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1. Introduction 
 

Laminated composite curved panels are used in 

structures like aircrafts, space shuttles, high-performance 

machines, etc. Today they are being used in civil 

engineering, biomedical automobile fields as well. 

Structures made of composite materials are costly but, due 

to their high strength to weight ratio, they are essential. 

Thus, these structures have to be analysed and designed 

carefully. Thin structures made up of composite materials 

are susceptible to stability loss. Analysing the whole 

structure is time consuming, so small parts of the structures 

are taken up for analysis and design. The laminated 

composite curved panels are quite essential parts of various 

complex structures. During the operation period of these 

complex structures, the panels are subjected to dynamic 

loads along their edges from their neighbouring components. 

At critical loads, instability may arise in these panels which 

can further damage the whole structure. This instability 

caused due to dynamic loads must be considered while 

designing a curved panel which is operating in dynamic 

environment. In addition, emergencies like accidents, blast 

loading, etc. can render the panel unstable. Hence these 

components should be designed properly according to the 

requirements. Dynamic stability of structures is a very vast 

area which includes dynamic buckling due to pulsating 

loads and impulsive loads. Jansen (2005) described the 

difference between two types of dynamic instabilities: 

parametric excitation and dynamic buckling. In dynamic 

buckling, the loading is an impulse load or step load, and in 

parametric excitation, the structure is subjected to vibratory  
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loads or pulsating loads. In the present investigation the 

stability of the laminated composite curved panels subjected 

to suddenly applied load along their boundaries are studied.  

A number of articles have been published in field of 

static buckling of composite laminates. Gerard and Becker 

(1957) reported many tables and charts considering effects 

of various parameters on static buckling of composite plates. 

Chamis (1969) studied buckling of simply supported 

composite plates using Galerkin method and reported 

results for various aspect ratios and loading conditions. 

Leissa (1985) studied static buckling of laminated 

composite plates and shells and reported the effects of 

various parameters on the static buckling loads. Leissa 

(1990) studied the static buckling of single-layered simply 

supported square composites having non-uniformly spaced 

fibres. Rajasekaran (2017) studied isotropic and orthotropic 

plates with various boundary conditions and loading 

functions subjected to in-plane loads to analyse static 

buckling and free vibration using element-based differential 

quadrature method. Kiran and Kattiman (2017) studied the 

static buckling of magneto-electro-elastic plates subjected 

to in-plane compressive loads using first order shear 

deformation theory. The effects of thickness, load factor, 

aspect ratio and boundary conditions have been reported. 

Topal (2017) studied the static buckling load optimisation 

of stepped columns constituted of symmetric angle-ply 

laminates. Results of optimisation for various parameters 

like fillet radius, boundary conditions have been presented. 

Zerin et al. (2017) studied a large span self supporting 

roofing structure assuming it to be a laminated composite 

plate structure using finite element method to calculate the 

static buckling load. Various lamination sequence, cutout 

shapes, free-edge forms have been considered in linear 

buckling analysis in ANSYS software.  

Many investigators have undertaken the static buckling 

study of shell structures as well. Karman (1941) studied the 
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static buckling of thin cylindrical isotropic shells subjected 

to axial loads using non-linear large deformation theory. 

Hutchinson et al. (1971) studied the effect of imperfection 

on static buckling of cylindrical shells. Zhang and 

Matthews (1983) studied the cylindrically curved panels 

subjected to both axial and shear forces for static buckling. 

Di Sciuva and Carrera (1990) developed linearized 

equations for static buckling of cylindrical shells using 

analytical method and using finite element analysis. Bisagni 

(1999) reported the experimental methodology and results 

of static buckling of cylinders made up of carbon fiber of 

various layup sequences. Jaunky and Knight Jr. (1999) 

calculated static buckling loads of laminated composite 

cylindrical panels using various and shell theories and 

boundary conditions. Hilburger et al. (2001) conducted 

experimental and numerical study on quasi-isotropic curved 

panels with central cutout to calculate the static buckling 

loads. The effect of parameters like cutout size and initial 

imperfection have been taken into consideration for pre-

buckling, buckling and post-buckling response. Kidane et al. 

(2003) studied the static buckling of grid stiffened 

composite cylindrical shells subjected to axial loads 

experimentally and using analytical methods and reported 

results for various winding angles and stiffener spacing. 

Moon et al. (2010) Studied experimentally and using finite 

element analysis, the static buckling of composite cylinders 

subjected to hydrostatic pressure.  

The parametric instability of composite plates has also 

been studied by many authors. Moorthy et al. (1990) 

studied the dynamic instability of composite plates 

subjected to in-plane loads. The effects of damping, 

orthotropy ply orientation have been studied by the authors 

using finite element analysis. Chattopadhyay and Radu 

(2000) studied the dynamic instability of composite plates 

using finite element analysis. The authors have used higher-

order shear deformation theory considering both transverse 

and rotary inertia effects. Ramachandra and Panda (2012) 

studied the dynamic instability of composite plate subjected 

to non-uniform in-plane loads for various boundary 

conditions. Wang et al. (2013) studied vibrational 

instability of laminated composite plates subjected to 

periodic loads in hygrothermal atmosphere. The authors 

reported the regions of dynamic instability in the plate. 

Kumar et al. (2015) studied parametric instability of 

composite skew plates subjected to in-plane loads. The 

authors have reported results considering various 

parameters like aspect ratio, thickness, skew angle, loading 

function and boundary conditions Darabi and Ganesan 

(2017) studied dynamic instability of internally tapered 

composite plates subjected to harmonic in-plane loads. 

The parametric instability of shell structures has been 

studied by some authors. Sahu and Datta (2001) studied the 

dynamic instability of doubly curved panels subjected to in-

plane load using finite element analysis. The authors have 

reported the effects of static load factors, boundary 

conditions, shallowness ratio. Qatu (2002) reported a very 

extensive literature survey on the works undertaken in the 

field of vibration of shells till 2002. This research article is 

in two parts. Patel et al. (2006) studied static buckling and 

dynamic instability of various kinds of stiffened shell panels. 

The authors have reported results for various parameters 

like shell geometry, stiffening scheme lamination scheme 

for laminated composite shells. Alijani and Amabili (2014) 

conducted an extensive literature survey on the stability and 

vibration of isotropic, composite and functionally graded 

material shells from 2003 till 2013. Dey and Ramachandra 

(2014) studied the dynamic instability of composite curved 

panels subjected to transverse patch and partial edge 

loading conditions. 

Dynamic pulse buckling of laminated composite plate 

and shell structures have been studied by few authors. Gilat 

and Aboudi (1995) studied the dynamic buckling of plates 

and cylindrical shells. The authors reported that the effect of 

axial inertia is more pronounced when the pulse durations 

were short. Ari-Gur and Simonetta (1997) studied dynamic 

buckling of composite plates and reported that dynamic 

buckling loads can be static buckling loads if the applied 

pulse frequency is near to the fundamental frequency of the 

plate. Kubiak (2005) studied thin-walled rectangular 

composite plates in which, the fiber volume fraction was 

varied width-wise. The analytical-numerical method 

proposed by the author did not account for the changes in 

buckling modes, which occurs during the analysis. Bisagni 

(2005) studied the dynamic buckling of composite cylinders 

using finite element analysis and checked the effect of 

loading duration and imperfection on dynamic buckling 

loads. Kowal-Michalska and Mania (2008) calculated the 

deflection of isotropic and orthotropic plates and studied the 

effects of loading function and initial imperfection. The 

authors gave a buckling criterion for orthotropic plate by 

comparing the uniaxial limiting stress in the direction of 

loading with that of the stress obtained from Hill's criterion. 

Shariyat (2011) reported a theory for viscoelastic composite 

plates that are subjected to thermoplastic loadings, 

calibrated with the help of nonlinear strain-displacement 

expressions. Priyadarsini et al. (2012) studied the dynamic 

buckling of composite cylinders experimentally and using 

finite element analysis and checked the effects of geometric 

properties and layup sequence. Gao and Fatt (2012) studied 

composite single curvature panels subjected to external 

blasts using Lagrange's equation of motion and Budiansky-

Roth criterion. Azarboni et al. (2015) studied the dynamic 

buckling of isotropic plates subjected to various loading 

functions, boundary conditions, imperfections. Ovesy et al. 

(2015) studied the dynamic buckling of delaminated 

composite plates using semi-analytical finite strip method. 

Yang and Wang (2016) studied the dynamic buckling of 

isotropic stiffened plates with elastically restrained edges 

subjected to in-plane loads and proposed a new criterion for 

dynamic buckling. 

From the literature, it is revealed that the static buckling 

and dynamic instability with pulsating load of composite 

plate/shell is given considerable importance by the earlier 

investigators. However, the instability study of laminated 

composite curved panels with suddenly applied load is very 

few, though it is vital domain of research. So, still there 

exists a lot of scope to study the dynamic buckling 

behaviour of laminated composite curved panels which are 

subjected to impulsive loading in detail. In the current study, 

the dynamic buckling behaviour of laminated composite 
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curved panels are studied considering aspect ratio, radius of 

curvature, thickness and ply orientation using finite element 

method. Vol’mir’s criterion is used to calculate the dynamic 

buckling loads. According to this criterion, the critical 

transverse deflection value is assumed to be equal to the 

thickness of plate (Kubiak (2013)). The results reported 

here will help a designer to design the plates which are 

operating in dynamic environment so that these will be 

dynamically stable, safe and economical. All the results 

reported in the study are numerical, some experiments are 

quite necessary in order to understand the behaviour in 

depth. 

 

 

2. Theory and formulation 
 

The non-linear dynamic equilibrium equation solved by 

Abaqus/Explicit is given in Eq. (1). 

[𝑀]{�̈�}  +  [𝐶]{�̇�}  + [𝐾({𝑢})]{𝑢} =  {𝐹(𝑡)} (1) 

Where, [M] is the mass matrix, [C] the damping matrix, 

[𝐾({𝑢})]  the stiffness matrix, which depends on the 

deformations due to the geometric non-linearity, {u} the 

nodal displacement vector, {�̇�} the nodal velocity vector, 
{�̈�} the nodal acceleration vector and {F (t)} the load 

vector. In the current study, the damping effect is not 

considered. The non-linear dynamic equilibrium equation 

solved is shown in Eq. (2). 

[𝑀]{�̈�}  + [𝐾({𝑢})]{𝑢} =  {𝐹(𝑡)} (2) 

The current study is carried out in Abaqus/Explicit in 

which, shells which having thickness less than 1/15th of that 

of the characteristic length, are called thin shells which are 

modelled using Kirchhoff shell theory. Abaqus/Explicit 

consists of general-purpose shell elements which provides 

solution to both thin and thick shells. In the current study, 

the laminated composite curved panel is modelled with S4R 

element. S4R is a general-purpose conventional shell 

element. The non-linear dynamic equation is solved by 

keeping the time step automatic as the numerical stability of 

the dynamic explicit analysis depends on the time-step. 

 

 

3. Results and discussion 
  

Convergence and validation study are carried out using 

some of the results available in the literature. Then the 

current problem is discussed. 

 

3.1 Convergence and validation study 
 
3.1.1 Convergence Study for laminated composite 

curved panel 
 The convergence study is carried out on two problems. 

Non-dimensional buckling load is evaluated for a square 

planed, simply supported, uniformly loaded symmetric 

cross-ply panel (0°/90°/0°/90°/0°) as shown in Fig. 1. The 

support conditions are shown in Fig. 2. The material 

properties and other parameters are taken as: b/a = 1, R/a = 

20, E11 = 40E22, G12 = G13 = 0.5E22, G23 = 0.6E22 and ν12 =  

 
Fig. 1 Geometry of the panel with uniform loading 

 
Fig. 2 Boundary conditions for the panel 

 

Table 1 Non-dimensional static buckling load for panel with 

a/h=100. b/a=1 and R/a= 100 

Analysis Mesh size 
Buckling load 

kN/m Non-dimensional 

Present 40 × 40 337.51 36.4875 

Di Sciuva and Carrera 

(1990) 
5 × 5 - 36.86 

Patel et al. (2003) 8 × 8 - 36.8452 

 

 

0.25 as reported by Di Sciuva and Carrera (1990). The non-

dimensional buckling load is calculated using Eq. (3). The 

convergence study of the non-dimensional static buckling 

loads for the curved panel of a/h = 100 for different mesh 

sizes is shown in Fig. 3. For the same material properties 

with a/h = 50, the convergence study is again carried out 

and the results are shown in Fig. 4. 

𝑃𝑐𝑟  = 
𝑃cr 𝑏2 

𝐸22ℎ3  (3) 

In order to perform dynamic analysis during the next 

phase of the study, an adequate density value is to be 

considered. The material properties presented by 

Priyadarsini et al. (2012) are used. E22 = 9250 MPa and 

density= 1700 Kg/m3 for a/h=100 and a/h=50 cases. The 

value of E22 is substituted in the ratios given above and the 

static buckling loads are calculated. The static buckling 

loads for curved panels with a/h=100 and a/h=50 are 

presented in Tables 1-2, respectively. 

It is observed that in both the cases, the results are 

almost converged with mesh size of 40 × 40. Further, for 

validation of the present results, they are compared with  
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Fig. 3 Non-dimensional buckling load with different mesh 

sizes for curved panel with a/h=100 

 
Fig. 4 Non-dimensional buckling load with different mesh 

sizes for curved panel with a/h=50 

 

Table 2 Non-dimensional static buckling load for panel with 

a/h=50. b/a=1 and R/a= 100 

Analysis Mesh Size 

Buckling Load 

kN/m 
Non-

dimensional 

Present 40×40 2594.5 35.0607 

Di Sciuva and 

Carrera (1990) 
5×5 - 35.42 

 

 

finite element results reported by Di Sciuva and Carrera 

(1990) and Patel et al. (2003) for the case with a/h=100 in 

Table 1. The results with a/h= 50 are shown in Table 2, 

along with the finite element results of Di Sciuva and 

Carrera (1990). 

The convergence and validation study carried out on the 

laminated composite curved panel show that the results with 

mesh size 40 × 40 match well with the available results. 

 

3.1.2 Nonlinear dynamic response of Aluminium 
Plate subjected to axial load 

To check the response of a plate to dynamic loading, a 

square planed aluminium plate is subjected to dynamic axial 

load and the central deflection of the plate is observed. The 

 
Fig. 5 Ratio of dynamic to static displacement with ratio 

of applied time(T) to first time period (Tb) of aluminium 

plate with a/b=1, a=0.5m, h= 0.005a and imperfection= 

0.2h 

 

 

present results are compared with the results from Azarboni 

et al. (2015) and Petry and Fahlbusch (2000). The 

geometric properties of the plate are taken from Azarboni et 

al. (2015), but the material properties are taken from 

Kowal-Michalska and Mania (2008). E = 70GPa, ν = 0.33, 

ρ = 2950 kg/m3; a/b = 1, a = 0.5m, h = 0.005a. The 

geometry of the plate is shown in Fig. 1. Simply supported 

boundary conditions taken for both pre-buckling and 

buckling stages are same as shown in Fig. 2. The initial 

imperfection is taken as 0.2h (= 20% of the thickness of the 

plate). The imperfection of first buckling mode is 

incorporated in the plate. The effect of loading duration is 

observed. The static buckling load is calculated using linear 

static instability analysis (Eigenvalue), which in this case is 

21648 N/m. Then, first natural period of the plate is 

calculated (Tb = 21.36 × 10-3 s). Next, for calculating the 

static transverse displacement with the in-plane load, the 

non-linear static Riks analysis is performed. The central 

transverse displacement corresponding to three times static 

buckling load (3×Pstatic) is calculated while incorporating 

imperfection in the plate (wstatic = 0.0057m). For different 

values of durations of loading (T), the dynamic central 

transverse displacements (wdyn) are calculated using non-

linear dynamic analysis (Abaqus/Explicit). The loading 

function is a sinusoidal function given by Eq. (4). 

𝑃𝑑𝑦𝑛 = {
3𝑃𝑠𝑡𝑎𝑡𝑖𝑐 sin

𝜋𝑡

𝑇
, 0 ≤ 𝑡 ≤ 𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

The results (ratio of 𝑤𝑑𝑦𝑛/𝑤𝑠𝑡𝑎𝑡𝑖𝑐  vs. ratio of 𝑇/𝑇𝑏) of 

the dynamic analysis are presented along with the FEM 

results of Azarboni et al. (2015) and Petry and Fahlbusch 

(2000) in Fig. 5.  

 

3.2 Dynamic buckling 
 

The laminated composite curved panel used in the 

convergence and validation study is again used in the  
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Fig. 6 Rectangular pulse load 

 

 
Fig. 7(a) Transverse Displacement vs. Time plot of 

loading duration of 0.1s 

 
Fi1g. 7(b) Transverse Displacement vs. Time plot of 

loading duration of 0.1s 

 

 

dynamic buckling study. The material properties used are: 

b/a = 1, R/a = 20, a/h= 100, E11 = 40E22, G12 = G13 = 0.5E22, 

G23 = 0.6E22 and ν12 = 0.25. Dynamic rectangular pulse 

loads as shown in Fig. 6 are applied for various durations. 

As described earlier, the material properties reported by  

 
Fig. 7(c) Transverse Displacement vs. Time plot of 

loading duration of 0.1s 

 
Fig. 7(d) Transverse Displacement vs. Time plot of 

loading duration of 0.1s 

 

 

Priyadarsini et al. (2012) are used with E22 = 9250 MPa and 

density= 1700 Kg/m3. The value of E22 is substituted in the 

ratios given above. Table 3 shows the calculated dynamic 

buckling loads.  

Figures 7(a)-7(d) show the transverse displacement vs. 

time plots for calculating the dynamic buckling load for a 

loading duration of 0.1s. For various magnitude of loads 

(250 kN/m, 300 kN/m, 324.1 kN/m and 330 kN/m), 

transverse displacements are observed. The loads are 

applied for 0.1s and the responses are observed till 0.25s. 

The target transverse displacement is set in accordance with 

Vol’mir’s criterion as the value of thickness of the curved 

panel = 0.01m (Kubiak (2013)).  The load which gives a 

displacement equal to or almost reaches the target value is 

the dynamic buckling load according to Vol’mir’s criterion. 

According to Vol’mir’s criterion, thin-walled structures 

when subjected to dynamic loads become unstable when the 

transverse displacement reaches the magnitude of thickness 

of the structure (Vol’mir (1974)). In certain structures, the 

abrupt change in displacement with respect to Budiansky- 
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Table 3 Dynamic buckling loads for laminated composite 

curved panel  

Time (s) Load (kN/m) Displacement (m) 

1 324 0.01010 

0.1 324.1 0.01005 

0.05 376.5 0.01001 

0.01 1467.1 0.01001 

 
 

Hutchinson criterion is not observed (Patel et al., (2011)). 

In the present investigation also the un-bounded transverse 

or in-plane displacement is not observed. Moreover, the 

results obtained by Vol’mir criterion are within 10 percent 

variation with the results obtained by Budiansky-

Hutchinson as per Table 6.13 of the monograph authored by 

Kubiak (2013).  Hence in the current study, Vol’mir’s 

criterion is used. 

It is important to mention here is that according to 

Vol'mir's criterion during the transverse vibration of the 

plate due to the application of in-plane dynamic load, the 

plate dynamically buckles if the amplitude of transverse 

vibration reaches the magnitude of thickness even once, 

however additional criteria in the literature might not 

support this conclusion. Hence, the results obtained using 

Vol'mir's criterion may further be validated by other criteria 

to be sure, whether the dynamic buckling is actually 

occurring or not. Further, for in-depth understanding, 

experimental investigations are quite necessary. The authors 

will focus on these points in their future work.     

The static buckling load for this panel is 337.51 kN/m, 

whereas the dynamic buckling load is 324.1 kN/m with 

rectangular pulse load of duration 0.1s. 

It is observed from Table 3 that for short durations of 

application of load (like 0.01 s), the dynamic buckling load 

is higher than static buckling load (337.51 kN/m). However, 

as the loading duration is increased, the dynamic buckling 

load starts decreasing.  

 

3.2.1 Effect of aspect ratio 
The effect of aspect ratio is studied on the same 

laminated composite curved panel in this section. The ratio 
b/a is increased, keeping a constant and non-linear dynamic 
buckling loads are calculated. The pulse loads are applied 
for various durations. The dynamic buckling loads for 
laminated composite curved panels with different aspect 
ratios and various loading durations are shown in Fig. 8.  

It is observed that the variation in dynamic buckling 
loads is significant till b/a = 2. Further increase in this ratio 
does not affect the dynamic buckling load much. The 
dynamic buckling loads for loading durations of 1s and 0.1s 
are very close to the static buckling load signifying quasi-
static load. Figure 9 shows the deformed shape of the 
laminated composite curved panel with b/a =2 at critical 
point of loading and deformation scale factor = 10. The 
scale factor is chosen so as to visualise the deformation in a 
better way. 

 

3.2.2 Effect of radius of curvature 
The effect of radius of curvature is studied on the same 

laminated composite curved panel for non-linear dynamic  

 
Fig. 8 Non-linear dynamic buckling load vs b/a plot for 

various loading durations. R/a= 20 and a/h= 100 

 

 
Fig. 9 Deformed shape of laminated composite curved 

panel with b/a = 2, R/a =20 and a/h=100 

 

 

buckling behaviour in this section. The ratio R/a is varied 

along with loading duration. Figure 10 shows the non-linear 

dynamic buckling loads for laminated composite curved 

panels with different radius of curvatures and various 

loading durations. 

It is observed that for a particular loading duration, the 

variation in dynamic buckling load is not significant. It is 

significant to note that for large R/a ratios, the non-linear 

dynamic buckling loads are very close to the static buckling 

loads. Figure 11 shows the deformed shape of laminated 

composite curved panel with R/a = 5, at critical point of 

loading and deformation scale factor =12. 
 

3.2.3 Effect of thickness of the panel 
The effect of thickness of the panel is studied in this 

section. Keeping the number of plies same (5 nos.); the 

thickness is varied. The ratio a/h is varied keeping a 

constant. In order to have a better understanding of the 

effect of thickness, the analysis is carried out for two panels 

with different radius of curvatures. One with R/a = 20 and 

other with R/a = 5. In both the cases, aspect ratio (b/a) is  
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Fig. 10 Non-linear dynamic buckling load vs R/a plot for 

various durations of loading. a/b= 1 and a/h= 100 

 

 
Fig. 11 Deformed shape of laminated composite curved 

panel with R/a = 5 and b/a = 1 

 

 
Fig. 12 Non-linear dynamic buckling load vs a/h plot of 

laminated composite curved panel with R/a = 20 for 

various loading durations and a/b= 1 

 
Fig. 13 Non-linear dynamic buckling load vs a/h plot of 

laminated composite curved panel with R/a = 5 for 

various loading durations and a/b= 1 
 

 
Fig. 14 Deformed shape of laminated composite curved 

panel with R/a = 20, a/h = 40 and a/b= 1 
 

kept 1. Figure 12 shows the variation of load for different 
a/h ratios and for various loading durations for R/a = 20. 
Figure 13 shows the variation of load for different a/h ratios 
and for various loading durations for R/a = 5. 

The applied load is a line load (kN/m). To be able to 
compare the results, the loads are divided with their 
corresponding thicknesses. Therefore, we calculate the 
dynamic buckling pressure (expressed in kN/m2). The panel 
with a/h = 40 is a very thick and hence the non-linear 
dynamic buckling loads are very high even for longer 
durations of loading. As the ratio increases, the dynamic 
buckling loads reduce gradually. It is seen from Fig.12 that 
decrease in the thickness of the curved panel, the non-linear 
dynamic buckling load also decreases for all loading 
durations in a uniform manner. However, for the panel with 
R/a=5, irregular variation in dynamic buckling load is 
observed for loading durations 0.025s and 0.01s (Fig. 13). 
This signifies that panels with greater curvature need to be 
designed carefully. Figure 14 shows the deformed shape of 
laminated composite curved panel with R/a =20 and a/h = 
40, at critical time of loading and deformation scale factor 
=15. Figure 15 shows the deformed shape of laminated 
composite curved panel with R/a =5 and a/h = 40, at critical 
time of loading and deformation scale factor =15. 
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Fig. 15 Deformed shape of laminated composite curved 

panel with R/a = 5, a/h = 40 and a/b= 1 

 
Fig. 16(a): Non-linear dynamic buckling load vs b/a plot 

for balanced and cross-ply laminates. Loading duration = 

1 s. R/a= 20 and a/b= 1 

 
Fig. 16(b): Non-linear dynamic buckling load vs b/a plot 

for balanced and cross-ply laminates. Loading duration = 

0.1 s. R/a= 20 and a/b= 1 

 
Fig. 16(c) Non-linear dynamic buckling load vs b/a plot 

for balanced and cross-ply laminates. Loading duration = 

0.01 s. R/a= 20 and a/b= 1. 

3.2.4 Effect of ply orientation 
In this section, the effect of ply orientation is studied. 

Instead of cross-ply laminates, balanced laminates are used. 

The configuration is taken as (+45°/-45°/+45°/-45°/+45°). 

Since the loading is in the axial direction, this study will 

show the significance of orientation of plies for better 

response of the laminated composite curved panel. Figures 

16(a)‒16(c) show non-linear dynamic buckling loads for 

balanced laminates and cross-ply laminates for different b/a 

ratios and loading durations of 1 s, 0.1s, and 0.01s 

respectively. The R/a ratio is 20 and a/h= 100. 

It is seen from the Fig. 16(c) that the dynamic buckling 

loads are relatively smaller when the ply orientation is 

changed. A peak is observed for b/a = 2, with 1s and 0.1s 

loading duration but for 0.01s loading duration, it is the 

lowest value. It is observed that for shorter durations of 

loading, balanced laminates have lower dynamic buckling 

loads. However, this trend changes once the loading 

duration is increased. The non-linear dynamic buckling 

loads are close for loading durations 1s and 0.1s.  

Further, the effect of ply orientation on dynamic 

buckling load is studied keeping b/a ratio constant and 

varying R/a ratio for different loading durations. The aspect 

ratio (b/a) is kept 1 and the R/a ratios 5, 20 and 50 are taken. 

Figures 17(a)-17 (c) show the non-linear dynamic buckling 

loads for balanced laminates and cross-ply laminates for 

different loading durations with R/a ratios 5, 20 and 50 

respectively. 
With increase in R/a ratio, the dynamic buckling load 

keeps increasing. This is because the curvature keeps 
decreasing with increase in R/a ratio. Comparing panels 
made up of balanced laminates and panels made up of 
cross-ply laminates, balanced laminates have higher 
dynamic buckling load when the loading duration is greater 
than 0.025s, but have a lower value when loading duration 
is lesser than 0.025s. Panel made up of balanced laminates 
with R/a= 5 is a cylindrical panel, it shows a negligible 
variation in dynamic buckling load for various durations of 
loading. 

 

 

4. Conclusion 
 

The conclusions of this study can be made as follows, 
•  The non-linear dynamic buckling loads can be lower 

than static buckling loads for longer durations of loading. 

•  Panels with aspect ratio (b/a) greater than 1.5 have 

negligible effect on non-linear dynamic buckling loads. 

•  The effect of aspect ratio and effect of curvature is 

not prominent on the dynamic buckling load when the 

loading durations is more than 0.025s. 
•  With increase in R/a ratio, the panel becomes 

relatively flat, so the non-linear dynamic buckling load 
increases steadily. This effect is more prominent when the 
loading duration is lower than 0.025s. 

•  With decrease in thickness of the panel, the dynamic 
buckling pressure also decreases. However, panels with 
higher curvature need to be designed carefully when the 
loading duration is 0.025s and lower. 

•  Balanced laminates with different aspect ratios (b/a) 
have higher dynamic buckling load than cross-ply laminates 
when the loading duration is high. 
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Fig. 17(a): Non-linear dynamic buckling load vs Time 

plot for balanced and cross-ply laminates for different 

loading durations. R/a= 5. b/a= 1 and a/h=100. 

 

Fig. 17(b): Non-linear dynamic buckling load vs Time 

plot for balanced and cross-ply laminates for different 

loading durations. R/a= 20. b/a = 1 and a/h=100 

 

Fig. 17(c) Non-linear dynamic buckling load vs Time plot 

for balanced and cross-ply laminates for different loading 

durations. R/a= 50. b/a = 1 and a/h=100 

•  When the loading duration is 0.025s, both balanced 

and cross-ply laminates have very close dynamic buckling 

loads  

•  Laminated composite curved panels comprising of 

balanced laminates have no variation in non-linear dynamic 

buckling load when the R/a ratio is 5.  

•  In the present investigation, all the results reported 

are based on Vol'mir's criterion, however additional criteria 

in the literature might not support these results. In addition 

to this, the experimental investigations are quite necessary 

for in-depth understanding of the dynamic buckling 

behaviour of curved panels. The authors will focus on these 

points in their future work. 
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