 

analytical solution. The solution can be developed for other 

coupled problems such as coupled photo-thermoelasticity 

based on the nonlocal GN theory with energy dissipation. 

•  The outcome of this study can provide beneficial 

background for the application of the proposed GN-based 

model and analytical solution for other coupled problems in 

engineering such as nonlocal coupled diffusion-

thermoelasticity analysis or nonlocal coupled photo-

thermoelasticity analysis. 

 
Fig. 14 Effects of the thermal loading intensity on the distribution of dimensionless temperature along dimensionless axial 

distance for second example 
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