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1. Introduction 
 

The continuum mechanics methods are widely used to 

predict the responses of micro and nano structure such as 

bending, buckling, vibration responses and functionally 

graded reinforcement (Meziane et al. 2014, Al-Basyouni et 

al. 2015, Bounouara et al. 2016, El-Haina et al. 2017, 

Kolahchi et al. 2017,Bellifa et al. 2017a, Kaci et al. 2018, 

Bouhadra et al. 2018, Bouadi et al. 2018, Karamiet al. 

2018a, Fourn et al. 2018, Cherif et al. 2018, Karami et al. 

2019ab, Berghouti et al. 2019, Alimirzaei et al. 2019, 

Meksi et al. 2019, Chemi et al. 2018, Guessas et al. 2018, 

Hamidi et al. 2018, Rakrak et al. 2016, Tlidji et al. 2019). 

Currently, the carbon nanotube-reinforced composites 

(CNTRCs) resting on the elastic medium is the main subject 

of many investigators; it has been utilized in an increasing 

number of industrial applications including aircraft, military, 

building and other civil structures, transportation, 

automotive, marine, machine elements and mechanical, 

sport ing goods, chemical industr ies,  b iomedical 

applications, energy, infrastructure sectors, electrical, 

electronics and communication applications and it open up 

totally new horizons in a variety of industrial applications, 

compared with conventional materials.(Coleman et al 2006, 

Spitalsky et al 2010). This is due to their excellent  
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properties of carbon nanotube (Pradhan and Phadikar 2009, 

Dihaj et al. 2018, Draoui et al. 2019, Medani et al. 2019), 

high specific strength (strength to weight ratio), due to 

which there is improvement in fuel efficiency, high 

durability, light weight, design and process flexibility, high 

resistance to damage, high resistance to corrosion, bio-

degradation and extreme environmental conditions,… etc. 

Although studies on the mechanical, electrical, and thermal 

properties of carbon nanotube-reinforced composites 

(CNTRCs) have given important information and valued 

predictions, the ultimate purpose for the development of 

these materials is their applications in actual structures. 

Therefore, the global behavior of structural elements made 

of the CNTRCs should be considered for accurate 

predictions and optimal design (Hoang 2016). 

The first work on carbon nanotube-reinforced 

composites (CNTRCs) ismade from polymer and aligned 

CNT investigated by Ajayan et al (1994). And since then 

many researchers have paid their attention on investigating 

material properties of the CNTRCs (Odegardet al. 2003, 

Mokashi 2007, Fadelus 2005, Hu 2005, Moradi-Dastjerdi 

2016, Kolahchi et al. 2015). By using molecular dynamics 

(MD), the elastic properties of CNTRCs can be evaluated 

by (Han and Elliott 2007). Zhu et al. (2007) presented the 

stress-strain curves of CNT-reinforced composites, which 

show that the mechanical, electrical and thermal properties 

of the composite materials can be improved considerably 

with the addition of small amounts of CNTs to polymer 

matrix. In order to understand more about how to enhance 

dispersion and alignment of CNTs in a polymer matrix, Xie 
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et al. (2005) reported the existing techniques used for this 

purpose. 

In actual structural applications, and based on several 

benefits of CNTRCs as discussed above, these can be 

incorporated in the structural elements such as beams, 

plates and shells. To investigate mechanical behavior of 

engineering structures made from CNTRCs, there are a 

limited number of previous reports regarding mechanical 

responses of the CNTRC structures under different loading. 

In general, the problem of weak interfacial bonding 

between CNTs and polymer can occur in CNTRC structures. 

However, this problem can be solved by varying the CNTs 

within homogeneous matrix over the gradient 

direction(Shen 2009). In particular, several methods and 

theory are used with successfully for analysis the behaviour 

of CNTRCs under different loading which are treated as 

beams, thin shells or solids in cylindrical shapes and plates 

(Yas et al. 2012, Wattanasakulpong and Ungbhakorn2013, 

Ke et al. 2010, Zhu et al. 2012, Lei et al. 2013, Shen and 

Zhang 2010). For example, Kolahchiet al. (2017) studied 

the wave propagation of embedded viscoelastic FG-CNT-

reinforced sandwich plates integrated with sensor and 

actuator based on refined zigzag theory. Meharet al (2017a) 

analyzed the thermoelastic nonlinear frequency of CNT 

reinforced functionally graded sandwich structure, then 

Mehar et al. (2017) analyzed the FG-CNT reinforced shear 

deformable composite plate under various loading. Stability 

of CNTRCs plates and beams under thermal loads has been 

investigated in some works. (Shafiei and Setoodeh 

2017,Shokravi 2017). In last years, many test problems and 

methods with more complexities are used. Kolahchi et al. 

(2015) analyzed a nonlocal nonlinear for buckling in 

embedded FG-SWCNT-reinforced microplates subjected to 

magnetic field. Thermal vibration of embedded FG 

nanoplates under non-uniform temperature distributions 

with different boundary conditions has given by Barati and 

Shahverdi (2016). Bouiadjra et al. (2013) studied the 

nonlinear thermal buckling behavior of FG-plates using an 

efficient sinusoidal shear deformation theory. Khayat et al. 

(2018) analyzed the vibration of functionally graded 

cylindrical shells with different shell theories using semi-

analytical method. Ilati, and Dehghan (2015). Used the 

radial basis functions (RBFs) collocation and RBF-QR 

methods for solving the coupled nonlinear sine-Gordon 

equations. 

The problem of beams on deformable foundation is the 

most commonly encountered problem and has many 

applications in engineering and science. Even though the 

continuum mechanics approach yields the most 

comprehensive data on the mechanical behaviors of various 

structures under foundation system, this lies in the fact that 

considerable experience of comparison between various 

foundation models are required. 

In the Winkler foundation model, a set of independent 

springs formed the foundation system. The most 

rudimentary model has been widely adopted in studying the 

problem of structures on elastic foundation. The neglect of 

the existence of shear stress inside the foundation medium 

and the uncoupling of the individual Winkler foundation 

springs leads to an unrealistic abrupt change in the 

foundation surface displacement between the loaded and the 

unloaded regions. Pasternak foundation so called “two-

parameter” assumes the existence of shear interactions 

between the spring elements. This may be accomplished by 

connecting the ends of the springs to a structure consisting 

of incompressible vertical elements, which deforms only by 

transverse shear. 

In most applications, the CNTRC plate is resting on 

elastic foundation medium. The simplest and first type of 

elastic foundation is presented by Winkler as the “one-

parameter” foundation model since it is characterized only 

by the vertical stiffness of the Winkler foundation springs 

(Zhang 2015, Dehghan and Baradaran 2011). In fact, both 

the first type of elastic foundation and the second type 

presented by Pasternak were introducing the second 

foundation parameter to account for the existence of shear 

stress inside the foundation medium, resulting in the so 

called “two-parameter” foundation model (Nguyen 

2017,Thai and Choi 2011, Wattanasakulpong and 

Chaikittiratana 2015, Shen and Zhu 2012).  

To further improve the two-parameter foundation model, 

(Kerr 1965) had studied a new foundation based on three 

foundation parameter so-called “three-parameter” 

foundation model. The major role of this model is to 

provide more flexibility in controlling the degree of 

foundation-surface continuity between the loaded and the 

unloaded regions of the structure-foundation system. 

Furthermore, for several types of foundation materials, 

neither the Winkler-foundation model nor the two-

parameter foundation model can realistically represent the 

interaction mechanisms between the beams and the 

contacting media (Kerr 1964). 

The Kerr-type foundation model is of particular interest 

since it stems from the famous Winkler Pasternak two-

parameter foundation model for which the foundation 

medium is visualized as consisted of lower and upper spring 

separated by incompressible shear layer. The Kerr-type 

foundation model is characterized by three parameters the 

lower and upper spring moduli and the shear-layer section 

modulus. 

Even though the Kerr-type foundation model was 

developed since the mid-sixties, there have been only a 

limited number of researchers studying the problem of 

beams resting on Kerr-type foundation. However, it is 

found that various theory based investigations concerned 

with the buckling of CNTs embedded in polymer matrix 

resting in Kerr’s foundation are rare in the literature. 

To formulate the closed-form solutions of simply 

supported CNTRC plates, the Navier method is employed. 

In 1820, Navier presented a paper to the French Academy 

of Sciences on the solution of bending of simply supported 

rectangular plates by double trigonometric series. Navier’s 

solution is sometimes called the forced solution of the 

differential equations since it “forcibly” transforms the 

differential equation into an algebraic equation, thus 

considerably facilitating the required mathematical 

operations. various numerical methods are using to predict 

the linear and nonlinear problems appeared in physical, 

chemistry, mechanics and engineering applications such as: 

finite element meth, spectral element methods (Dehghan et 
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al. 2016), method of variably scaled radial kernels 

(Dehghan and Mohammadi 2015a, Dehghan and 

Mohammadi 2015b ), meshless techniques (Dehghan and 

Abbaszadeh 2019, Dehghan and Abbaszadeh 2016). 

Dehghan and Shokri (2008) used a numerical method for 

solution of the two-dimensional sine-Gordon equation using 

the radial basis functions. Dehghan et al. (2016) used 

legendre spectral element method for solving time 

fractional modified anomalous subdiffusion equation.   

The main objective of this article is to investigate the 

buckling analyses of the simply supported CNTRC plates 

resting on the Kerr elastic foundation and to estimate the 

accuracy of the present foundation model compared to other 

models. The governing equations are derived by using 

Hamilton’s principle and the exact solutions for buckling 

analyses of such type’s plates are obtained. The 

mathematical models provided and the present solutions are 

numerically validated by comparison with some available 

results in the literature. Effect of various parameters of 

reinforced plates such as aspect ratios, volume fraction, 

types of reinforcement, parameters constant factors of 

Kerr’s foundation and plate thickness on the buckling 

analyses of carbon nanotube-reinforced composite plates 

are studied and discussed. Thus, this paper can naturally be 

considered as a companion paper to the work on the plate-

Kerr foundation system rarely used in the literature. 
 

 

2. CNTRC-plates 
 

Consider a CNTRC-plate having length (a), width (b) 

and thickness (h) which is resting on the Kerr elastic 

foundation, including shear layer and two Winkler springs, 

as shown in Fig. 1(a). The CNTRC-plates considered in this 

investigation are assumed to be reinforced by four different 

patterns of carbon nanotube distribution across the plate 

thickness, which can be seen in Fig. 1(b). It can be seen that 

UD-CNTs has uniform distribution of single-walled carbon 

nanotubes (SWCNTs); while, O-CNTs and X- CNTs have 

symmetrically distributed. 
Two kinds of CNTRC-plate, namely, uniformly 

distributed (UD) and functionally graded (FG) reinforced 
with aligned carbon nanotube, are considered. The material 
properties of FG-CNTRC face sheets are assumed to be 
graded in the thickness direction. The load transfer between 
the nanotube and polymeric phases is less than perfect (e.g. 
the surface effects, strain gradients effects, intermolecular 
coupled stress effects, etc.). Hence, we introduce the CNT 
efficiency parameter (η1, η2, η3) into Eq. (1) to consider the 
size-dependent material properties. The values of the CNT 
efficiency parameter is estimated by matching the elastic 
modulus of CNTRCs observed from the molecular 
dynamics (MD) simulation results with the numerical 
results obtained from the extended rule of mixture. 

By using the rule of mixture, the effective material 
properties of CNTRC-plates made from a mixture of 
SWCNTs and an isotropic polymer matrix can be estimated. 
This rule includes the CNT efficiency parameters (η1, η2, 
η3) in order to account for the scale-dependent material 
properties (Han and Elliott 2007). Thus, the material 
properties of the CNTRC-plates can be expressed as follows 
(Shen 2009). 

 

 

Fig. 1 Geometry of a CNTRC-plate supported by Kerr 

foundation model (a) and cross-sections with different 

patterns of carbon nanotube reinforcement (b) 
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It is defined that 𝐸11
𝑐𝑛𝑡 , 𝐸22

𝑐𝑛𝑡  are the Young’s modulus 

and 𝐺12
𝑐𝑛𝑡  indicate the Young’s moduli and shear modulus 

of SWCNTs, respectively, and EP and GP represent the 

properties of the isotropic matrix. η1, η2 and η3 are 

CNT/matrix efficiency parameters, The Vcnt and VP are the 

volume fractions of the carbon nanotubes and matrix, 

respectively, and it is noticeable that the sum of the volume 

fractions of the two constituents equals to unity. For other 

properties in terms of Poisson’s ratio (ν) and mass density 

(ρ), these can be written as: 

p

p

cnt
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p

p
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(2) 

To consider the CNTRC-plates with three patterns of 

reinforcement over the plate thickness, the mathematical 

models used for describing the material distributions can be 

written as (Zhu et al. 2012, Bakhadda et al. 2018):  

UD- CNTs 
*
cntcnt VV =
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where 𝑉𝑐𝑛𝑡
∗  is the given volume fraction of CNTs, 

which can be obtained from the following equation: 

( )( )cnt

mcnt

cnt

cnt
cnt

WW

W
V

−+
=

1

*


 

(4) 

Where Wcnt is the mass fraction of the carbon nanotube 

in the nano-composite plate, in this study, the CNT 

efficiency parameters (η) associated with the given volume 

fraction (𝑉𝑐𝑛𝑡
∗ ) are (Zhu et al. 2012):  

149.01 = and
934.032 ==

for the case of 
11.0* =cntV
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941.032 ==
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14.0* =cntV

 

149.01 = and
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17.0* =cntV

 

 

 

3.Equation of motion 
 

The displacement field based on the theory of a material 

point located at (x, y, z) in CNTRC-plates is given below 

(Zenkour2006, Zenkour 2009, Mahi et al. 2015): 
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(5) 

It is noted that the displacement field in Eq. (5) can be 

easily adapted to various plate theories by choosing an 

appropriate shape function. 

For example, 

The classical plate theory (CPT) :  

 ( )z 0 =
 

(6a) 

The first order shear deformation theory (FSDT): 
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Third order shear deformation theory (TSDT): 
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Sinusoidal shear deformation theory (SSDT): 
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Exponential shear deformation theory (ESDT): 
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Hyperbolic shear deformation theory (HySDT) 
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Fig. 2 Description of the plate deformation according to: 

classical (CLPT), first order (FSDT) and high order 

(HSDT) theories 

 

 

In which u0,v0 and w0 are the displacements along the 

x,y and z directions in the mid plane of the plate, ϕx , ϕy are 

the total bending rotation of the cross-section at any point of 

the reference plane (figure 2). If the last term in Eq. (5) is 

neglected, the displacements are reduced to the classical 

plate theory (CPT).  

The linear in-plane and transverse shear strains are 

given by: 
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The expression of the constitutive relations is written in the 

form 
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Where Qij are the transformed elastic constants 
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Hamilton’s principle is one of the variational principles 
in mechanics. All the laws of mechanics can be derived by 
using the Hamilton’s principle. Hence it is one of the most 
fundamental and important principles of mechanics and 
mathematical physics. The Hamilton’s principle is applied 
to produce the energy equations (Attia et al. 2015 and 2018, 
Abdelaziz et al. 2017, Belabed et al. 2018, Bourada et al. 
2018 and 2019, Chaabane et al. 2019). 

( )
0

0
t

s fU U V dt  + + =
 

(9) 

Where δUs, δUf and δV are the virtual variation of the 
strain energy, the virtual potential energy of elastic 
foundation and the virtual work done by external forces.  

Firstly, the expression of the virtual strain energy is 
(Beldjelili et al. 2016, Bousahla et al. 2016, Menasria et al. 
2017, Bellifa et al. 2017b, Boussoula et al. 2019): 
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By substituting Eq. (7) into Eq. (10), one obtains 
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Where stress resultants can be defined as follows: 
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By substituting Eq. (8) into Eq. (12), one obtains the 
stress resultants in form of displacement components 
andmaterial stiffness. 
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ϕx ,ϕy are the total bending rotation of the cross-section 
at any point of the reference plane (figure 2) 

And Aij, Bij, Cij, Dij, Eij, Fij, Hij, are the material stiffness 

components, defined by 
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In this study, it is assumed that the CNTRC-plates are 

rested on the Kerr elastic foundation composing of two 

spring layers interconnected by a shearing layer (Kerr 1964, 

Vancauwelaert et al. 2002). Thus, to address this problem, 

the virtual potential energy resulting from the elastic 

foundation is required to be involved in this investigation 

which is: 
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(16) 

Where Kw, Ks and Kc are the spring layers constants of 

Winkler, Pasternak and Kerr, respectively, which can be 

obtained in dimensionless parameters: 
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It is noted that βw, βc and βs are the corresponding spring 

constant factors which are the given parameters. 

For the CNTRC-plates under buckling loading, 𝑁𝑥
0 =

𝛾𝑥𝑁𝑐𝑟  and 𝑁𝑦
0 = 𝛾𝑦𝑁𝑐𝑟 , the virtual work done by these 

external loading is, 

 















+








=

A

000
y

000
x dxdy

y

w

y

w
N

x

w

x

w
NV




 

(18) 

By substituting Eqs.(13), (16) and (17) into Eq. (9), 

Then, integrating by parts and collecting the coefficients of 

δu0, δv0,δw0,δφx and δφy, leads to the following equations of 

motion. 
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(19e) 

The boundary conditions for present model supposed 

simply supported along all edges of the plates can be 

considered as: 

0 0 0x yy yy yyu w N M P= = = = = =
at  y=0,b 

0 0 0y xx xx xxv w N M P= = = = = =
at  x=0,a 

To formulate the closed-form solutions buckling 

problem of simply supported CNTRC plates, the Navier 

method is employed. Following the Navier solution 

procedure, we assume the following solution form for the 

displacement functions expanded in double trigonometric 

series that satisfies the boundary conditions, 
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(20) 

Where 𝛼 =
𝑀𝜋

𝑎
 and 𝜁 =

𝑁𝜋

𝑏
. 1−=i  

Where UMN, and VMN, WMN, ΘxMN and ΘyMN are arbitrary 

parameters. 

Substituting the Eq. (20) into the Eq. (19), we get the 

below equations for any fixed value of m and n, for bucking 

problem, which are presented in the following matrix form: 
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Where 
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(22) 

The dimensionless parameters used to present the 

numerical results for buckling analyses of CNTRC plates is 

as follows.  

0
2

4
cr

cr
D

aN
N


=

 

(23) 

 

 

5. Results and discussions 
 

In this section, numerical results of the effect of various 

elastic foundation parameters of the Kerr’s foundation, 

where the lower spring modulus parameter, the upper spring 

modulus parameter and the shear layer modulus parameter, 

on the dimensionless critical buckling loads of CNTRC-

plates are presented and discussed. Note that for the results 

in Kerr’s foundation tend to the results in Pasternak’s 

foundation; for the results in Kerr’s foundation tend to the 

results in Winkler’s foundation. The effective material 

characteristics of CNTRC-plates employed throughout this 

work are given as follows. 

Here, Poly (m-phenylenevinylene)(PMPV) is used as 

the matrix in which material properties are: vP=0.34, 

ρP=1150 kg/m3 and EP =2.1GPa. For reinforcement material, 

the armchair (10,10) SWCNTs is chosen with the following 

properties according to the study of Zhu et al. (2012): 

12

12 13 23

cnt cnt 3 cnt

11

cnt cnt cnt cnt

22

v 0.175; 1400kg / m ; E 5.6466TPa;

E 7.0800TPa; G G G 1.9445TPa

= = =

= = = =
 

The algorithm for the proposed procedure of model is 

given in Figure 3.  

In order to prove the validity of mathematical models in 

previous sections of the present theory, the results obtained 

are adopted and compared with the existing ones in the 

literature which were presented by Wattanasakulpongand 

Chaikittiratana, (2015) in Table1 and Guessas et al. (2018) 

in Table 2. With different patterns of carbon nanotube 

distribution, different values of carbon nanotube volume 

 

Fig. 3 The algorithm for the proposed procedure of model 

 

 
fraction and thickness ratio of plate (a/h=10). It can be 
observed from this comparison the good agreement between 
the present resultsand them obtained by Wattanasakulpong 
and Chaikittiratana, (2015) and Guessas et al. (2018). In 
addition, it is clearly seen that the CNTRC-plate with X-
CNTscarbon nanotube distribution is defined as X-CNTs, 
shows its strongest capacity to resist the buckling load with 
the biggest values of dimensionless critical buckling loads, 
and followed by the UD-CNTs, and O-CNTs. 

Table 3 presents the effect of elastic foundation on the 
dimensionless critical buckling loads 𝑁𝑐𝑟  for various types 
of CNTRC-plates subjected to uniaxial compression (𝛾𝑥 =
−1, 𝛾𝑦 = 0) and biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = −1) 
with versus the CNT volume fraction associated with 
different values of spring constant factors, width thickness 
ratio of the plates is set to be (a/h = 10).The results show 
that the plates dimensionless critical buckling loads have a 
higher value when the volume fraction of CNT is larger, 
since the stiffness of CNTRC-plates is larger when the 
value of CNT volume fraction is higher. Moreover, for all 
different distributions of CNTs, FG-X plates have larger 
buckling load values than UD plates and values of FG-O 
plates are smaller than UD-CNTs plates. That is expected 
since CNT reinforcements distributed close to top and 
bottom are more efficient than those distributed near the 
mid-plane for increasing the stiffness of CNTRC plates by 
Zhu et al (2012). In addition, X-CNTs show its strongest 
capacity in resisting buckling load, and followed with UD- 
and O-CNTs, respectively. It is also observed that the 
spring constant factors have significant impact on the 
buckling loads of the plates, particularly when βw, βs and βc 
are included. Obviously, the plates subjected to biaxial 
compressive loads have lower buckling results than those 
under uniaxial compressive loads.  

Figs. 4–5 show the variation of the dimensionless 
critical buckling loads of various types of CNTRC-plates 
resting on the Kerr’s foundation under uniaxial compression 
(𝛾𝑥 = −1, 𝛾𝑦 = 0) and biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 =
−1) with versus the CNT volume fraction at spring constant 
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factors (βw, βs and βc =100) and a/b=3. It can be seen that as 

the width-to-thickness ratio of the plate increases, the non-

dimensional buckling load parameters increase and 

buckling load parameters for all types of CNTRC plates 

increase also.  

Figs. 6-7 show the variation of the dimensionless critical 

buckling loads of various CNTRC-plates types with plate 

aspect ratio (a/b) changing from 1.0 to 3.0. The plate width-

to-thickness ratio (a/h) is set to be 10 resting on the Kerr’s 

foundation (βw, βs and βc =100) under uniaxial compression 

(𝜸𝒙 = −𝟏, 𝜸𝒚 = 𝟎) and biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 =

−1) with versus the CNT volume fraction. It can be seen 

that buckling load parameters decrease as plate aspect ratio 

changes from 1.0 to 3.0. It is worth noting that the change 

of plate aspect ratio has a very small effect on buckling load 

parameter for CNTRC plates under biaxial compression.  
 

Table 1 Comparisons of dimensionless critical buckling loads 𝑁𝑐𝑟  of CNTRC square plates with and without elastic 

foundation for uniform (UD-CNTs) and symmetric (X-CNTs, O-CNTs) distributed of (SWCNTs) at (a/h=10) 

Uniaxial compression (𝜸𝒙 = −𝟏, 𝜸𝒚 = 𝟎) 

    *

cntV 0.11=
 

*

cntV 0.14=
 

*

cntV 0.17=
 

w  s  c  
Theory UD-CNTs X-CNTs O-CNTs UD-CNTs X-CNTs O-CNTs UD-CNTs X-CNTs O-CNTs 

0 0 ∞ 

Wattanasakulpong (2015) 
TSDT 

20.68 24.29 14.50 23.36 26.89 16.70 32.32 37.69 22.68 

Wattanasakulpong (2015) 

SSDT 
20.73 24.39 14.45 23.42 27.02 16.65 32.39 37.81 22.63 

Present ESDT 20.81 24.56 14.42 23.54 27.21 16.61 32.52 38.00 22.60 

PresentHySDT 20.71 24.36 14.46 23.40 26.97 16.66 32.36 37.77 22.64 

100 0 ∞ 

Wattanasakulpong (2015) 

TSDT 
21.71 25.31 15.53 24.38 27.92 17.73 33.34 38.72 23.71 

Wattanasakulpong(2015) 
SSDT 

21.76 25.42 15.48 24.45 28.04 17.67 33.42 38.83 23.65 

Present ESDT 21.84 25.58 15.45 24.56 28.23 17.64 33.54 39.03 23.62 

PresentHySDT 21.74 25.38 15.49 24.43 28.00 17.69 33.39 38.79 23.67 

100 50 ∞ 

Wattanasakulpong(2015) 

TSDT 
31.84 35.45 25.66 34.51 38.05 27.86 43.48 48.85 33.84 

Wattanasakulpong (2015) 

SSDT 
31.89 35.55 25.61 34.58 38.18 27.80 43.55 48.97 33.79 

Present ESDT 31.99 35.73 25.60 34.71 38.38 27.79 43.69 49.18 33.77 

PresentHySDT 31.89 35.53 25.64 34.57 38.15 27.83 43.54 48.94 33.82 

Biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = −1) 

0 0 ∞ 

Wattanasakulpong(2015) 
TSDT 

10.34 12.14 7.25 11.68 13.45 8.35 16.16 18.85 11.34 

Wattanasakulpong(2015) 

SSDT 
10.36 12.20 7.23 11.71 13.51 8.32 16.19 18.90 11.31 

Present ESDT 10.41 12.28 7.21 11.77 13.60 8.31 16.26 19.00 11.30 

PresentHySDT 10.36 12.18 7.23 11.70 13.49 8.33 16.18 18.88 11.32 

100 0 ∞ 

Wattanasakulpong(2015) 

TSDT 
10.85 12.66 7.76 12.19 13.96 8.86 16.67 11.85 19.36 

Wattanasakulpon (2015) 
SSDT 

10.88 12.71 7.74 12.22 14.02 8.84 16.71 11.83 19.42 

Present ESDT 10.92 12.79 7.72 12.28 14.11 8.81 16.77 11.81 19.51 

PresentHySDT 10.87 12.69 7.75 12.21 14.00 8.84 16.69 11.83 19.39 

100 50 ∞ 

Wattanasakulpong (2015) 

TSDT 
15.92 17.72 12.83 17.26 19.03 13.93 21.74 24.43 16.92 

Wattanasakulpong(2015) 

SSDT 
15.94 17.78 12.81 17.29 19.09 13.90 21.77 24.48 16.89 

Present ESDT 16.13 18.00 12.93 17.49 19.32 14.03 21.98 24.72 17.02 

PresentHySDT 16.08 17.90 12.95 17.42 19.21 14.05 21.90 24.60 17.04 

 

 

Table 2 Comparisons of dimensionless critical buckling 

loads of CNTRC square plates without elastic foundation 

and 𝑽𝒄𝒏𝒕
∗ = 𝟎. 𝟏𝟏 

Uniaxial compression (𝜸𝒙 = −𝟏, 𝜸𝒚 = 𝟎) 

Theory UD-CNTs X-CNTs O-CNTs 

Guessas et al. (2018) FSDT 20.54 23.96 14.98 

Present ESDT 20.81 24.56 14.42 

PresentHySDT 20.71 24.36 14.46 

Biaxial compression (𝜸𝒙 = −𝟏, 𝜸𝒚 = −𝟏) 

Guessas et al. (2018) FSDT 10.27 11.98 7.49 

Present ESDT 10.41 12.28 7.21 

PresentHySDT 10.36 12.18 7.23 
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Table 3 Effect of elastic foundation on the dimensionless critical buckling loads 𝑁𝑐𝑟  of CNTRC square plates for uniform 

(UD-CNTs) and symmetric (X-CNTs, O-CNTs) distributed of (SWCNTs) at (a/h=10) 

Uniaxial compression (𝜸𝒙 = −𝟏, 𝜸𝒚 = 𝟎) 

w  s  c  
 *

cntV 0.11=
 

*

cntV 0.14=
 

*

cntV 0.17=
 

   Present Theory UD-CNTs X-CNTs O-CNTs UD-CNTs X-CNTs O-CNTs UD-CNTs X-CNTs O-CNTs 

100 0 100 
ESDT 21.33 25.07 14.93 24.05 27.72 17.13 33.03 38.52 23.11 

HySDT 21.22 24.87 14.98 23.91 27.49 17.17 32.88 38.28 23.16 

100 0 200 
ESDT 21.50 25.24 15.10 24.22 27.89 17.30 33.20 38.69 23.28 

HySDT 21.40 25.04 15.15 24.08 27.66 17.34 33.05 38.45 23.33 

100 50 100 
ESDT 46.13 49.88 39.74 48.86 52.53 41.93 57.83 63.32 47.91 

HySDT 46.03 49.68 39.78 48.72 52.29 41.98 57.68 63.08 47.96 

100 50 200 
ESDT 41.41 45.16 35.02 44.14 47.81 37.21 53.11 58.60 43.19 

HySDT 41.31 44.96 35.06 44.00 47.57 37.26 52.96 58.36 43.24 

100 100 100 
ESDT 70.94 74.68 64.54 73.66 77.33 66.74 82.64 88.13 72.72 

HySDT 70.84 74.48 64.59 73.52 77.10 66.78 82.49 87.89 72.77 

100 100 200 
ESDT 61.33 65.07 54.93 64.05 67.72 57.13 73.03 78.52 63.11 

HySDT 61.22 64.87 54.98 63.91 67.49 57.17 72.88 78.28 63.15 

Biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = −1) 

100 0 100 
ESDT 10.66 12.53 7.466 12.025 13.86 8.563 16.514 19.259 11.55 

HySDT 10.61 12.43 7.489 11.956 13.74 8.586 16.438 19.139 11.57 

100 0 200 
ESDT 10.74 12.62 7.552 12.110 13.94 8.648 16.600 19.344 11.64 

HySDT 10.69 12.52 7.574 12.042 13.82 8.672 16.524 19.225 11.66 

100 50 100 
ESDT 20.70 22.57 17.509 22.067 23.90 18.60 28.917 31.661 23.95 

HySDT 20.65 22.47 17.531 21.999 23.78 18.62 28.841 31.542 23.98 

100 50 200 
ESDT 20.70 22.57 17.50 22.067 23.90 18.60 26.557 29.301 21.59 

HySDT 20.65 22.47 17.531 21.999 23.78 18.62 26.481 29.182 21.62 

100 100 100 
ESDT 35.46 37.34 32.272 36.830 38.66 33.36 41.320 44.064 36.36 

HySDT 35.41 37.24 32.294 36.761 38.54 33.39 41.243 43.944 36.38 

100 100 200 
ESDT 30.66 32.53 27.466 32.024 33.86 28.56 36.514 39.258 31.55 

HySDT 30.61 32.43 27.488 31.956 33.74 28.58 36.438 39.139 31.57 
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Fig. 4 Variation of the dimensionless buckling load parameter of simply supported various types of CNTRC plates versus 

the plate width-to-thickness ratio under uniaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = 0) with versus the CNT volume fraction 
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Fig.5 Variation of the dimensionless buckling load parameter of simply supported various types of CNTRC plates versus 

the plate width-to-thickness ratio under biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = −1) with versus the CNT volume fraction 
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Fig. 6 Variation of the buckling load parameter of simply supported various CNTRC-plates types versus aspect ratio under 

uniaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = 0) with versus the CNT volume fraction 
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Fig. 7 Variation of the buckling load parameter of simply supported various CNTRC-plates types versus plate aspect ratio 

under biaxial compression (𝛾𝑥 = −1, 𝛾𝑦 = −1) with versus the CNT volume fraction 
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Fig. 8 Effect of Kerr’s foundation parameter on 

dimensionless critical buckling loads of various square 

CNTRC-plates types with aspect ratio (a/h=10) and (βw = 

βs = 100) under biaxial compression. 
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Fig. 9 Effect of various foundation model on 

dimensionless critical buckling loads of square CNTRC-

plates with (O-CNTs) distribution under biaxial 

compression 

 

 

Fig. 8shows the effect of kerr’s modulus parameter on 

the dimensionless critical buckling load of different types of 

CNTRC- plate. It is observed that the dimensionless critical 

buckling loads decrease as the increase of the spring 

constant factors βc. Note that for βc =1000, the results in 

Kerr’s foundation tend tothe results in Pasternak’s 

foundation.  In additional, the effect of various 

distributions of CNTs on the dimensionless critical buckling 

load is observed in the strongest (X-CNTs) and smallest (O-

CNTs) values. It can be concluded that the difference 

between the effect of various distributions is attributed to a 

concentration of the carbone nanotube at the top and bottom 

face of plate. 

Fig. 9 shows a comparison of dimensionless critical 

buckling load of square CNTRC-plates between various 

models of elastic medium with simply supported boundary 

conditions and (O-CNTs) distribution under biaxial 

compression. 

It is observed that for various model of elastic medium 

the buckling load increases with small values as ratio L/h is 

varied from 10 to 50. In addition, it is observed that there is 

a significant influence of type of the elastic medium on the 

dimensionless critical buckling loads of square CNTRC-

plates. 

 

 

6. Conclusions 
 

This article studies the buckling behavior of carbon 

nanotube-reinforced composite plates resting on the 

foundation elastic consisting of two spring layers 

interconnected by a shearing layerthat was suggested by 

(Kerr 1964). The plates are reinforced by single-walled 

carbon nanotubes with four distributions types of uniaxially 

aligned reinforcement material.  

For this study, the results showed the dependence of 

buckling behavior on the different parameters such as 

aspect ratios, volume fraction, types of reinforcement and 

plate thickness. Besides on the results, it is observed for 

buckling analysis of such plates that the FG-X plates have 

larger buckling load values and its strongest capacity in 

resisting buckling load than UD plates and values of FG-O 

plates are smaller than UD plates. That is expected since 

CNT reinforcements distributed close to top and bottom are 

more efficient than those distributed near the mid-plane for 

increasing the stiffness of CNTRC plates. In addition, it is 

also observed that the spring constant factors have 

significant impact on the buckling loads of the plates, 

particularly when βw, βs and βc are included. Obviously, the 

plates subjected to biaxial compressive loads have lower 

buckling results than those under uniaxial ones. 

From the obtained results, it is concluded that the Kerr 

model is more accurate than the Winkler and the Pasternak 

models for the representation of the carbon nanotube-

reinforced composite plates resting on the foundation elastic. 

The Kerr model is relatively simple to use and agrees well 

with the nonlocal elastic continuum model.An improvement 

of the present study will be considered in the future work to 

consider the stretching effect and other type of materials 

(Draiche et al. 2016, AitAtmane et al. 2017, Chikh et al. 

2017, Karami et al. 2017, Abualnour et al. 2018, Karami et 

al. 2018bc, Zine et al. 2018, Yazid et al. 2018, Mokhtar et 

al. 2018, Benchohra et al. 2018, Younsi et al. 2018, Youcef 

et al. 2018, Addou et al. 2019, Boukhlif et al. 2019, 

Boulefrakh et al. 2019, Boutaleb et al. 2019, Khiloun et al. 

2019, Draiche et al. 2019, Hellal et al. 2019, Hussain et al. 

2019, Karami et al. 2019cd, Mahmoudi et al. 2019, Zaoui et 

al. 2019, Zarga et al. 2019). 
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