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1. Introduction 
 

Functionally gradient piezoelectric materials (FGPMs), 

are composites made of piezoelectric materials that their 

material properties vary continuously along certain 

direction specially through the thickness. FGPMs are 

widely used in engineering applications, for example FGP 

actuators can produce large displacements while 

minimizing the internal stress concentrations, which will 

greatly improve the reliability and life of piezoelectric 

actuators. 

 Many researches have been done on 2-D analysis of 

plates, based on the classical, first order and third order 

shear deformation plate theories Reissner (1994), Mindlin et 

al. (1856), Reddy (1984) in accordance to their thickness 

ratio. In classical plate theory (CPT), normal and shear out 

of plane strains in the thickness direction are neglected, 

therefore this theory is usable for thin plates. In the first 

order shear deformation plate theory (FSDT), and the third 

order shear deformation theory (TSDT), shear deformations 

are considered but normal out of plane deformations are 

vanished. Thus, these theories are used for moderately thick 

plates.  

For thick plate, three dimensional elasticity solutions 

give the best results but the solution process is difficult. The 

higher-order shear and normal deformable plate theory 

HOSNDPT) that was proposed by Batra and Vidoli (2002), 
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(encounters all shear and normal strains in the thickness 

direction. Hence, this theory can be used for analysis of 

thick plates (Mohseni et al. (2017)). Batra (2007) developed 

the HOSNDPT for a plate comprised of a linear elastic 

incompressible anisotropic material. Sheikholeslami and 

Saidi (2013), used higher order shear and normal 

deformable plate theory for analyzing free vibration of 

functionally graded plates resting on elastic foundation 

exposed to simply support boundary condition, also they 

concluded results obtained of fifth-order HOSNDPT theory 

are similar to 3D elasticity theory. 

Jadhav and Bajoria (2013) carried out stability analysis 

of functionally graded rectangular plates with piezoelectric 

actuators and sensors on the upper and lower surface. 

Nazari et al. (2011) applied element-free Galerkin method 

for studying the stress intensity factors of plates under 

thermal loading. They used continuum functions and the 

micromechanical model to describe the distribution of 

material properties. The effects of material initial residual 

stress and machining-induced residual stress on the 

deformation of aluminum alloy plate was studied by Huang 

et al. (2015). 
Jam and Nia (2012) presented an exact solution for 

dynamic analysis of FGPM annular plate. A comprehensive 
overview of the higher-order theories was used by Wang 
and Yang (2000) to examine the dynamic behavior of 
piezoelectric plates. Static and dynamic behavior of carbon 
nanotube-reinforced composite plates resting on the 
Pasternak elastic foundation including shear layer and 
Winkler springs investigated by Wattanasakulponga and 
Chaikittiratanab (2015). Lim and Hi (2001) determined 
exact solution for compositionally graded piezoelectric 
layer under uniform stretch, bending and twisting. Free 
vibration analysis of functionally graded piezoelectric 
rectangular plates on the basis of three-dimensional 
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elasticity theory of transversely isotropic piezo-elasticity 
was shown by Chen and Ding (2012). Also they derived 
independent state equations with variable coefficients. 
Behjat and Khoshravan (2000) presented nonlinear bending 
and free vibration analysis of functionally graded 
piezoelectric plates by using finite element method under 
different sets of mechanical and electrical loadings.  

Free vibration characteristics of laminated circular 
piezoelectric plates and discs were determined by Heyliger 
and Ramirez (2000). They used a discrete-layer model for 
the equations of periodic motion for both thin plates and for 
thick discs. Zhong and Shang (2003) used the theory of 
three-dimensional elasticity for bending of the functionally 
graded piezoelectric simply supported rectangular plate 
with different electrical boundary conditions. Lu et al. 
(2005) presented an exact solution for the cylindrical 
bending of the functionally graded piezoelectric plates. 
Furthermore, they discussed on the mechanical and electric 
properties of plates under mechanical and electrical forces. 
Zhong and Yu (2006) obtained an exact solution for free 
and forced vibrations of functionally graded piezoelectric 
simply supported rectangular plate with different electrical 
boundary conditions. Xiang and Shi (2009) presented static 
analysis of functionally graded piezoelectric sensors with 
combined thermal and electrical loadings. Behjat et al. 
(2011) showed static and dynamic analysis of functionally 
graded piezoelectric rectangular plates using first order 
shear deformation theory.  

Bodaghi and Shakeri (2012) studied free vibration of 
functionally graded piezoelectric plates based on first-order 
shear theory. Intended vibration analysis of functionally 
graded piezoelectric shell based on the higher-order shear 
deformation theory was presented by Wu et al. (2002). 
Mohammadi et al. (2019) used HOSNDPT for investigating 
the effect of incompressibility on the behavior of thick 
plates.  

In this paper, bending-stretching analysis of functionally 
graded piezoelectric plates is investigated for mechanical 
and electrical loadings, based on the higher order shear and 
normal plate theory. It is assumed that material properties 
vary through the thickness according to the exponential 
functions. Finally the static response of thick FGP plates are 
determined and compared to those of three dimensional 
elasticity solutions. 
 

 

2. Constitutive relations based on the HOSNDPT 
 

Consider a functionally grated piezoelectric (FGP) 

rectangular flat plate, with thickness h, length l1 and width 

l2. The FGP plate is transversely isotropic in x-y plane and 

also load p(x, y) is exerted on the top surface of the plate 

(See Figure 1).  

It is assumed that material properties of functionally 

graded piezoelectric plate vary continually in the thickness z 

direction based on the exponential function as Zhong and 

Shang (2003) 
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Fig. 1 Geometry of FGP rectangular plate 

 

 

where, Γ indicates the typical material properties (electrical 

and mechanical), Γ0 is the values of material properties at 

the bottom surface of plate, and N is the power index.  

It is supposed that plate is thick enough so that three 

dimensional elasticity solutions must be applied for solving 

the problem. Due to the difficulty of three dimensional 

solutions, higher order shear and normal deformable plate 

theory, suggested by Batra and Vidoli (2002), is applied. It 

was shown that the results of this theory are close to the 

three dimensional elasticity solution but solution procedure 

is much simpler. In spite of the other classical plate theories, 

in higher order shear and normal deformable plate theory 

(HOSNDPT), all normal and shear strains are considered. 

According to the HOSNDPT, displacement field 

components are assumed as follows Batra (2007) 

( ) ( ) ( ) 3, , , , , , 1,2,3i i iv x y z v x y z w x y z i   == +
 (2) 

where vi are the components of the total displacement, 

w(x,y,z) is the out of plane displacements component, vα are 

the components of in plane displacements, α shows 

directions of x or y and δiα is the Kronecker delta. The 

displacement field components in z direction are 

approximated using orthogonal Legendre polynomial which 

are defined as Batra (2007) 

( ) ( ), , , . ( 1,2)a
av x y z v x y L z = =

 
(3) 
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In equation (3), La(z) are orthogonal Legendre terms 

with the following properties as 

2
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where P is the basic polynomial which can be obtained by 

the following recursive function 
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In which K is the order of HOSNDPT theory. 

Also, the derivation of Legendre polynomial is a linear 

combination of polynomials so that 

( ) ( )a ab bL z D L z =
 

(6) 
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In equation (6), D is the matrix of derivation coefficients. 

For example for the fifth order theory, the components of 

this matrix can be written in the following form Batra (2007) 
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For determining the constitutive relations, consider 

infinitesimal strain tensor components as 

1
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(8) 

The constitutive relation for piezoelectric material that 

are polarized in z direction is written as Askari Farsangi and 

Saidi (2012) 
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(9) 

and the components of the electric displacements of the 

plate are 
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where σij are the stress components, Di are the electric 

displacement components, εij are the strain components, Cij 

are the elastic stiffness components, eij are the piezoelectric 

components, 𝜆𝑖𝑗 =
1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) are the dielectric 

components and Ei(V/m) are the electric field components. 

The electric filed vector is related to the gradient of electric 

potential function Ф, as 

= −E  (11) 

3. Governing equations of plate 
 

Consider the equilibrium equations in Cartesian 

coordinate as 

, 0ij j ib + =
 

(12) 

where ρ is the plate density and bi are the components of 

body force vector. The principle of virtual work is used to 

obtain the governing equations. Suppose a small virtual 

displacement field δηi. Taking the inner product of equation 

(12) leads to 

/2 /2

,

/2 /2
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h h
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− −
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(13) 

Also, the virtual displacement components are expanded 

utilizing the Legendre polynomial as 

( , , ) ( ) ( , )a
i a ix y z L z x y =

 
(14) 

Substituting equation (14) in to equation (13) and using 

equations (2) and (6) results in 
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The resultant forces and moments in the above equation 

are defined as 
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(16) 

Simplifying equation (15) and implementing the 

Maxwell’s equation for satisfying the electrical properties 

of FGP plate leads to  

,

, 3 3 3
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(17) 

In the above equation, 𝑀𝛼𝛽
0  are in plane forces, 𝑀𝛼𝛽

1  

are out of plane first moment, 𝑀𝛼𝛽
0  are out of plane 

moments with the order of a, 𝑇𝑖
0 are resultant of lateral 

forces, 𝑇𝑖
1  are first moment of transverse force,  𝑇𝑖

𝑎  are 

moment of transverse force with the order of a, 𝑏𝑖
0 are 

body forces per unit area, 𝑏𝑖
1 are first moment of body 

forces per unit area, 𝑏𝑖
𝑎 are moment of body forces per unit 

area with the order of a, 𝐵𝑖
𝑎 are moment of surface stresses 

on the top and bottom surfaces of the plate with the order of 

a. 

Also, the corresponding boundary conditions are  
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Also, neglecting the volume forces, body forces in 

relation (16) are simplified as 

1 2 3 1

2 3

0 0

0 ( ) ( , )
2

a a a a

a a
a

b b b B

h
B B L P x y

= = = =

= = −
 

(19) 

Consider a general form of the electrical potential field 

Zheng and Tao (2006) 
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(20) 

Where the unknown functions A(x,y) and B(x,y) are 

derived from electrical boundary conditions of the plate. 

Expanding equations (17) for α,β =1,2 and also using the 

constitutive equations (9), general form of governing 

equilibrium equations for FGP plate are obtained as 
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Equations (21) are coupled in terms of displacement 

field and also electrical potential field. The unknown 

functions A(x,y) and B(x,y) are determined according to the 

different electrical boundary conditions. Three cases of 

electrical boundary conditions are considered. 

Case 1, Closed circuit: It is assumed that both surfaces 

of FGP plate are short connected, or connected to the same 

voltage. Hence, the electrical boundary conditions on the 

plate surfaces can be written as  

(22) 0
2

h
z
 

 =  = 
   

Replacing boundary conditions (22) in equation (20), 

unknown functions A(x,y)  and B(x,y) are obtained to be 

zero. Thus, the electric potential is determined as 

(23) ( ) ( )
2

2
, , , 1

z
x y z x y

h


  
  = −  
     

Case 2, Open-closed circuit: In this state, it is supposed 

that zero voltage is applied to the bottom surface of plate 

and the upper surface is insulated. So, the electrical 

boundary conditions on the plate surfaces can be written as  

(24) 0, 0
2 2

z

h h
z D z

   
 = − = = + =   
     

Upon substituting the prescribed boundary conditions 

(24) in equation (18), unknown functions A(x,y) and B(x,y) 

are  
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(25) 

Case 3, Electrical loading: In this case, it is assumed 

that no transverse mechanical load is applied to the plate 

(𝜎3|𝑧=±ℎ/2 = 0), but sinusoidal voltage is applies on the top 

surface of the plate and the bottom surface of the plate is 

electrically insulated. Thus the electrical boundary 

conditions on the plate surfaces can be written as follows 

262



 

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear… 

(26) 

1 2

sin sin , 0
2 2

z

h x y h
z D z

l l

 
   

       = − = = =            
     

Using equations (26) and equation (20), the functions 

A(x,y) and B(x,y) are determined so that 

(27) 

31 1,1 2,2

33

33

1 2

1
( , )

2 2

2

4

2 2

( , ) ( , ).( ).sin sin
2

c c
c

d
c dc

h h
A x y e L v v

h

h h
e L D w

h

h x y
B x y A x y

l l





 

      = +           
 
 

     + +          

   
   =
   
     

 

 

4. Navier solution 
 

In order to have exact and analytical solution, it is 

supposed that FGP plate is simply supported along all edges 

and is subjected to the mechanical distributed load P0 is 

applied on it’s the top surfaces.  

Using the variational approach and divergence theorem, 

the boundary conditions are also determined. For simply 

supported edges, they are 

(28) 
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For plates with all edges simply supported, Navier 

solution is used and the functions are approximated by 

double trigonometric Fourier series. Therefore,  
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It is easy to show that the above displacement 

components satisfy boundary conditions (28). Upon 

substituting the solutions (29) in the equilibrium equations 

(21) and also considering the Fourier expansion for the 

functions A(x,y) and B(x,y), a set of four algebraic equations 

are determined, which are given in appendix A. It is easy to 

show that, depending on the order of theory (K), number of 

algebraic equations is (3K+4). 

Table 1 Comparison of stresses and transverse displacement 

N 

10
*10 ( )W m−

 
11

1
10* ( )V m−

 
( )x Pa

 
3D 

elasticity 

solution 

Zhong and 

Shang 

(2003) 

Present 

study 

3D elasticity 

solution 

Zhong and 

Shang 

(2003) 

Present 

study 

3D 

elasticity 

solution 

Zhong and 

Shang 

(2003) 

Present 

study 

-1 2.5100 2.5100 -3.0377 -3.0860 15.3323 15.3821 

-0.5 1.9250 1.9298 -2.6192 -2.6379 12.9991 13.0293 

0 1.4825 1.4947 -2.2008 -2.2604 10.9992 10.9491 

0.5 1.1600 1.1705 -1.8661 -1.9416 9.1660 9.21398 

1 0.9125 0.9239 -1.6151 -1.6637 7.6661 7.6832 

 

Table 2 Convergence of results for the plate center 

deflection 

(h/l1) N K=1 K=2 K=3 K=4 K=5 

0.01 

-3 2.3086 2.9849 2.9848 2.9848 2.9848 

-2 1.3507 1.6940 1.6940 1.6940 1.6940 

0 0.4715 0.5630 0.5630 0.5630 0.5630 

2 0.1829 0.2293 0.2293 0.2293 0.2293 

0.1 

-3 2.3944 3.0325 3.0312 3.0099 3.0329 

-2 1.4192 1.7385 1.7439 1.7286 1.7433 

0 0.5051 0.5877 0.59239 0.5910 0.5910 

2 0.1954 0.2402 0.2411 0.2400 0.24097 

0.2 

-3 2.6612 3.173 3.1689 3.0717 3.1750 

-2 1.6257 1.8698 1.8921 1.8230 1.8890 

0 0.6042 0.6614 0.67407 0.6740 0.68022 

2 0.2321 0.2772 0.2761 0.2714 0.2754 

0.5 

-3 4.4577 4.1268 4.1119 3.9628 4.0971 

-2 2.9394 2.6930 2.8598 2.0501 2.7778 

0 1.2026 1.1299 1.2453 1.1844 1.18504 

2 0.4515 0.4702 0.4877 0.4791 0.47818 

 

Table 3 Dimensionless parameters of displacements and 

stress for different thickness ratios and different powers, 

(K=5), closed circuit 

(h/l1) N  w  1v
 x

 xy
 z

 xz
 

0.1 

0 0.59100 -0.1670 -1.0276 0.27814 -0.08413 0.11563 

1 0.37156 -0.1338 -0.9254 0.20925 -0.07523 0.13507 

2 0.24097 -0.1522 -0.7179 0.10806 -0.07151 0.1547 

3 0.15530 -0.1300 -0.3923 -0.0366 -0.06721 0.17398 

0.2 

 

0 0.67407 -0.1345 -0.5162 0.12128 -0.14315 0.10543 

1 0.42768 -0.3262 -0.4731 0.08514 -0.1500 0.1341 

2 0.2754 -0.3382 -0.3625 0.03239 -0.1437 0.15389 

3 0.17483 -0.2783 -0.1887 -0.0427 -0.13516 0.17328 

0.3 

 

0 0.80667 -0.4554 -0.3808 0.0590 -0.25975 0.1096 

1 0.5173 -0.6313 -0.32866 0.03505 -0.22501 0.13046 

2 0.32984 -0.5862 -0.24593 -0.00254 -0.21762 0.15164 

3 0.20532 -0.4584 -0.11786 -0.05571 -0.20385 0.17242 

0.5 

0 1.1850 -2.1022 -0.2601 -0.0068 -0.43124 0.10233 

1 0.77152 -1.7646 -0.2309 -0.0200 -0.40842 0.12678 

2 0.47818 -1.3456 -0.1535 -0.0484 -0.37102 0.15304 

3 0.28529 -0.9404 -0.0547 -0.0855 -0.33646 0.17743 
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5. Numerical results 
 

In order to have a numerical study, it is assumed that the 

bottom surface of FGP plate is made of PZT-4 with the 

following material properties Zhang and Shang (2003), 

Askari Farsangi and Saidi (2013) 
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For validation of the results, a comparison is done in 

Table 1, with three dimensional elasticity solution results 

presented by Zhong and Shang (2003) for a functionally 

graded piezoelectric plate (h/l1=0.1). Sinusoidal transverse 

electrical load with unit amplitude is exerted on the plate 

surface and closed circuit electrical condition is considered. 

Comparison shows that there is a good agreement between 

the presented solution and results of three dimensional 

elasticity solution.  

For simplicity and also keeping the generality, results 

are normalized as  
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Table 4 Dimensionless parameters of displacements and 

stress for different thickness ratios and different powers, 

(K=5) open-closed circuit 

(h/l1) N  w  1v
 x

 xy
 z

 xz
 

0.01 

0 0.5630 -0.00002 -10.1347 2.9064 -0.0084 0.1152 

1 0.3442 -0.0094 -8.816 2.5278 -0.0080 0.1347 

2 0.2129 -0.01116 -6.4225 1.8409 -0.0076 0.1545 

3 0.1318 -0.0096 -2.7846 0.7969 -0.0071 0.1738 

0.1 

0 0.5909 -0.0184 -1.0288 0.2774 -0.0841 0.1156 

1 0.3645 -0.1063 -0.896 0.2374 -0.0804 0.1350 

2 0.2264 -0.1187 -0.6516 0.1664 -0.0762 0.1547 

3 0.1400 -0.1007 -0.2804 0.0591 -0.0714 0.1740 

0.2 

0 0.6733 -0.1461 -0.5375 0.1189 -0.1696 0.1146 

1 0.4236 -0.2844 -0.4693 0.0957 -0.1619 0.1342 

2 0.2654 -0.2826 -0.3396 0.0566 -0.1529 0.1541 

3 0.1636 -0.2282 -0.1428 -0.0015 -0.1429 0.1736 

Table 5 Displacements and stresses for different 

dimension ratios and different thickness ratios, (K=5), 

electrical loading 

1 2
/l l

 
(h/l1) 

10
*10 ( )W m−

 
10

1
10* ( )V m−

 ( )x Pa
 

( )xy Pa
 

1 

0.1 3.9034 0.1354 8.9795 8.8198 

0.2 -3.4893 0.2393 17.0505 15.908 

0.5 -1.8367 0.33145 32.8716 23.303 

2 

0.1 -3.6869 0.12711 34.407 16.7321 

0.2 -2.8452 0.1934 58.88 26.52 

0.5 -0.6766 0.2190 82.004 27.168 

3 

0.1 -3.3669 0.1151 72.746 23.101 

0.2 -2.1083 0.1473 110.569 31.047 

0.5 0.14618 0.1774 123.06 25.8216 

 

 

 For simplicity and also keeping the generality, results are 

normalized as  
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Table (2) shows the convergence of solution for the 

dimensionless central deflection of FGP square plate for the 

case of closed circuit. Results are given for different power 

index and different thickness ratio.  

According to the table, it is clear that for thin plates, 

results converge rapidly and for the thicker plates results 

converge for K=5 and it is suitable for analysis. In Tables 3 

and 4, central deflections and also different stresses (normal 

and shear) for thick FGP plate are tabulated for close and 

open-closed circuits, respectively. According to the tables, 

increasing the thickness ratio increases the dimensionless 

central deflection. In addition, increasing the power index 

increases the flexural rigidity of FGP plate.  

Table 5 presents the static response of FGP plate (N=2) 

subjected the case of sinusoidal loading. It is seen from the 

table that variation of thickness and central deflection has 

an inverse relation, but the in-plane normal and shear 

stresses and also in-plane displacement have direct 

relationship.  

Figures 2 and 3, show variation of dimensionless central 

deflection versus the length to thickness ratio and aspect 

ratio, respectively. Closed circuit electrical condition is 

considered and also the effect of power index N is 

investigated.  

According to the figures 2 and 3, increasing the power 

index decreases the normalized central deflection. This 

variation is more apparent for the smaller values for aspect 

ratio and length to thickness ratio. 
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Fig. 2 Variation of the dimensionless central deflection 

respect to (l1/h) for different power index 

 

 
Fig. 3 Variation of the normalized central deflection 

versus to (l1/l2) for different power index 

 

 
Fig. 4 Distribution of dimensionless central deflection 

along the thickness of FGP plate 

 

 

Figure 4 shows variation of dimensionless central 

deflection along the thickness versus different the thickness 

ratios for closed circuit state. It is clear that variation is 

more apparent for thick plates. 

 
Fig. 5 Distribution of in-plane normal stress along the 

thickness for different power indices of square FGP plate 
 

 
Fig. 6 Variation of in-plane normal stress along the 

thickness for different aspect ratios 
 

 
Fig. 7 Differences of in-plane normal stress along the 

thickness for different thickness ratios. 
 

 

Figures 5, 6 and 7 show distribution of in-plane 
dimensionless normal stress along the thickness of the FGP 
plate versus change in different plate’s parameters. Also, 
Figures 8 and 9 show distribution of in-plane dimensionless 
shear stress along the thickness of the plate for different 
thickness ratios and different aspect ratios, respectively. In 
addition, case of closed circuit electrical condition is 
considered. 
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Fig. 8 In-plane shear stress differences along the thickness 

for different aspect ratios 

 

 
Fig. 9 In-plane shear stress distributions along the 

thickness for different thickness ratios 

 

 
Fig. 10 In-plane displacement differences along the 

thickness for different thickness ratios 

 

 

Figure 10 shows variation of in-plane displacement 

along the thickness of FGP plate for different thickness 

ratios in case closed circuit. Effect of aspect ratio on the out 

of plane dimensionless shear stress along the thickness of 

FGP plate is depicted in figure 10. Closed circuit electrical 

condition is considered. Reviewing figures 6 to 11 indicates  

 
Fig. 11 Out of-plane shear stress variation along the 

thickness for different aspect ratios 
 

 
Fig. 12 Effect of elec1trical boundary conditions on the 

dimensionless central 
 

 
Fig. 13 Influence of piezoelectric properties on the plate 

central deflection 
 

 

that values of normalized normal and shear stresses are zero 

not on the symmetric plane in the thickness direction. 

According to the numerical results, they are zero on (z = 

−0.15h), therefore, for the considered FGP plate, neutral 

plane does not coincide with the mid-plane and it locates in 

different coordinate. 

In Figure 12, effect of electrical boundary conditions on 

the dimensionless central deflection of FGP plate is plotted.  
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In order to investigate the piezoelectric effect on the 

plate deflection, in Figure 13, normalized central deflection 

is plotted for FG plate with piezoelectric and without piezo 

electric properties. It is clear that considering the electrical 

properties for FGP plate reduces the normalized central 

deflection.In figures 14, the effect of electrical loading 

condition on the FGP plate responses is plotted. Results or 

determined in(l1/4,l2/4,z). Comparing the presented results 

with the previous figures for the mechanical loading shows 

that loading conditions affect thee FGP plate responses.  

 

 

6. Conclusion 
 

The higher-order shear and normal deformable plate 

theory was developed for determining the static responses 

of simply supported functionally graded piezoelectric 

rectangular plate subjected to mechanical and electrical 

loadings.   

It was shown that obtained results from the presented 

theory are closed to the three dimensional elasticity 

solutions while where the solution procedure is simpler in 

comparison with the elasticity solution. Numerical results 

show that for thick FGP plates results converge for the fifth 

order of Legendre polynomials. Also, it was shown that for 

FGP plates, neutral plane does not coincide with the mid-

plane. In addition, it was shown that electrical properties 

reduce the FGP plate stiffness.   
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Appendix A: Simplified governing equilibrium 
equations of simply supported FGP plate 
 

According to the Navier solution for simply supported FGP 
plate, governing equilibrium equations are simplified as  
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