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1. Introduction 
 

The presence of size-dependent effects on mechanical 

characterizations of micro/nanostructures has been 

confirmed by experimental studies (Andrews, Gioux et al. 

2001; Lam, Yang et al. 2003) as well as molecular 

dynamics simulation (Koh and Lee 2006). Since that the 

classical continuum theories were not capable to consider 

these effects, reconsidering of classical continuum theories 

when some small scale parameters are included inside their 

relations is introduced as an alternative way. Hence, several 

modified continuum theories for prediction of size-

dependent effect have been proposed (see some of those in 

Ref. (Thai, Vo et al. 2017)). Nonlocal elasticity theory 

(NET) (Eringen and Edelen 1972) and strain gradient theory 

(SGT) (Lam, Yang et al. 2003) are just some popular 

models of those owing to their simplify for making 

comparison with those of old models without size effect 

(classical continuum theories). Besides that, there is a 

relative agreement between the results taken from NET and 

SGT with experimental data as well as molecular dynamics 

simulation in some cases (Duan, Wang et al. 2007; Shen, 

Shen et al. 2010; Askes and Aifantis 2011). However, the  
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existing ratio of agreement may be not sufficient for 

accurate analysis in several cases. Because, the NET only 

provides the softening-stiffness mechanism in structures 

using a nonlocal parameter within Laplacian of stress, and 

the SGT only provides the stiffness-enhancement 

mechanism using the strain gradient length scale in 

conjunction with the Laplacian of strains, while both above 

mechanisms had been shown in experimental studies before. 

Moreover, the limitations and weaknesses of NET and SGT 

have been reported in some works. To cite few: the 

disability of NET in predicting mechanical characterization 

of nanobeam-like structures has been shown by (Romano, 

Barretta et al. 2017), notably those have clamped-free 

boundary conditions. Further, it was affirmed that the wave 

dispersion of nanobeams could not have been supported 

with those of molecular dynamics data with only NET and 

SGT by (Lim, Zhang et al. 2015) and (Li, Hu et al. 2015). 

They also investigated the applicability of nonlocal strain 

gradient theory (NSGT) as a single theory which obtained 

from a combination of NET and SGT together in wave 

propagation analysis. Owing to their observations, the 

accuracy of outcomes for all wavenumbers could be 

improved by implementation the NSGT instead of NET or 

SGT provided that an appropriate couple of small-scale 

parameters would be selected. In this respect, (Xiao, Li et al. 

2017) identified a couple of nonlocal parameter and strain 

gradient length-scale for in-plane wave desperation of 

graphene with implementing classical plate theory (CPT) 
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and NSGT by applying an experimental data. In that work, 

the curve of wave frequency showed the priority of NSGT 

in comparison with NET or SGT. The results for all wave 

numbers improved by implementation SSDT for same 

analysis of wave propagation by (Karami, Shahsavari et al. 

2018) due to the shear deformation effect in graphene sheet 

which it was neglected in CPT. Hence, in the current work, 

it is aimed to use SSDT, which is an accurate plate theory 

for analysis of both moderately thick and thin plates, for 

size-dependent vibration analysis (see in Refs. (Karami, 

Shahsavari et al. 2018; Karami, Shahsavari et al. 2018; 

Karami, Shahsavari et al. 2019)). On the other hand, in 

another work (Karami, Shahsavari et al. 2018), it has been 

shown that adding an extra nonlocal parameter into NSGT 

may cause to obtain better results on the response of 

nanoplates. This enriched model of NSGT has been called 

Bi-Helmholtz nonlocal strain gradient elasticity theory (B-H 

NSGT) (Mousavi 2016). However, the literature indicates 

that papers relevant to B-H NSGT for analysis of 

nanostructures are numerable until now. The wave 

propagation of double-layer nanobeams made of 

functionally graded materials on the basis of B-H NSGT 

including three distinct small-scale parameters with and 

without considering a thermal environment were presented 

by (Barati 2017; Barati and Zenkour 2017). So, as the 

second step to preparation of governing equations, the B-H 

NSGT, as a complete size-dependent theory will be 

considered in this paper. This theory has been considered in 

some works so far (Karami, Janghorban et al. 2017; 

Ebrahimi and Barati 2018; Karami, Janghorban et al. 2018; 

Karami, Janghorban et al. 2019; Karami, janghorban et al. 

2019; Karami, Shahsavari et al. 2019). 

Nowadays, functionally graded materials (FGMs) are 

widely used in different industries including aerospace, 

biomechanics, nuclear energy, optics and etc. (Miyamoto, 

Kaysser et al. 2013). In fact, the FGM is a non-uniform type 

of composite materials made of two or more distinct phases 

which their distribution regularly varies with the volume. In 

these materials, the metal phase usually supports a reliable 

mechanical performance and the ceramic phase supplies a 

high thermal resistance in the whole volume of FGM due to 

the pattern of changing in material properties of FGMs 

(Zemri, Houari et al. 2015). Hence, several models and 

studies have been suggested and carried out on free 

vibration, buckling, static, wave propagation and dynamic 

analysis of these materials in terms of linear and nonlinear 

(Mohammadi and Mahzoon 2014; Mohammadi, Mahzoon 

et al. 2014; Mehar and Panda 2016; Mahapatra, Kar et al. 

2017; Mehar and Panda 2017; Mehar, Panda et al. 2017; 

Mehar, Panda et al. 2017; Mehar, Panda et al. 2017; Mehar, 

Panda et al. 2017; Ghayesh 2018; Ghayesh 2018; Ghayesh 

2019). 
During the process of FGM fabrication, voids (as known 

porosities) create within the materials at sintering step due 
to the difference in solidification temperature of material 
phases (Wattanasakulpong and Ungbhakorn 2014). So, it is 
necessary to study FGMs with porosities. As, it was proved 
by (Magnucki, Malinowski et al. 2006; Yahia, Atmane et al. 
2015; Şimşek and Aydın 2017), the change of porosity 
within the thickness of porous materials leads to a variation 
in mechanical properties, corresponding to the pattern of  

 

Fig. 1 Porous FGM nanoplate rested on elastic Kerr 

foundation. 

 
 

porosity distribution. Two different patterns of porosity 

distributions namely even and uneven were presented in 

their study. (Karami, Janghorban et al. 2018) added a 

logarithmic-uneven porosity pattern into the prior patterns. 

Owing to the fast progress in nanotechnology, 

micro/nanostructures made of FGM are often used in 

micro/nano-electro-mechanical systems (MEMS/NEMS) so 

that a large number of pioneer studies can be found in this 

field (Ghayesh, Amabili et al. 2013; Gholipour, Farokhi et 

al. 2015; Ghayesh, Farokhi et al. 2016). Hence, the study 

on porosity effect at nanoscale using size-dependent 

continuum theories has gained a considerable amount of 

interest among researchers. Some works (Mechab, Mechab 

et al. 2016; Shahverdi and Barati 2017; Karami, Shahsavari 

et al. 2018) were presented to investigate the free vibration 

of FGM porous nanobeams/nanoplates and it was 

demonstrated that the frequency increase with an increment 

in the volume fraction of porosity. (Shafiei, Mousavi et al. 

2016) showed that the trend of frequency for variation of 

porosity volume fraction is dependent to the power-law 

index value. Hence, the frequency can be controlled or 

optimized by the variation of porosity. A similar observation 

was observed due to stiffness of foundation components by 

(Rad and Shariyat 2015). Moreover, this conclusion has 

been supported by (Karami, Janghorban et al. 2018), 

(Mechab, Mechab et al. 2016), (Wattanasakulpong and 

Ungbhakorn 2014), and (Atmane, Tounsi et al. 2017). 

Certainly, there are inconsistencies in porosity effect in 

different conditions. Hence, frequency analysis of porous 

materials due to the vital role of elevated temperature and 

humidity of environment should be considered in the form 

of fundamental tasks. To cover part of this inconsistencies, 

in this paper, free vibration analysis of imperfect 

functionally graded nanoplates including porosity when 

exposed to a hygrothermal environment and embedded in 

an elastic Kerr foundation are studied using an analytic 

model based on the Bi-Helmholtz nonlocal strain gradient 

elasticity theory (B-H NSGT) and second-order shear 

deformation plate theory (SSDT). The B-H NSGT is 

applied to capture the size-dependent effects, the 

displacement fields of those nanoplates are derived on the 

basis of the SSDT. Based on the modified power-law model, 

material properties of porous FG rectangular nanoplates are 

supposed to change continuously along the thickness and 
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three different patterns of porosity namely even, uneven and 

logarithmic uneven are also considered. Then, an analytical 

solution using Naiver series is selected to find the 

eigenvalue frequency. 

The rest of the paper is structured as follows. Section 2 

describes the material properties distribution of nonporous 

materials and governing equations on the basis of B-H 

NSGT and SSDT. Section 3 presents the eigenvalue 

solution method. Section 4 shows the numerical results 

obtained from the proposed model. Finally, remarkable 

conclusions derived from the study are summarized in 

Section 5. 

 

 

2. Theoretical formulations 
 

2.1 Porosity- and thickness-dependent material 
properties of FG plates 

 

Consider an FGM nano-size plate resting on elastic Kerr 

foundation including porosities and a rectangular cross-

section of width b and thickness h, as shown in Fig. 1. The 

nanoplate is composed of Al and Al2O3 and exposed to 

hygrothermal environment. The effective material 

properties of the nanoplate change continuously in the 

thickness direction of nanoplate according to a modified-

power-law rule. The effective material properties P(z) of 

porous nanoplate based on the modified rule of mixture can 

be expressed as (Wattanasakulpong and Ungbhakorn 2014): 

( )
2 2

t t b bP z P V P V
    

= − + −   
   

 (1) 

where ξ denotes the porosity coefficient (for a perfect FGM, 

ξ is set to zero), Pt and Pb denote the material properties of 

top and bottom sides, respectively; Vt and Vb are, 

respectively, the volume fraction of top and bottom surfaces 

and are related by 

1t bV V+ =  (2) 

Then the volume fraction of top side is defined as 

follows: 

1

2

k

t

z
V

h

 
= + 
 

 (3) 

where (k≥0) is a non-negative parameter (power-law index 

or the volume fraction index) which determine the material 

distribution across the nanoplate thickness. Based on Eqs. 

(1) and (2), the effective material properties of the porous 

FG nanoplates with even porosities are variable across the 

thickness direction with the following form 

(Wattanasakulpong and Ungbhakorn 2014): 

( ) ( ) ( )
1

2 2

k

t b b t b

z
E z E E E E E

h

 
= − + + − + 

 
 (4) 

The hygro-thermo-elastic material properties of FG 

plate, including Young’s modulus E, Poisson’s ratio ν, 

thermal expansion α, moisture expansion coefficient β, 

shear modulus G, and mass density ρ, can be determined  

 

Fig. 2 Variation of Young’s modulus through the thickness 

direction of the nanoplate considering different porosity 

schemes. 

 

 

similarly by using Eq. (4). For uneven distribution of 

porosities, the effective material properties are replaced by 

the following form (Karami, Janghorban et al. 2018). 

( ) ( )

( )

1

2

2
1

2

k

t b

b t b

z
E z E E

h

z
E E E

h



 
= − + 

 

 
+ − + − 

 

 (5) 

Also, for logarithmic-uneven distribution of porosities, 

the effective material properties are replaced by the 

following form (Karami, Janghorban et al. 2018). 

( ) ( )

( )

1

2

2
log 1 1

2

k

t b b

t b

z
E z E E E

h

z
E E

h



 
= − + + 

 

  
− + + −  

   

 (6) 

Using the modified power-law rule of the material 

property given by Eqs. (4–6), the variation of the elastic 

modulus through the thickness direction with the three 

different porosity distributions for perfect and imperfect 

FGMs is shown in Fig. 2. From this figure, one can easily 

find out that in the cases of uneven and logarithmic 

porosities, the moduli of elasticity equal the perfect case on 

the top and bottom surfaces of nanoplate, but it does not 

happen in the case of the even porosity. 
 

2.2 Second-Order Shear Deformation Theory (SSDT) 
 

According to the second order shear deformable theory, 

the displacement field of the FG plate can be expressed as 

(Khdeir and Reddy 1999) 

2 2

1 1 2 2 1 2 3; ;u u z z u v z z u w   = + + = + + =  (7) 

where u, v and w are mideplane displacements in the x, y 

and z directions, respectively; φi and ψi denote the rotation 

and the variables of the second-order terms. It is important 

to note that, the one of the advantages of SSDT is the lack 
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of shear correction factor in the formulations. It is worth to 

mention that finding proper shear correction factor in some 

theories such as FSDT has its own difficulty in few cases. 

The other advantage of SSDT is the ability of modeling 

thick-plates accurately. The non-zero strains of the 

suggested plate model can be expressed as follows: 

1 2

21 2

1 1 2 2

1
2

2
1

2

xx

yy

xy

xz

yz

u

x xx

v
z z

y y y

u v

y x y x y x

w

x
z

w

y

 


 




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
 

 


      
    
        

        
= + +       

         
            

+ + +     
          

 
+       

= +     
      +

  

 (8) 

Also, the extended Hamilton’s principle states  

( )
0

0

t

U V K dt + − =  (9) 

where the strain energy is defined by U, the work of 

external loads is introduced by V and K is kinetic energy. 

The virtual strain energy in terms of stresses and strains is 

defined as follow: 

ij ij
v

x x y y yz yz xz xz xy xy
v

U dV

dV

  

         

=

 = + + + + 




 (10) 

Substituting Eqs. (7) and (8) into Eq. (10) yields 

( )

( )
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   
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    



   
+ + +    

 
     

+ + + +  
     

       
= + + + +    

       
 

    + + + + +       
 
+
 

0 0

a b

dydx




   (11) 

where the forces and moments resultants achieved in the 

above equation are introduced as  

 

 

 
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 



    
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=    
          

       
=    

        

 (12) 

in which 
/2

2 3 4

/2
( , , , , ) (1, , , , )

h

ij ij ij ij ij ij
h

A B C D E C z z z z dz
−

=   (13) 

Note that unlike the homogeneous materials, the 
geometrically middle surface of heterogeneous materials 
(such as FG materials) may not coincide with the physically 
middle surface. To simplify the mechanical analyses, the 
physically middle surface is often adopted for quasi-static 
problems (Li and Hu 2017). Free vibration problems may, 
however, involve some errors if the physically middle 
surface is still adopted, see e.g., (Li and Hu 2016) for detail. 
In this study, the geometrically middle surface is thus used 
for the vibration analysis. 

Next, we can define the variation of the work done by 

applied loads in the integral form as: 

Kerr

0 0

( )( + )

a b

T H w w w w
V N N q w dydx

x x y y

 
 

    
= + + 

    
   (14) 

in which NT and NH are related to the changes of 
temperature and moisture as an external loading. In fact, if 
we want to be realistic, all structures are exposed in 
hygrothermal environment so that a large number of studies 
have considered so far (Kar, Mahapatra et al. 2015; 
Mahapatra, Kar et al. 2016; Mahapatra, Panda et al. 2016; 
Mahapatra, Panda et al. 2016). However, in this study they 
are expressed as 

2

2

2

2

( ) ( )( )dz

( ) ( )( )dz

h

T

h

h

H

h

N E z z T

N E z z H





−

−

= 

= 





 
(15) 

In the above relations, ΔT=T-T0 and ΔH=H-H0 where T0 
and H0 can be introduced as the reference temperature and 
moisture, respectively. The external transverse forces qKerr 
caused by elastic medium are represented in terms of 
displacements as (Kneifati 1985) 

2 2

Kerr Kerr

s l u s u

l u l u l u

k k k k k
q q w w

k k k k k k

     
−  = −      

+ + +     
 (16) 

where kl, ku and ks denote the stiffness of upper and lower 
springs and shear layer, respectively; 

2  is the Laplacian 
operator. The variation of kinetic energy in the integral 
format is expressed by 
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(17) 
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where 

/2
2 3 4

0 1 2 3 4
/2

( , , , , ) ( )(1, , , , )
h

h
I I I I I z z z z z dz

−
=   (18) 

The equilibrium equations of motion are obtained by 

inserting Eqs. (11-17) into Eq. (9) as follow 

2 22

1 2

0 1 22 2 2

xyxx
NN u

I I I
x y t t t

   
+ = + +

    
 (19) 

2 22

1 2

0 1 22 2 2

yy xyN N v
I I I

y x t t t

    
+ = + +

    
 (20) 

2
2

Kerr 0 2
( )

yz T Hxz w
q N N w I

x y t

  
+ − − +  =

  
 (21) 

2 22

1 2

1 2 32 2 2

xyxx

xz

MM u
I I I

x y t t t

 


  
+ − = + +

    
 (22) 

2 22

1 2

2 3 42 2 2
2

xyxx

xz

LL u
R I I I

x y t t t

   
+ − = + +

    
 (23) 

2 22

1 2

1 2 32 2 2

yy xy

yz

M M v
I I I

y x t t t

 


   
+ − = + +

    
 (24) 

2 22

1 2

2 3 42 2 2
2

yy xy

yz

L L v
R I I I

y x t t t

    
+ − = + +

    
 (25) 

 
2.3 Bi-Helmholtz nonlocal strain gradient elasticity 

model for FG nanoplates 

 

To show the size dependency of vibration behavior, the 

higher order of nonlocal strain gradient theory can be used 

and the stress can be expressed by: 

( )1(0)

jij ij i  = −  (26) 

where stress σij
(0) corresponds to strain εij and higher-order 

stress σij
(1) correspondents to strain gradient 

ij  and the 

stress can be written as follows 

( )

( )1

(0)

(1) 2

0 0

1

, ,

, ,

( )

( )

ij kl
V

ij kl
V

ijkl

ijkl

x dx

l x dx

Q x x e a

Q x x e a

 

 









  =

  = 




 (27) 

in which Qijkl are the elastic constants; α0 is the kernel 

function corresponding to the strain field; and α1 is the 

kernel function corresponding to the strain gradient field. 

e0a and e1a consider the influence of nonlocal stress field, a 

is an internal characteristic length; l is the strain gradient 

length-scale parameter and captures the effects of higher-

order strain gradient stress field. According to this fact that 

solving differential equations is easier than integral 

equations, Lim et al. (Lim, Zhang et al. 2015) introduced a 

general and extended constitutive equation for the higher-

order nonlocal strain gradient theory as 

2 2 2 2 2 2

1 0 1

2 2 2 2

0

1 1 1

1

ij ijkl kl

ijkl kl

Q

Q l

    

 

     −  −  = −      

 − −   

 (28) 

in which 

0 0 1 1e a, e a = =  (29) 

By choosing μ0=μ1=μ, Eq. (28) can be written in a 

simpler form for lower-order nonlocal strain gradient 

constitutive relation. That is, 

2 2 2 21 1ij ijkl klQ l     −  = −      (30) 

The following equation can be used to include the 

influences of hygro-thermal loading in the Eq. (33) (Karami, 

Shahsavari et al. 2018) 

( )( )

( ) ( )

2 2 2 2

1 0

2 2 2 2 2 2

1 0

1

Δ

1

1 HΔ1 T

ij

ijkl kl kl ij ijQ l

  

     

−  − 

 = −  − −   − −
 

 (31) 

where αij and βij are thermal and moisture expansion 

coefficients, respectively; T and H are the temperature and 

moisture variation, respectively. The equivalent form of Eq. 

(36) is presented as 

ΔT ΔHij ijkl kl jl i ijQ    = − −   (32) 

where the linear operators are defined as 

2 2 2 2

1 0

2 2 2 2 2 2

1 0

(1 )(1 )

(1 ) (1 )l l

  

 

= −  − 

= −  − −  
 (33) 

 
2.4 Governing equations of nonlocal strain gradient 

theory 

 

The equilibrium equations in terms of the displacements 

of the NSGT in conjunction with SSDT for FGM nanoplate 

can be derived by substituting Eq. (12) into Eqs. (19)-(25). 

These obtained equations can be found in Appendix. 

 

 

3. Solution method 
 

Since the order of the size-dependent governing 

equations is higher than that of the classical equations, one 

should find new (non-classical) boundary conditions to 

solve governing equations. Best method for finding the 

boundary conditions may be Hamilton’s principle, which is 

difficult in the presence of nonlocal strain gradient theory. 

In this suggestion, we assume an analytical solution for our 

governing equations (just like Navier method) and then we 

compared our results with the results of researches 

including non-classical boundary conditions. If our results 

have good agreement with them, it may be concluded that 

the suggested series can be a good method for 

approximating the non-classical boundary conditions. 

Therefore, we have the permission to use them for solving 

governing equations. Considering simply supported 

boundary condition, the following series are suggested. 
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 (34) 

where 1i = − ; m
a

 = ; n
b

 = ; m and n are the 

half wave numbers for x and y directions, respectively. The 

simply supported boundary conditions for the rectangular 

nanoplate are 

1 2 0 at 0,xx xxu w N M x a = = = = = = =  (35) 

1 2 0 at 0,yy yy xyv w N M L y b = = = = = = =  (36) 

Using Eq. (41), the simply supported boundary 

conditions for the nanoplates, i.e., Eqs. (42) and (43), will 

be satisfied automatically. By substituting Eq. (34) into the 

appendix’s equations, we obtain the linear equation system 

       2

7 7 7 7
( ) 0mnK M

 
−  =  (37) 

in which  1 2 1 2, , , , , ,
T

mn mn mn mn mn mn mnU V W =     . [K] 

represents the stiffness matrix and [M] denote the mass 

matrix. Eq. (44) is a standard eigenvalue problem where the 

eigenvalues are found by setting the determinant of ([K]-

ωmn
2[M]) to zero. The smallest eigenvalues are the dominant 

natural frequency of the system. 

 

 

4. Solution method 
 

In this section, vibration response of nanosize plates 

made of FGMs with three different types of porosity 

patterns (namely even, uneven, and logarithmic-uneven 

patterns) is investigated based on a NSGT and SSDT. Also, 

it is assumed that the nanoplate is rested on Kerr foundation 

and exposed to the hygrothermal environment. In this study, 

various non-dimensional parameters are used as follows: 
4

3

11

4

11 11

2

2

11

K ( ) (12(1 ))

,K ,K

, and

ul

m m l u

s

s mm

k ak a
h E

D D

k
E

a
h

D
D

  



= = =

= = −

 

The length of nanoplate is considered as a=10 nm. As 

mentioned, the material properties of FGMs are dependent 

Table 1 Material properties of the used 
2 3(Al/Al O )  FG 

nanoplate 

Material E (GPa) ρ (kg/m3) ν α (/K) β (wt.%H2O)- 

Al 70 2702 0.3 23×10-6 0.44 

Al2O3 380 3800 0.3 7×10-6 0.001 

 

Table 2 Comparison of first non-dimensional frequency 

11 11h G
 =  of S-S rectangular plates (a=10nm, 

E=30×106Pa, ρ=2750kg/m3, ν=0.3) 

   μ (nm) 

b/a a/h Method 0 1 2 

1 10 Present 0.0934 0.0854 0.0702 

  TSDT* 0.0963 0.0880 0.0720 

 20 Present 0.0239 0.0218 0.0179 

  TSDT* 0.0241 0.0220 0.0180 

2 10 Present 0.0591 0.0557 0.0484 

  TSDT* 0.0602 0.0563 0.0493 

 20 Present 0.0150 0.0141 0.0123 

  TSDT* 0.0150 0.0142 0.0123 

*TSDT: Ref. (Aghababaei and Reddy 2009) 

 

Table 3 Comparison of non-dimensional frequencies 

m mh E  =  of 2 3Al/Al O  FG square plates, (a=10, 

b/a=1, a/h=10) 

  k 

a/h Method 0 1 2 

10 Present 0.1138 0.0871 0.0790 

 3D exact* 0.1135 0.0870 0.0789 

5 Present 0.4209 0.3234 0.2921 

 3D exact* 0.4169 0.3222 0.2905 

2 Present 1.9004 1.4876 1.3302 

 3D exact* 1.8470 1.4687 1.3095 

*3D exact: Ref. (Jin, Su et al. 2014) 

 

 

on the porosities. Material properties of FG nanoplate are 

listed in Table 1. Table 2 presents the verification of the 

non-dimensional frequency of a rectangular nanoplate of 

simply-supported boundary condition with that presented by 

Aghababaei and Reddy (Aghababaei and Reddy 2009) 

using third-order shear deformation theory (TSDT). In this 

table, the frequencies are in a good agreement for the 

different values of length-to-width and length-to-thickness 

ratios and nonlocal parameters. 

In Table 3 the non-dimensional frequencies of Al/Al2O3 

FG square plates are computed for different power-law 

indices and length-to-thickness ratios a/h. They are 

compared with the 3D-exact solutions of Jin et al. (Jin, Su 

et al. 2014). Again, the present results are in good 

agreement with these solutions. 

Table 4 contains the first three non-dimensional 

frequencies of Al/Al2O3 FG square plate with respect to  
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Table 4 Comparison of non-dimensional frequencies 

( / ) c ch E  =  of Al/Al2O3 FG square plates, (a/h=10, 

b/a=1, μ0=μ1=l=0) 

  k 

Mode Method 0 0.5 1 4 10 

(1,1) Present 0.0579 0.0492 0.0443 0.0383 0.0367 

 
Quasi- 

3D* 
0.0578 0.0494 0.0449 0.0389 0.0369 

(1,2) Present 0.1390 0.1182 0.1066 0.0914 0.0874 

 
Quasi- 

3D* 
0.1381 0.1185 0.1077 0.0923 0.0868 

(2,2) Present 0.2142 0.1826 0.1646 0.1404 0.1340 

 
Quasi- 

3D* 
0.2123 0.1827 0.1660 0.1410 0.1320 

*Quasi- 3D: Ref. (Farzam-Rad, Hassani et al. 2017) 

 

Table 5 Comparison of non-dimensional frequency 
2ˆ

m ma h E  =  for porous plate with different 

distribution type of porosities, (b/a=1, k=1, ξ=0.2, 

μ0=μ1=l=0) 

h/a Method Even Uneven 
Logarithmic-

uneven 

0.1 Exact* 8.248 8.781 8.815 

 Quasi-3D* 8.203 8.845 8.843 

 Present 8.2446 8.7890 8.7853 

0.2 Exact* 7.675 8.097 8.094 

 Quasi-3D* 7.641 8.164 8.163 

 Present 7.6837 8.1388 8.1365 

*Exact: Ref. (Zhao, Choe et al. 2018); *Quasi-3D: Ref. 

(Shahsavari, Shahsavari et al. 2018) 

 

 

different power-law indices. It is obvious that the results of 

present model have very good compliance with the 

available literature (Farzam-Rad, Hassani et al. 2017). 

Table 5 presents a comparison between the results of 

present formulation and those of (Zhao, Choe et al. 2018) 

and (Shahsavari, Shahsavari et al. 2018) reported for porous 

FGMs using 3D- elasticity theory and a higher-order refined 

plate, respectively. As can be seen, a good agreement is 

achieved between the theories especially for thick plates. 

Also, as the last step of comparison section, non-

dimensional frequencies of a higher-order nonlocal strain 

gradient rectangular nanoplates are compared with higher-

order nonlocal strain gradient shear deformation model of 

(Nematollahi, Mohammadi et al. 2017) for different lower-

order and higher-order nonlocal parameters and strain 

gradient length scale parameter in Table 6. It can be seen 

that all the obtained results are in an excellent agreement 

with other available solutions, thus the proposed 

formulation possesses sufficient accuracy and reliability for 

prediction about the free vibration response of FG 

nanoplates. 

One of the main aims of this study is to provide the 

vibration response of simply supported FG nanosize plates 

with respect to nonlocal parameters and strain gradient 

length scale parameter. So, as a benchmark table, vibration 

response of FG nanosize plate for the first-order non-

dimensional natural frequency for different nonlocal 

parameters, strain gradient length scale, aspect ratio (a/b) 

and thickness of the plate has been tabulated in Table 7. As 

can be seen, the non-dimensional natural frequency of FG 

nanoplate rises with the increment of the strain gradient 

length scale and reduces with the increment of the nonlocal 

parameters.  

Relying on the results obtained from this table for 

various amounts of higher-order nonlocal parameter, we can 

conclude that in the case that the strain gradient length scale 

is zero, the variations of the higher-order nonlocal 

parameter will be inefficient. In other words, it can be 

concluded that raising the lower-order nonlocal parameter 

at small amounts of the strain gradient length scale has 

more effects on reducing the non-dimensional natural 

frequency of FG nanoplate, compared with raising the 

higher-order nonlocal parameter. Nevertheless, raising the 

higher-order nonlocal parameter at large amounts of the 

strain gradient length scale has more effects on reducing the 

natural frequency, compared with raising the lower-order 

nonlocal parameter. In order to better understanding of this 

issue, the first three non-dimensional natural frequencies of 

the FG nanoplate have been illustrated in Fig. 3 with respect 

to raising the strain gradient length scale and various values 

of nonlocal parameters when (k=1, a/h=100, b/a=1, ξ=0). 

For different values of nonlocal parameters, Fig. 4 plots 

the variations of the first three non-dimensional natural 

frequencies of the FG nanoplate as a function of scale factor 

(C1), where 

C1=l\μ, μ0=μ1=μ  

It is easily observable that when the scale factor is less 

than unity, the nanoplate provides softer response and the 

size-dependent natural frequencies are smaller than those 

from classical model. For C1=1, the achieved frequencies 

are the same as those determined by classical solution. 

Moreover, for the values of nonlocal parameter smaller than 

gradient parameter, the frequencies achieved from present 

theory are larger than those from the classical model. 

Besides, further changes can be seen in higher order 

frequencies with the variation of the scale factor. Moreover, 

it should be noted that by ignoring the scale factor, the 

obtained results are equal to those from Eringen’s nonlocal 

theory. 

Variations for the first three non-dimensional 

frequencies of FG nanoplate due to differences in small-

scale parameters is presented in Fig. 5. A new scale factor 

(C2) has been applied to study the trend of natural frequency 

in FG nanoplate as follows 

C2=l\μ1, μ0=C2 

It is clear that by taking various values of small-scale 

parameters, the different variations in the responses of 

natural frequency for FG nanoplates could be seen. In some 

cases, the frequency rises by raising the scale factor, while 

in some other cases the frequency reduces according to 

increase of the scale factor. Besides, with considering some 

different values for higher-order nonlocal parameter, with  
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the increase of scale factor, the natural frequency initially 

decrease and then it is increased at higher intervals. 

Obviously, similar trends of movement for other modes of 

vibration can be seen with respect to different small-scale 

parameters.  

As another study, to better understanding the vibration 

response of FG nanoplate in hygrothermal environment 

Figs. 6 and 7 are plotted under uniform temperature and 

moisture rise. Variations of first two natural frequencies of a 

FG nanosize plate with respect to nonlocal parameters and  

 

 

 

various values of temperature differences at (k=1, a/h=10, 

b/a=1, l=1nm, ξ=0) have been demonstrated in Fig. 6. As 

we can see in figure, an increase in the temperature causes 

to a decrease in natural frequencies of the FG nanosize plate. 

In Fig. 7 we study the effects of evaluating moisture 

with respect to nonlocal parameters on the first two natural 

frequencies of FG nanosize plate when (k=1, a/h=10, 

b/a=1, l=1nm, ξ=0). It is evident that the vibration natural 

frequencies become smaller as the moisture difference 

increases for all nonlocal parameters. 

Table 6 Comparison of non-dimensional frequencies of simply supported rectangular nanoplate. (a=10 nm, a/h=50, b/a=1) 

   l (nm)      

μ0 (nm) μ 1 (nm) Method 0 1 2 3 4 5 

 0 Present 0.00352 0.00391 0.00490 0.00352 0.00769 0.00924 

  CPT* 0.00352 0.00391 0.00491 0.00623 0.00770 0.00925 

1 1 Present 0.00352 0.00385 0.00470 0.00586 0.00717 0.00857 

  CPT* 0.00352 0.00385 0.00471 0.00587 0.00718 0.00858 

 2 Present 0.00352 0.00374 0.00435 0.00520 0.00620 0.00729 

  CPT* 0.00352 0.00375 0.00435 0.00521 0.00621 0.00730 

2 0 Present 0.00288 0.00335 0.00447 0.00588 0.00742 0.00902 

  CPT* 0.00288 0.00335 0.00447 0.00589 0.00743 0.00903 

 1 Present 0.00288 0.00327 0.00425 0.00550 0.00688 0.00832 

  CPT* 0.00288 0.00328 0.00425 0.00551 0.00689 0.00833 

 2 Present 0.00288 0.00315 0.00385 0.00479 0.00587 0.00701 

  CPT* 0.00288 0.00315 0.00385 0.00480 0.00587 0.00701 

*CPT: Ref. (Nematollahi, Mohammadi et al. 2017) 

 

Table 7 First non-dimensional frequency of S-S porous nanoplate, (a=10nm, k=1) 

   l (nm) 

a/h μ0 (nm) μ 1 (nm) 0 1 2 3 4 5 

20 0 0 0.02223 0.02433 0.02974 0.03704 0.04533 0.05416 

  1 0.02223 0.02340 0.02863 0.03503 0.04240 0.05031 

  2 0.02223 0.02342 0.02669 0.03138 0.03696 0.04309 

 1 0 0.02032 0.02259 0.02834 0.03593 0.04442 0.05340 

  1 0.02032 0.02223 0.02718 0.03385 0.04143 0.04949 

  2 0.02032 0.02162 0.02512 0.02516 0.03585 0.04214 

 2 0 0.01662 0.01933 0.02581 0.03397 0.04286 0.05211 

  1 0.01662 0.01891 0.02454 0.03177 0.03975 0.04809 

  2 0.01662 0.01818 0.02223 0.02769 0.03388 0.04048 

50 0 0 0.00358 0.00392 0.00479 0.00596 0.00730 0.00872 

  1 0.00358 0.00386 0.00461 0.00564 0.00683 0.00810 

  2 0.00358 0.00377 0.00430 0.00505 0.00595 0.00694 

 1 0 0.00327 0.00364 0.00456 0.00578 0.00715 0.00860 

  1 0.00327 0.00357 0.00438 0.00545 0.00667 0.00797 

  2 0.00327 0.00348 0.00404 0.00484 0.00577 0.00678 

 2 0 0.00268 0.00311 0.00416 0.00547 0.00690 0.00839 

  1 0.00268 0.00304 0.00395 0.00511 0.00640 0.00774 

  2 0.00268 0.00293 0.00358 0.00446 0.00546 0.00652 
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(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

 

(c) Third non-dimensional natural frequency 

Fig. 3 Variations of the first three non-dimensional natural 

frequencies of simply supported FG nanoplate versus 

power-law index with respect to strain gradient length 

scale and nonlocal parameters 

 

 

(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

 

(c) Third non-dimensional natural frequency 

Fig. 4 Variations of the first three non-dimensional natural 

frequencies of the rectangular simply supported FG 

nanoplate with respect to scale factor (C1) and nonlocal 

parameter (μ) 

 

 

 

(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 2 4 6 8 10

ѽ
₁
₁

l (nm)

Classical Solution

μ₀=μ₁=0

μ₀=μ₁=4

μ₀=4, μ₁=6

μ₀=4, μ₁=1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2 4 6 8 10

ѽ
₂
₂

l (nm)

Classical Solution

μ₀=μ₁=0

μ₀=μ₁=4

μ₀=4, μ₁=6

μ₀=4, μ₁=1

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10

ѽ
₃
₃

l (nm)

Classical Solution

μ₀=μ₁=0

μ₀=μ₁=4

μ₀=4, μ₁=6

μ₀=4, μ₁=1

0.05

0.07

0.09

0.11

0.13

0.15

0 0.5 1 1.5 2

ѽ
₁
₁

C₁

Classical Solution

μ=0.2

μ=0.5

μ=1

μ=1.5

μ=2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2

ѽ
₂
₂

C₁

Classical Solution

μ=0.2
μ=0.5
μ=1
μ=1.5
μ=2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2

ѽ
₃
₃

C₁

Classical Solution
μ=0.2
μ=0.5
μ=1
μ=1.5
μ=2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4

ѽ
₁
₁

C₂

Classical Solution

μ₁=0.1

μ₁=0.3

μ₁=1

μ₁=1.5

μ₁=2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

ѽ
₂
₂

C₂

Classical Solution

μ₁=0.1

μ₁=0.3

μ₁=1

μ₁=1.5

μ₁=2

199



 

Behrouz Karami, Davood Shahsavari, Maziar Janghorban and Li Li 

 

 

(c) Third non-dimensional natural frequency 

Fig. 5 Variations of the first three non-dimensional natural 

frequencies of the rectangular simply supported FG 

nanoplate with respect to scale factor (C2) and higher-

order nonlocal parameter (μ1) 

 

 

(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

Fig. 6 Variations of first two natural frequencies of a 

simply supported FG nanoplate under uniform 

temperature rise with respect to nonlocal parameters at 

fixed gradient length scale 
 

 

Furthermore, from Figs. 6 and 7 it is clearly observable 

that inclusion of nonlocal parameters has a stiffness-

hardening impact on the FG nanoplate structure. It is also 

 

(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

Fig. 7 Variations of first two natural frequencies of a 

simply supported FG nanoplate under uniform moisture 

rise with respect to nonlocal parameters at fixed gradient 

length scale 

 

 

seen that natural frequencies of the FG nanoplate are 

significantly affected by the moisture and temperature 

differences, especially at high values of nonlocal parameter. 

Table 8 presents first non-dimensional natural frequency 

of FG nanosize plates, which figures out the effect of aspect 

ratio (varying from 1 to 2), length-to-thickness ratio 

(varying from 2 to 50), power-law index (varying from 0.2 

to 5) and three different types of porosity changes (varying 

from 0 to 0.2) for nonlocal parameters μ0=μ1=2nm and 

strain gradient length scale l=1nm. As it is seen in Table 8, 

results decreasing in the natural frequency, due to increases 

in ceramics phase constituent, and hence, the stiffness of the 

plate. However, a growth in aspect ratio and length-to-

thickness ratio cause to decrease in natural frequency, at all 

power-law index. In addition, it is seen that the variation of 

first non-dimensional natural frequency by employing all 

type of porosities occurs in different ways and this 

phenomenon depends on the composition of the material. 

This may be related to the concentrated of nanovoids inside 

FG plate. 

To the more accurate analysis of vibration response, the 

first three non-dimensional natural frequencies of porous  
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(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

Fig. 8 Variations of first two natural frequencies of a 

simply supported FG nanoplate with respect to power-law 

index k and even type of porosity coefficients ξ and 

various amounts of elastic Kerr foundation parameters. 

 

 

FG nanoplate are summarized in Table 9. Results are 

obtained when (k=1, μ0=μ1=2nm, l=1nm). Also, the results 

have shown the effects of different geometrical parameters 

(i.e. aspect ratio (varying from 1 to 2), length-to-thickness 

ratio (varying from 2 to 50). According to the high accuracy 

of the present model, the results can be as a benchmark for 

future works on the vibration analysis of perfect and 

imperfect FG nanosize plates. 

Next, the effect of elastic Kerr foundation parameters on 

the first non-dimensional natural frequency of the FG 

nanoplate under three different types of porosity is analyzed. 

So, the obtained results for three cases (i.e. classical 

(scaling free), nonlocal strain gradient elasticity theory 

(μ0=μ1=μ) and higher-order nonlocal strain gradient 

elasticity theory) are listed in Table 10, which it can be 

considered as the benchmark results for further comparisons. 

Then, to better illustrate the impact of foundation 

parameters, the variations of first two natural frequencies of 

porous FG nanosize plate on elastic substrate with respect 

to material compositions (power-law indices k) and even 

type of porosities for different Kerr foundation parameters 

is plotted in Fig. 8 when (a/h=10, b/a=, μ0=μ1=2nm,  

 

(a) First non-dimensional natural frequency 

 

(b) Second non-dimensional natural frequency 

Fig. 9 Variations of first two natural frequencies of a 

simply supported FG nanoplate with nonlocal parameters 

and different values of strain gradient length scale. 

 

 

l=1nm). To simplify the issue, it is assumed that stiffness of 

upper and lower springs of Kerr foundation are identical. 

We can see that the stiffness of springs increases, the natural 

frequency increases as well. In fact, the FG nanoplate 

becomes more rigid with an increase in springs stiffness 

leading. Also, it may be concluded that the presence of 

shear layer of foundation provides a continuous interaction 

with the nanoplate and raises the natural frequency. 

Therefore, the Kerr foundation may cause to an increase in 

natural frequencies of FG nanoplates, as it has been 

discussed in several other researches in the literature. In 

addition, it is seen that the linear layer parameters have less 

influences on the frequencies in comparison with the shear 

layer of this foundation. 

As final study, effects of increasing higher/-lower order 

nonlocal parameters on the variations of first-two natural 

frequencies of mounted imperfect FG nanoplates in 

hygrothermal environment are studied in Fig. 9. Results are 

plotted for different values of strain gradient length scale 

when a/h=10, b/a=1, k=1, ξ=0.2, ΔT=50, ΔH=0.5, 

Kl=Ku=20, Ks=10. As we expected, increasing the nonlocal 

parameters is one of the main reasons of decreasing the 

natural frequencies of imperfect FG nanosize plates here. 
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Additionally, variations in nonlocal length scale parameter 

will cause more influences on higher-order frequencies. 

Besides, no matter how much the gradient length scale rises, 

the higher-order nonlocal parameter will force more 

influences on the natural frequencies of imperfect FG 

nanosize plates compared with the nonlocal parameter of 

lower-order. 

 

 

5. Conclusions 
 

In this paper, hygrothermal vibration response of size-

dependent functionally graded nanoplates containing 

porosities were studied using an analytical method. The FG 

porous nanoplate was rested on a three-parametric elastic 

foundation which includes the upper/lower spring layers 

and a shear layer, namely Kerr foundation. Material 

properties were represented via a modified power-law 

distribution, while the governing equations were obtained 

through the principles of Hamilton and virtual work based 

on the second shear deformation theory of plates in 

conjunction with the higher-order nonlocal strain gradient 

elasticity theory. Then, the Navier solution method was 

used to solve the equations of motion of the FG nanoplate 

for simply supported boundary conditions. Afterwards, 

numerical results were presented to study the effects of 

material composition, three different types of porosity, 

small scale parameters, moisture and temperature 

differences and elastic Kerr foundation parameters. Based 

on a wide parametric investigation, the essential 

conclusions can be summarized as follows: 

•  An increase in the power-law indices can causes to a 

large amount of decrease in the natural frequency. 

•  Rising the natural frequency could be inflected by 

rising (decreasing) the strain gradient length scale (nonlocal 

parameter). 

•  As far as mode of frequency is concerned, the 

higher-order frequencies are more under influence of small-

scale parameters compared with lower-order frequencies. 

•  Raising the moisture and temperature differences 

reduce the natural frequency of the FG nanoplate 

considerably so that it is mandatory to obtain their results 

for an accurate analysis on porous materials. 

•  The elastic Kerr foundation can be selected as a 

powerful parameter to the aim of rising the natural 

frequencies of FG nanoplates. 
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Table 8 First non-dimensional frequency of FG nanoplate affected by different porosity pattern (μ0=μ1=2nm, l=1nm) 

b/a a/h Perfect (ξ=0)  Even porosity (ξ=0.2)  Uneven porosity (ξ=0.2)  
Logarithmic-uneven porosity 

(ξ=0.2) 

  k=0.2 k=1 k=5  k=0.2 k=1 k=5  k=0.2 k=1 k=5  k=0.2 k=1 k=5 

1 2 1.45901 1.21681 0.98566  1.49142 1.17073 0.78114  1.48601 1.21639 0.92879  1.48466 1.21648 0.93230 

 5 0.32069 0.26457 0.22316  0.32728 0.25140 0.17551  0.32867 0.26629 0.21510  0.32827 0.26622 0.21562 

 10 0.08652 0.07122 0.06010  0.08825 0.06744 0.04806  0.08889 0.07189 0.05938  0.08877 0.07186 0.05949 

 20 0.02211 0.01818 0.01565  0.02254 0.01720 0.01235  0.02273 0.01838 0.01529  0.02270 0.01837 0.01532 

 50 0.00356 0.00293 0.00252  0.00363 0.00277 0.00199  0.00366 0.00296 0.00247  0.00366 0.00296 0.00247 

2 2 1.08275 0.89936 0.73684  1.10624 0.86169 0.58119  1.10469 0.90056 0.69831  1.10359 0.90055 0.70071 

 5 0.22033 0.18158 0.15421  0.22480 0.17227 0.12135  0.22606 0.18300 0.14929  0.22577 0.18294 0.14961 

 10 0.05795 0.04769 0.04094  0.05911 0.04514 0.03227  0.05956 0.04816 0.03992  0.05947 0.04814 0.03999 

 20 0.01469 0.01208 0.01041  0.01498 0.01143 0.00821  0.01511 0.01221 0.01017  0.01508 0.01221 0.01019 

 50 0.00236 0.00194 0.00167  0.00241 0.00184 0.00132  0.00243 0.00196 0.00164  0.00242 0.00196 0.00164 

Table 9 First three non-dimensional frequencies of S-S rectangular FG nanoplate affected by different porosity patterns (k=1, 

μ0=μ1=2nm, l=1nm) 

b/a a/h Perfect (ξ=0)  Even porosity (ξ=0.2)  Uneven porosity (ξ=0.2)  
Logarithmic-uneven porosity 

(ξ=0.2) 

  11  22  33   11  22  33   11  22  33   11  22  33  

1 2 1.21681 2.50478 3.34691  1.17073 2.44536 3.00339  1.21639 2.49797 3.25648  1.21648 2.49842 3.26110 

 5 0.26457 0.69316 1.13453  0.25140 0.66425 1.09553  0.26629 0.69401 1.13296  0.26622 0.69401 1.13310 

 10 0.07122 0.21219 0.38635  0.06744 0.20163 0.36867  0.07189 0.21357 0.38772  0.07186 0.21351 0.38767 

 20 0.01818 0.05711 0.11096  0.01720 0.05409 0.10524  0.01838 0.05766 0.11186  0.01837 0.05763 0.11182 

 50 0.00293 0.00936 0.01868  0.00277 0.00885 0.01767  0.00296 0.00946 0.01887  0.00296 0.00945 0.01886 

2 2 0.89936 2.00261 2.92806  0.86169 1.94516 2.67432  0.90056 1.99781 2.85764  0.90055 1.99815 2.86151 

 5 0.18158 0.51112 0.85608  0.17227 0.48807 0.82284  0.18300 0.51271 0.85608  0.18294 0.51266 0.85612 

 10 0.04769 0.14837 0.27364  0.04514 0.14076 0.26042  0.04816 0.14953 0.27511  0.04814 0.14948 0.27505 

 20 0.01208 0.03896 0.07542  0.01143 0.03688 0.07145  0.01221 0.03935 0.07610  0.01221 0.03934 0.07607 

 50 0.00194 0.00633 0.01247  0.00184 0.00597 0.01180  0.00196 0.00640 0.01260  0.00196 0.00639 0.01259 

206



 

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment 

 

 

Table 10 First non-dimensional frequency of FG nanoplate affected by different porosity patterns versus elastic Kerr 

foundation, (a/h=20, k=1) 

 Ks Kl=Ku Perfect  Even  Uneven  Logarithmic-uneven 

   ξ=0  ξ=0.1 ξ=0.2  ξ=0.1 ξ=0.2  ξ=0.1 ξ=0.2 

μ0=μ1=l=0 5 10 0.02280  0.02239 0.02178  0.02295 0.02309  0.02294 0.02308 

  20 0.02285  0.02245 0.02185  0.02300 0.02315  0.02300 0.02314 

  30 0.02291  0.02250 0.02192  0.02305 0.02321  0.02304 0.02319 

 10 10 0.02331  0.02296 0.02244  0.02348 0.02365  0.02347 0.02363 

  20 0.02336  0.02302 0.02251  0.02353 0.02370  0.02352 0.23069 

  30 0.02341  0.02307 0.02257  0.02358 0.02376  0.02358 0.02374 

μ0=μ1=μ=1, l=2 5 10 0.02765  0.02711 0.02633  0.02781 0.02798  0.02781 0.02796 

  20 0.02769  0.02716 0.02638  0.02786 0.02802  0.02785 0.02801 

  30 0.02773  0.02721 0.02644  0.02790 0.02807  0.02790 0.02806 

 10 10 0.02807  0.02758 0.02688  0.02825 0.02844  0.02825 0.02842 

  20 0.02811  0.02763 0.02693  0.02830 0.02849  0.02829 0.02847 

  30 0.02815  0.02768 0.02699  0.02834 0.02853  0.02833 0.02851 

μ0=4, μ1=1, l=2 5 10 0.02169  0.02130 0.02074  0.02183 0.02197  0.02183 0.02196 

  20 0.02174  0.02137 0.02081  0.02189 0.02203  0.02188 0.02202 

  30 0.02180  0.02143 0.02088  0.02194 0.02209  0.02194 0.02208 

 10 10 0.02222  0.02190 0.02143  0.02239 0.02255  0.02238 0.02254 

  20 0.02228  0.02196 0.02150  0.02244 0.02261  0.02244 0.02260 

  30 0.02233  0.02202 0.02157  0.02250 0.02267  0.02249 0.02265 

μ0=1, μ1=4, l=2 5 10 0.02307  0.02265 0.02203  0.02322 0.02336  0.02321 0.02335 

  20 0.02312  0.02271 0.02210  0.02327 0.02342  0.02327 0.02341 

  30 0.02317  0.02276 0.02217  0.02332 0.02347  0.02332 0.02346 

 10 10 0.02357  0.02321 0.02268  0.02374 0.02391  0.02374 0.02390 

  20 0.02362  0.02327 0.02275  0.02379 0.02396  0.02379 0.02395 

  30 0.02367  0.02332 0.02282  0.02385 0.02402  0.02384 0.02400 

μ0=μ1=4, l=2 5 10 0.01544  0.01523 0.01492  0.01556 0.01568  0.01555 0.01567 

  20 0.01552  0.01531 0.01502  0.01563 0.01576  0.01563 0.01575 

  30 0.01559  0.01540 0.01511  0.01572 0.01584  0.01571 0.01583 

 10 10 0.01618  0.01606 0.01587  0.01633 0.01648  0.01633 0.01647 

  20 0.01625  0.01614 0.01596  0.01641 0.01656  0.01640 0.01655 

  30 0.01633  0.01622 0.01605  0.01648 0.01664  0.01648 0.01663 
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