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1. Introduction 
 

Box section steel members have been extensively used 

in various engineering practices including buildings, 

bridges, and other mechanical and agricultural equipment 

(Moazed et al. 2009). For building, an exterior column in 

framing system creates a typical joint known as T-joint, in 

which the forces are geometrically transmitted to one side 

of the column. For a rectangular box T-joint, shear lag 

problem raised concern over the stress concentration 

localized at the junctions between the beam flange and web, 

which possibly cause an unexpected failure of the weld at 

the joint region. Therefore, checking the stress 

concentration at the joint region is required in a preliminary 

design stage. The stress concentration due to shear lag in a 

box member can be evaluated using several potential 

techniques, such as least-work solution (Reissner 1941, 

1946, Dezi and Mentrasti 1985, Chang and Zheng 1987, 

Lee et al. 2001, Lin and Zhao 2011), closed-form solution 

(Chen et al. 2014, Zhou et al. 2012), harmonic analysis 

(Winter 1940, Kristek et al. 1990, Tahan et al. 1997), or 

finite element method (FEM). Each method, however, has 

not yet provided a more simplified application to minimize 

calculation time for the box members in the preliminary 

design stage. For instance, FEM is one of the most powerful 

computation methods to evaluate the characteristic terms 

with reliable approximate values. Nonetheless, the approach  
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requires comprehensive modeling and costly computation 

time and memory sizes. Currently, the least-work solution is 

one of the simplest methods to conveniently predict the 

stress due to shear lag. Such that issue has been considered, 

a challenge to develop an easy and accurate stress 

evaluation approach for the box members has been 

conducted. 

Shear lag in a box T-joint deals with the stress 

concentration at both edges of the beam or column flange. 

Moreover, the phenomenon affects to decrease the lateral 

stiffness of the structure due to the growth of the structural 

deflection (Mohammadnejad and Kazemi 2018). The peak 

stress is normally critical to cause cracking or failure in the 

weld region under cyclic loads (Fadden and McCormick 

2013). The examples of the failure had been observed in 

Japan during the great Hanshin earthquake in 1995; there 

were cracking and brittle failures occurred in the weld 

region of the knee joint in steel frame pier (Miki and Sasaki 

2005). Afterward, the required peak stress in the weld 

region of the joint had been numerously assessed using both 

FEM and experiment. The assessment was also conducted 

for comparison with the existing manual method which was 

utilized based on Okumura’ stress equation (Okumura and 

Ishizawa 1968). The comparison results showed that the 

existing approach was not alternative enough to evaluate the 

peak stress for the preliminary design stage of the knee joint. 

The error was much motivated to consider a revisit of the 

existing manual calculation of the peak stress due to shear 

lag. An extensive study by Hwang et al. (2004) revealed 

that predicting peak stress using a cantilever beam model 

for the knee joint was less sensitive as the shear lag stress 

went up twice higher than the stress given by Okumura’ 

equation. However, Hwang et al. failed to clarify the effects  
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Abstract.  This study provides a simplified method for the evaluation of shear lag stress in rectangular box T-joints. The 
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of column flange flexibility and shear lag in the web on the 

stress distribution in the beam flange.   

In the design codes, such as ANSI/AISC 360-10 (2010), 

Eurocode 3 (2008), and CIDECT 9 (2004), the shear lag 

phenomenon in a box T-joint is considered when the beam-

to-column flange width ratio (β) is greater than 0.85. The 

effective width of the beam flange is utilized to evaluate the 

joint’s strength and is calculated using Eq. (1) below. 
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where bc and tc denote the column flange width and 

thickness, respectively. Fyc refers to the yield stress of the 

column. tb, bb, and Fyb express the beam flange thickness, 

width, and yield stress, respectively. The application of the 

box T-joint in the design codes is available for the box 

beam-to-column connection, which diaphragm (continuity 

plate) is not used. The presence of the diaphragm increases 

the rigidity for the connection, and meanwhile, the stress in 

the beam flange gets affected. The dismissal of considering 

the effects of column flange flexibility, which is able to 

generate the initial longitudinal displacement of the beam 

flange, may deliver an under-estimated stress distribution in 

the beam flange. Therefore, this study emphasizes the 

effects of the column flange flexibility on shear lag stress in 

the T-joints including the consideration of shear lag in the 

beam web. A simplified method to evaluate the shear lag 

stress is also provided to serve as an alternative preliminary 

design for the required stress in the beam flange. The 

configurations of the box T-joint are illustrated in Fig. 1. 

 
 
2. Column flange flexibility 

 

The prediction of shear lag stress in a box beam using 

least-work solution is associated with assuming a 

longitudinal displacement of the beam flange and web 

containing an unknown displacement density and applying 

boundary conditions to find a general solution for the 

corresponding parameters. Various boundary conditions for 

the box beam were specified by Reissner (1941, 1946). 

However, the application of boundary conditions for the T-

joint is not yet available. The least-work solution confirmed  

 

 

that the initial longitudinal displacement of the beam flange 

causes the stress concentration at the flange edge and the 

lowest at the mid-width of the beam flange. In this study, a 

boundary effect known as column flange flexibility 

(with/without diaphragm), which generates an initial 

displacement for the beam flange, was considered. 

  

2.1 Box T-joint without diaphragms 
 

In the design codes, the strength of a box T-joint 

without diaphragm subjected to in-plane bending can be 

evaluated through three limit states, such as column flange 

plastification, column web yielding, and local yielding of 

beam flange. However, only column web yielding and local 

yielding of the beam are governed when the beam-to-

column flange width ratio β ≥ 0.85. When this case is 

considered, the effective width method is utilized to 

calculate the flexural strength of the joint assuming that 

stress uniformly distributed along the effective width of the 

beam flange.  

The prediction of effective width requires the known 

function of stress distribution (Tenchev 1996). For that 

reason, stress in the beam flange at the joint had to be 

primarily delivered. The stress evaluation using the least-

work solution requires boundary conditions to fulfill the 

solution for the longitudinal displacement of the beam 

flange. Therefore, the effect of the column flange flexibility 

on the stress distribution was mainly concerned. The 

column flange is flexible at the mid-width and becomes 

fixed at the edge of the flange. The maximum displacement 

under the transmitted force by the beam flange can be 

appraised using the plate theory. The column flange was 

assumed to be a rectangular plate of infinite length with 

both fixed-supported edges. Such the transmitted load by 

the beam flange is innately non-uniform, a uniform load 

distribution on the effective width was assumed. The 

modeling of the column flange under the force of the beam 

flange is depicted in Fig. 2.  

A relevant study on the deflection of the rectangular 

plate of infinite length with simply-supported edges can be 

found in Timoshenko’s publication (Timoshenko and 

Woinowsky-Krieger 1987). Under a load of length u 

uniformly distributed along a portion of x-axis, the 

deflection of the plate is expressed as: 

  
(a) Box T-joint with diaphragm (b) Beam section geometry 

Fig. 1 Box T-joint configuration 
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(2a) 

where the geometric dimensions ξ, u, and a can be seen 

in Fig. 2b. 

For the simply-supported plate of infinite length under 

effective load distributed as shown in Fig. 2, the values of ξ 

and u can be taken as be/4 and be/2, respectively. Hence, the 

deflection of the plate at x = a/2 and y = 0 can be deduced to 
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The deflection of the plate can be generally simplified to 

an expression corresponding to a coefficient α as shown in 

Eq. (2c). 

D

aq
ws

3

0=
 

(2c) 

where,
2

4 41

1 1
 sin sin

4 2

e

m

m b m

m a

 






=
=  ,    

3

2
and  

12(1 )

cEt
D


=

−
 

For the fixed-supported plate of infinite length under the 

effective load, the coefficient α can be obtained by 

modifying the simply-supported plate to a fixed-supported 

plate by a coefficient rk. The coefficient rk represents the 

ratio of rigidity between the fixed and simply-supported 

plates and is expressed as follows.   
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(3) 

where λe denotes the ratio between be and a. Hence, the 

deflection of the fixed-supported plate of infinite length 

under the effective load can be written as: 
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Fig. 3 Flexibility coefficient of column flange 

 

where αf = 2rkα, in which the value 2 refers to the doubly-

symmetric effective loads. The load transmitted from the 

beam flange Fb (Fb = q0a) can be obtained by 

b

b
b

d

M
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(5) 

where Mb denotes the bending moment of the beam and db 

is the distance between the centroid of the beam flanges. 

The flexibility coefficient αf of the fixed-supported plate 

corresponding to the ratio λe can be plotted corresponding to 

λe, as shown in Fig. 3 below. It was observed that αf 

increased exponentially corresponding to the value of λe 

from 0.25-1. This characteristic conveyed that the 

deflection of the column flange grew if the effective width 

of the beam flange increased and that affected the stress in 

the beam flange to grow as well. 

 

2.2 Box T-joint with internal diaphragms 
 

A box T-joint may not provide sufficient strength as 

required to be a moment connection due to the flexibility of 

the column flange. The trendy choice for enhancing the 

performance of the box T-joint is to settle the diaphragms 

(continuity plates) into the joint (AIJ 2008, CIDECT 9 

2004). The role of internal diaphragms in the box beam-to-

column joint is crucial to contribute strength and stiffness to 

the joint because it creates high restraint against the 

deflection of the column flange under the transmitted load 

from the beam. More importantly, the internal diaphragm  
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Fig. 2 Column flange bending 

169



 

Piseth Doung and Eiichi Sasaki 

 

 

 

provides a significant strength increase in the joint when the 

width of the beam flange mismatches to that of the column 

flange (β < 0.85). The internal diaphragms have also been 

seen in use for decades in box knee- and T-joints of bridge 

pier (JRA 2002, Tanebe 2005). The concern on stress 

concentration at the joint has been raised in discussion in 

the stress design method on the knee- and T-joints of the 

bridge piers. As the presence of the internal diaphragm 

increased the rigidity of the joint, evaluating the stress 

concentration was carried out assuming that the joint 

behaves similarly to a cantilever beam (Hwang et al. 2004). 

The reality of the joint is that under the transmitted force by 

the beam flange, the diaphragm and column flange can 

move slightly, which create an initial displacement to the 

system. Thereafter, stress at the joint might not be well 

predicted. 

The displacement of the column flange and diaphragm 

can be calculated using a superposition of axial stiffness of 

the individual component. A parallel spring model in Fig. 4 

represents the column flange and diaphragm, which 

attached to fixed sides (leftmost and rightmost) and a rigid 

body at the middle, subjected to a tension force transmitted 

from the beam flange. This model was proposed based on 

the aspect that the column flange and diaphragm, and panel 

zones relatively deformed. The axial stiffness and 

displacement of the system can be written as follows. 
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where Id and ld denote the moment of inertia and length of 

the diaphragm, respectively. Id is calculated based on the 

loading plane from the beam flange. 

 
 
3. Stress predictions 

 

The shear lag stress in steel box member using least-

work solution was initially revealed by Reissner (1941, 

1946), as concerned with aeronautical problem. For a box  

 

 

beam with stabilized boundary conditions, the stress in the 

beam flange is non-uniform and distributed in forms of 2nd 

order polynomial curve. In this investigation, the general 

function of the longitudinal displacement of the beam 

flange was considered in high order (i order) polynomial 

curve, as expressed in Eq. (8a).  
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A FEM study by Kwan (1996) on predicting stress 

concentration of the core wall revealed that the total stress 

is significantly affected by the web depth. The web depth 

enables an increase of the shear lag stress at the edges of the 

beam flange. Such this issue was concerned, the 

longitudinal displacement distribution of the beam web 

given by Lee et al. (2001) was considered for the 

assessment of the shear lag in the box T-joints. 
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where h and b are the height and haft width of the beam 

flange, as shown in Fig. 1(b), respectively. w denotes the 

flexural displacement of the beam. x, y, and z represent the 

coordinate components. u1(x) and u2(x) denote the 

independent displacement density of the beam flange and 

web corresponding to x-axis, respectively.  

 

3.1 Least-work solution 
 

The principle of least-work of the bent beam can be 

utilized to generalize a differential equation through 

minimizing the potential energy of the system. Considering 

the top and bottom flanges are identical, the total energy of 

the system contained the energy due to the load system, 

strain energy, and the displacement of the column flange 

can be written in forms of 
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where M is the bending moment, and tf and tw are the 

thickness of the beam flange and web, respectively. E and G 

 
Fig. 4 Spring model for column flange and diaphragm  

170



 

A simplified method for evaluation of shear lag stress in box T-joints considering effect of column flange flexibility 

 

denote Young’s and shear modulus, respectively. K and δ 

represent the stiffness and displacement of the column 

flange, as found in the spring model. The normal (ε) and 

shear (γ) strains of the beam can be expressed in the 

following equations. 
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By substituting Eqs. (10a)-(10b) into Eq. (9) and 

minimizing the total potential energy, the equilibrium 

equations are summarized as follows. 
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where
24 hbtI fs = and ( ) 33/4 htI ww = . Then, substitute Eqs. 

(11b)-(11c) into Eq. (11a), the differential equations can be 

obtained as 
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where the parameters k1, p1, u01, k2, p2, and u02 can be found 

in the appendix A. 

The general solutions of the above differential equations 

can be obtained as 
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where φ1 and φ2 are the corresponding eigenvalues of 

matrix A, as indicated in the appendix A. X11, X12, X13, X14 

X21, X22, X23, and X24 are the corresponding eigenvectors to 

each eigenvalue. C1, C2, C3, and C4 are the constants 

obtaining by boundary conditions.  
 

3.2 Stress distribution and effective width of the 
beam flange  

 

The additional moments at the joint (x = L) can be 

calculated by 
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The total peak stress at the joint is determined by 
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where Mb denotes the beam bending moment. Ms is the total 

additional moment due to shear lag (M1+M2). h and I 

express the height of the beam flange and moment of inertia 

of the beam, respectively.  

As seen in the procedure, the stress evaluation was very 

complicated due to a necessity of solving the ODE system, 

and several parameters need to be determined ahead to 

receiving the stress equation. A more simplified stress 

evaluation is required for time saving during the 

preliminary design, and that an empirical method should be 

provided. The peak stress was simplified using the stress 

received from least-work solution with an assumption that 

shear lag occurred in the beam flange alone and modified 

by a factor βs which represents the shear lag in the beam 

web. The total stress distribution in the beam flange can be 

determined as follows.  
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The peak stress at the joint can be simplified to a 

combination of bending (σb) and shear lag stress as: 
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The modification factor βs was evaluated using a 

compatible solution in a parametric study between the 

stresses in the cantilever beams given by Eqs. (15) and (16b) 

in relations with the ratio of web depth-to-flange width 

(d/2b). The empirical chart of the factor βs is depicted in Fig. 

5 below. The figure shows the values of βs ranges from 0.5-

4.  

The non-uniform stress can be integrated into an 

effective sectional area which commonly defines the 

strength of the beam flange (Tahan et al. 1997, Tenchev 

1996, Shi and Wang 2016). The effective width of the beam 

flange at the joint can be calculated following Eq. (17a). 

=
bb

Le dyb
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(17a) 

where σmax is the maximum stress residing at the edge of the 

beam flange corresponding to y = b. By integrating the 

stress following to Eq. (16a) and substituting An, n, k, and δ, 

the effective width is simplified as: 
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where S is the web-to-flange sectional area ratio of the 

beam (S = Aw/Af). The effective width ratio of the beam 

flange at the joint is associated with three parameters: the 

ratio of the beam length-to-haft width of the beam flange 

(L/b), the ratio of the web-to-flange sectional area of the 

beam (S), and axial stiffness of the column flange and 

diaphragm (K). The effective width given in Eq. (17b) is 

more complex compared with that in Eq. (1). However, the 

numerical evaluations of the T-joints were assessed to 

investigate the difference and validity of the effective width 

calculation including the stress distributions. For the 

cantilever beam, be can be determined by eliminating the 

column flange flexibility terms in Eq. (17b). 

 

 

4. Numerical evaluations 
 

The box T-joints were numerically performed to 

evaluate the displacement of the column flange and stress 

distributions of the beam flange at the joint. The study also 

included the parametric effects on the stress due to the beam 

section properties. This procedure utilized the finite element 

method (FEM) assisted by a computer software Abaqus 

(Abaqus/CAE 2017). The FEM results were carried out to 

compare and validate the column flange flexibility and 

stress in the preceding predictions. Nonetheless, using FEM 

requires comprehensive modeling which is able to assure 

the reliability of the results. Such this investigation involved 

with finite element (FE) modeling, the FE validation of the 

existing experiment is necessary. As much as the FE 

modeling was guaranteed to be used, expanding the 

numerical study of the box T-joint could be provided.  

 

4.1 FE modeling and validation 
 
A 3D solid 8-node element (C3D8-R) was used in this 

numerical study, as revealed by Serrano-López et al. (2016) 

and Moazed et al. (2009) that the solid element provides 

more reliable results compared with the shell element. For 

the investigation of the column flange flexibility, the plate-

to-box column connections were built with triple symmetric 

geometry and modeled as one eighth of the actual 

connection. However, the full connection model was 

implemented for the box T-joints.  The material 

nonlinearities were also included to represent the actual 

characteristics of the steel. The stress-strain curve of the 

steel was modeled as multi-linear isotropic behavior with 

strain hardening corresponding to JSCE (JSCE 2007) for 

monotonic loading. The combined isotropic-kinematic 

hardening was utilized for cyclic loading. It was noted that 

welding was not included in the modeling. A mesh size of 

one-half and one time of the element thickness was applied 

to the thickness of the connection component and to  

 

 

Fig. 5 Modification factor βs for shear lag in box T-joint 

with diaphragms 
 

Table 1 Section and material properties of the selected 

specimens (Sasaki et al. 2001) 

Type 
Beam/column Stiffener 

b0 d tf tw Fyf Fyw hs ts Fys 

T-joint 312 309 9 8 293 299 80 10 288 

Note: all geometric dimensions in mm. Specified yield 

stress in MPa. 
 

 

portions where the characteristic components were 

considered, respectively.  

The comparison with the experiment results was 

delivered in order to validate the FE modeling. A test of a 

built-up stiffened box T-joint (test No. 1) by Sasaki et al. 

(2001) was selected to numerically perform under static and 

cyclic bending. The test No. 1 consists of a beam with the 

length of 1350 mm, which connected to a column with the 

length of 2900 mm. Stiffeners were used and located at the 

mid-width of the flange and web of the beam and column, 

as to prevent local buckling. One end of the column was 

fixed while another end was restrained by a pinned support. 

A pre-compression load of 294 kN was applied to the beam. 

In addition, beam of the T-joint subjected to a lateral point 

load placed at the beam free end. The section and material 

properties of the selected test sample are summarized in 

Table 1 below. 

The results of the box T-joint were compared with the 

test in terms of the static load-displacement relations and 

stress distribution at 20 mm from the column face. Fig. 6 

shows the comparison results. The static load-displacement 

was constructed in accordance with the peak loads at each 

cycle in the cyclic test results. Meanwhile, the stress 

distribution at 20 mm from the column face was also 

provided when the lateral load reached a value of 147 kN. 

The comparison showed that the cyclic performances  
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maintained fairly matched load-displacement relations. 

Furthermore, the stress distributions given by FEM and Eq. 

(16a) were well comparable to settle a generalized FEM 

study. 

The results of the box T-joint were compared with the 

test in terms of the static load-displacement relations and 

stress distribution at 20 mm from the column face. Fig. 6 

shows the comparison results. The static load-displacement 

was constructed in accordance with the peak loads at each 

cycle in the cyclic test results. Meanwhile, the stress 

distribution at 20 mm from the column face was also 

provided when the lateral load reached a value of 147 kN. 

The comparison showed that the cyclic performances 

maintained fairly matched load-displacement relations. 

Furthermore, the stress distributions given by FEM and Eq. 

(16a) were well comparable to settle a generalized FEM 

study.  
 

4.2 Flexibility of column flange 
 

The flexibility of column flange presented in section 2.1 

is defined by the coefficient αf, which obtained based on the 

effective width. For Eq. (17b), the effective width can be 

determined only if the column flange deflection is known. 

In this FEM study, an evaluation of column flange 

flexibility of the box T-joint was provided. As the loads 

were transmitted through the beam flanges, the 

investigation was carried out by simulating the box T-joint 

as a plate-to-box column connection, which the plate 

subjected to tension force. Due to the triple symmetric 

geometries, the analytical connection was simulated as one 

eight of the actual connection, as shown in Fig. 7. 

This study consists of 35 connection models in which 

the column flange width and thickness were respectively 

varied from 100 to 1000 mm and 4 to 40 mm, 

corresponding to the width-to-thickness ratio (2γ = bc/tc) 

from 15 to 50. The pull plate with the thickness ratio (tc/tp) 

ranged from 0.4 to 1 was considered in the investigation. 

The concept used to evaluate the column flange flexibility 

was to construct the load-displacement relations of the 

column flange under the tension force of the plate. Once the 

load-displacement relations were known, the compatibility 

 

 

of the initial stiffness between FEM and Eq. (4) was used to 

determine the flexibility coefficient of the column flange 

(αf). The relationship between αf and 2γ was plotted and can 

be seen in Fig. 8(a) below. As observed, the flexibility of 

the column flange (αf) degraded relatively to the greater 

column width-to-thickness ratio (2γ). According to Eq. (1), 

the effective width of the column flange, which established 

the flexibility as shown in Fig. 3, can be written in forms of 

the column width-to-thickness ratio (2γ), and vi-versa. The 

comparison of αf between FEM and the effective width of 

the column flange is depicted in Fig. 8(b). The empirical 

values given by FEM provided the nearest characteristics 

compared with the effective width method when the 

thicknesses of the beam and column equaled to 0.75-1. In 

contrast, different αf was observed when the column-to-

beam thickness ratio was not equal to a value in between 

0.75-1. On the other hand, all the curves started to converge 

when 2γ came next to 50. For this observation, the 

deflection of the column flange can be calculated using 

either the empirical values of αf illustrated in Fig. 8(a) or the 

effective width when tc/tb = 0.75-1.  

 

4.3 Stress evaluation  
 

The static performance assessment of the box T-joint 

considered the effects of column flange and diaphragm on 

the stress distribution in the beam flange. The basic joint 

model formed of a 300x300x8 mm-box column and beam 

without using diaphragms subjected to in-plane bending, in 

which a point load P = 50 kN located at the free end of the 

beam and expected to perform in an elastic manner. The 

bending stress (σb) was calculated to be 90.37 MPa. Two 

extending cases included the joint with full and hole 

internal diaphragms. The thickness of the diaphragm was 

selected to be 8 mm, as equal to the beam flange thickness. 

The circular and square holes of 100 mm in diameter and 

width located at the center of the diaphragm. The presence 

of a hole in the diaphragm provided feasibility for concrete 

filling in the box column or inspection. Such this 

investigation involved with FEM, the stress distribution was 

brought into comparison with Eq. (16a) with a modification 

factor βs as shown in Fig. 5. 

  
(a) Static load-displacement curve (b) Stress distribution on beam flange 

Fig. 6 FEM and experiment comparison 
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The von Mises stress contours of the box T-joints in this 

study are depicted in Fig. 9. The stress reached maximum at 

the edges of the beam flange and degraded to minimum at 

the mid-width of the flange. The basic T-joint, as seen in 

Fig. 9(a), delivered the highest stress compared with the T-

joints in which the column flange was restrained by the 

diaphragms. In addition, the diaphragm hole, which caused 

an increase in deflection of the column flange, also affected 

the stress increase at the edge of the beam flange, as 

observed in Figs. 9(c)-(d). In every aspect, the diaphragms 

are very crucial in use to reduce the stress concentration at 

the edges of the beam flange, as it improved the rigidity of 

the column flange. 

The normal tensile stress distributions along the width 

of the beam flange at the joint region were plotted and 

compared with Eq. (16a), as shown in Fig. 10. The stresses 

given by Eq. (16a) were also provided based on the 

assumptions of the longitudinal displacement of the beam 

flange using 4th, 6th, and 8th order polynomial curves (i = 4, 

6, 8). In this study, for all T-joints (with/without 

diaphragms) with i = 4 and 6, the stresses by FEM and Eq. 

(16a) delivered well compatible values at the edges of the 

beam flange. For the basic T-joint (without diaphragm), the 

stress was distributed without considering the effect of 

shear lag in the web, as fairly acceptable by the FEM. It was  

 

 

also observed in Fig. 10(b) that Eq. (16a) and the FEM 

provided almost identical stress distributions. However, 

significant differences of the stresses were observed at mid-

width of the beam flange of the T-joint with hole diaphragm, 

as seen in Fig. 10(c). This occurrence was due to the over-

predicted deflection of the column flange, which able to 

increase stress at the edge and decrease at mid-width of the 

beam flange. The above situation is related with the hole 

diaphragm for which the deflection was calculated based on 

the moment inertia at where the hole located. More 

importantly, since the stress at mid-width of the beam 

flange were not much necessary for the preliminary design, 

evaluating the stress at the edge of the beam flange using 

Eq. (16a) with 4th order polynomial function of longitudinal 

displacement was alternatively satisfied.   

 

4.4 Peak stress and effective width of the beam 
flange 

 

Since the peak stress at the edge and effective width of 

the beam flanges have been preferred for design and check, 

this FE parametric study evaluated the peak stress and 

compared with Eq. (16b). The comparison of effective 

width between Eqs. (1) and (17b) was also carried out. This 

investigation was divided into 4 series; each series consisted  

  
(a) Plate-to-box column model (b) Meshing 

Fig. 7 Plate-to-box column connection and meshing  

 

  

(a) Coefficient αf by FEM (b) Comparison of αf by FEM and Eq. (1) 

Fig. 8 Flexibility coefficient of column flange  

 

αf = 173.3(2γ)-2.304

R² = 0.9416

0.0

0.1

0.2

0.3

0.4

10 20 30 40 50 60

Column width-to-thickness ratio, 2γ

C
o

e
ff

ic
ie

n
t,

 α
f

(x10-3)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

Effective width, tc/tb = 0.5

Effective width, tc/tb = 0.75

Effective width, tc/tb = 1

Effective width, tc/tb = 1.5

FEM

Regression analysis

(x10-3)

C
o

e
ff

ic
ie

n
t,

 α
f

Column width-to-thickness ratio, 2γ

Effective width, tc/tb = 0.5

Effective width, tc/tb = 0.75

Effective width, tc/tb = 1

Effective width, tc/tb = 1.5

FEM

Regression analysis

174



 

A simplified method for evaluation of shear lag stress in box T-joints considering effect of column flange flexibility 

 

 

 

 

 

 

 

 

 

 

 
(a) Basic T-joint (b) T-joint with full diaphragms 

  
(c) T-joint with 100 mm-circular hole diaphragms (d) T-joint with 100 mm-square hole diaphragms 

Fig. 9 von Mises stress developed in the box T-joints  

Table 2 Summary of geometric properties and loadings of the box T-joint models 

Series Model 
Column Beam Diaphr. Loading 

bc x tc bb x db x tb S=Aw/Af Lb td P (N) σb (MPa) 

200 

B200x150x6 200x6 200x150x6 0.74 1600 6 13000 103.62 

B200x200x6 200x6 200x200x6 1.00 1600 6 18000 98.61 

B200x300x6 200x6 200x300x6 1.52 1600 6 32000 101.43 

300 

B300x200x8 300x8 300x200x8 0.66 1600 8 33000 100.58 

B300x300x8 300x8 300x300x8 1.00 1600 8 55000 99.41 

B300x450x8 300x8 300x450x8 1.51 1600 8 95000 99.62 

400 

B400x300x16 400x16 400x300x16 0.74 2000 16 103000 100.05 

B400x400x16 400x16 400x400x16 1.00 2000 16 151000 100.00 

B400x600x16 400x16 400x600x16 1.52 2000 16 263000 99.95 

600 

B600x400x20 600x20 600x400x20 0.66 2400 20 213000 100.19 

B600x600x20 600x20 600x600x20 1.00 2400 20 361000 99.91 

B600x800x20 600x20 600x800x20 1.34 2400 20 532000 99.93 

Note: all geometric dimensions in mm. 
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of 3 box T-joint models, and the size and thickness of the 

column and beam were changed. The column length was set 

to be 2 m for series 200 and 300, 2.6 m for series 400, and 

3.2 m for series 600. A point load equivalent to a bending 

stress of 100 MPa was applied at the free end of the beam. 

The box T-joint models presented in this study are 

summarized in Table 2 below.  

The peak stress was measured at the junction between 

the web and flange of the beam and normalized by the 

bending stress. It can also be calculated using Eq. (16b) by 

 

 

replacing y = b, which physically means the peak stress was 

represented by the bending moment and additional moment 

due to shear lag. The 4th-order polynomial function of the 

longitudinal displacement of the beam flange was 

considered for evaluating the stress and effective width 

using Eqs. (16b) and (17b). Tables 3-4 describe the 

normalized peak stress and the effective width of the beam 

flange in the box T-joint with and without diaphragms, 

respectively.  

Table 3 Normalized peak stress and effective width of the beam flange in the box T-joint without diaphragm 

Series Model d/2b 
Normalized stress, σmax/σb Effective width, be 

FEM Eq. (16b) Diff (%) Eq. (1) Eq. (17b) 

200 

B200x150x6 0.74 2.78 3.18 -14.59 60 87 

B200x200x6 1.00 3.05 3.04 0.43 60 96 

B200x300x6 1.52 3.04 2.84 6.41 60 110 

300 

B300x200x8 0.66 2.92 3.22 -10.19 80 124 

B300x300x8 1.00 2.92 3.01 -2.98 80 143 

B300x450x8 1.51 2.89 2.81 2.79 80 164 

400 

B400x300x16 0.74 2.96 3.39 -14.68 160 164 

B400x400x16 1.00 2.98 3.23 -8.36 160 183 

B400x600x16 1.52 3.09 3.02 2.21 160 212 

600 

B600x400x20 0.66 3.12 3.38 -8.32 200 237 

B600x600x20 1.00 3.31 3.16 4.56 200 275 

B600x800x20 1.34 3.36 3.01 10.53 200 304 

Note: βs = 1 for the box T-joint without diaphragm. 

  

(a) Basic T-joint without diaphragm (b) T-joint with full diaphragms 

 
(c) T-joint with 100 mm-hole diaphragms 

Fig. 10 Stress distribution in the beam flange  
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As observed in Table 3, the box T-joints without 

diaphragm, which were evaluated by FEM, provided almost 

identical normalized peak stresses compared with Eq. (16b). 

This circumstance did not require to modify the shear lag 

stress induced by the web. The box T-joints without 

diaphragm exercised the very high stress concentration at 

the edge of the beam flange. In table 4 as the full 

diaphragms were settled, the stress concentration degraded 

significantly from 40 to 60%. More importantly, it was 

observed that the peak stress ratios grew respectively to the 

deep webs, which admitted by both the FEM and Eq. (16b). 

The peak stress given by Eq. (16b) was simple to calculate 

and more accurate compared to Okumura’ equation. 

Furthermore, the effective width for the box T-joint without 

diaphragm using Eq. (17b) went down nearest to Eq. (1) 

when the shorter web depth was used. Unlike the box T-

joint without diaphragm, the presence of diaphragms 

developed large effective area for the beam flange, as meant 

the strength of the connection improved significantly. 

 

 

5. Summary and conclusions 
 

The theoretical and numerical evaluations of stress and 

effective width due to shear lag in the box T-joints under in-

plane bending were conducted in this study. Using least-

work solution with the assumed longitudinal displacement 

function of the beam flange and web and considering the 

effect of column flange flexibility, the normal stress 

distribution and effective width were evaluated theoretically. 

The flexibility of the box T-joint, which caused by two 

main components, such as the column flange and 

diaphragms, is represented by an axial spring model and 

contributed to stress distribution in the beam flange. 

Thereafter, the finite element assessment was extensively 

conducted to check the validity of shear lag stress equation. 

The main findings in this study can be concluded as follows. 

•  The flexibility of the column flange was very 

sensitive in causing high stress concentration at the  

 

 

edges of the beam flange. To reduce such that uneven 

circumstance, the diaphragms were introduced into the box 

T-joint. The full diaphragms (no hole), which have 

thickness equal to that of the beam flange, were able to 

diminish the stress concentration from 40 to 60%. 

•  The evaluation of stress required the initial 

displacement of the beam flange, which was predicted 

based on the column flange and diaphragm deflection. The 

deflection of the column flange can be calculated using the 

effective width method, as given in Eq. (4). However, an 

empirical chart, as shown in Fig. 8(a) can also be used to 

evaluate the flexibility coefficient αf, following the 

calculation of the deflection of the column flange.  

•  Considering the effects of column flange and 

diaphragm flexibility, the approach provided more well-

predicted stress distribution compared with the assumption 

that a box T-joint behaves as cantilever beam which 

maintained under-predicted peak stress. Using 4th or 6th 

order polynomial function for the longitudinal displacement 

of the beam flange was acceptable for evaluation of the 

stress in the box T-joint with or without diaphragms.  

•  However, the stress and effective width of the beam 

flange in the box T-joint with diaphragms were significantly 

affected by the ratio of web depth-to-flange width of the 

beam (d/2b). The peak stresses increased corresponding to 

the deep web and resulted as the smaller effective width. A 

simplified method was established to easily calculate the 

shear lag stress. The method required to calculate the stress 

derived by an assumption that shear lag occurred in the 

beam flange alone, and multiply to a modification factor (βs) 

that represented the effect of shear lag in the beam web. 
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Table 4 Normalized peak stress and effective width the beam flange in the box T-joint with full diaphragms 

Series Model d/2b βs 
Normalized stress, σmax/σb be 

FEM Eq. (16b) Diff (%) Okumura Diff (%) Eq. (17b) 

200 

B200x150x6 0.74 1.08 1.48 1.45 2.11 1.13 23.54 144 

B200x200x6 1.00 1.43 1.64 1.55 5.35 1.12 31.56 139 

B200x300x6 1.52 2.12 1.87 1.73 7.78 1.10 41.08 133 

300 

B300x200x8 0.66 0.97 1.55 1.45 6.16 1.14 26.38 212 

B300x300x8 1.00 1.43 1.69 1.59 5.83 1.12 33.71 199 

B300x450x8 1.51 2.12 1.87 1.77 5.08 1.10 41.00 188 

400 

B400x300x16 0.74 1.08 1.50 1.50 0.18 1.13 24.78 274 

B400x400x16 1.00 1.43 1.62 1.61 0.80 1.12 31.09 262 

B400x600x16 1.52 2.13 1.86 1.80 2.98 1.10 40.75 247 

600 

B600x400x20 0.66 0.96 1.64 1.49 9.10 1.14 30.68 408 

B600x600x20 1.00 1.43 1.86 1.64 11.59 1.12 39.77 380 

B600x800x20 1.34 1.89 2.00 1.78 11.34 1.11 44.77 362 

177



 

Piseth Doung and Eiichi Sasaki 

 

References 
 

Abaqus/CAE (2017), User’s Manual, Dassault Systemes; Vélizy-

Villacoublay, France. 

AIJ (2008), Recommendations for Design and Construction of 

Concrete Filled Steel Tubular Structures, Architectural Institute 

of Japan; Tokyo, Japan. 

ANSI/AISC 360-10 (2010), Specification for Structural Steel 

Buildings, American Institute of Steel Construction; Chicago, IL, 

USA. 

Chang, S.T. and Zheng, F.Z. (1987), “Negative shear lag in 

cantilever box girder with constant depth”, J. Struct. Eng., 

113(1), 20-35. 

https://doi.org/10.1061/(ASCE)0733-9445(1987)113:1(20). 

Chen, J., Shen, S.L., Yin, Z.Y. and Horpibulsuk, S. (2014), 

“Closed-form solution for shear lag with derived flange 

deformation function”, J. Constr. Steel Res., 102(2014), 104-110. 

https://doi.org/10.1016/j.jcsr.2014.07.003. 

CIDECT 9 (2004), Design Guide for Structural Hollow Section 

Column Connections, Committee for International Development 

and Education on Construction of Tubular Structures, Köln, 

Germany. 

Dezi, L. and Mentrasti, L. (1985), “Nonuniform bending-stress 

distribution (shear lag)”, J. Struct. Eng., 111(12), 2675-2690. 

https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2675). 

Eurocode 3 (2005), Design of steel structures - Part 1-8: Design of 

joints, European Committee for Standardization; Brussels, 

Belgium. 

Fadden, M. and McCormick, J. (2013), “Evaluation of HSS-to-

HSS Moment Connections for Seismic Applications”, Structures 

Congress 2013, Pittsburgh, PA, USA, May. 

https://doi.org/10.1061/9780784412848.204. 

Hwang, W.S., Kim, Y.P., and Park, Y.M. (2004), “Evaluation of 

shear lag parameters for beam-to-column connections in steel 

piers”, Struct. Eng. Mech., 17(5), 691-706. 

https://doi.org/10.12989/SEM.2004.17.5.691. 

JRA (2002), Specification for Highway Bridges, Part II: Steel 

Bridge Design, Japan Road Association; Japan. 

JSCE (2007), Standard Specifications for Steel and Composite 

Structures, Japan Society of Civil Engineers; Japan.  

Kristek, V., Evan, H.R., and Ahmad, M.K.M. (1990), “A shear lag 

analysis for composite box girders”, J. Constr. Steel Res., 16(1), 

1-21. https://doi.org/10.1016/0143-974X(90)90002-X. 

Kwan, A.K.H. (1996), “Shear lag in shear/core walls”, J. Struct. 

Eng., 122(9), 1097-1104. https://doi.org/10.1061/(ASCE)0733-

9445(1996)122:9(1097). 

Lee, K.-K., Loo, Y.-C. and Guan, H. (2001), “Simple analysis of 

framed-tube structures with multiple internal tubes”, J. Struct. 

Eng., 127(4), 450-460. https://doi.org/10.1061/(ASCE)0733-

9445(2001)127:4(450). 

Lin, Z. and Zhao, J. (2011), “Least-work solutions of flange 

normal stresses in thin-walled flexural members with high-order 

polynomial”, Eng. Struct., 33(10), 2754-2761. 

http://dx.doi.org/10.1016/j.engstruct.2011.05.022. 

Miki, C. and Sasaki, E. (2005), “Fracture in steel bridge piers due 

to earthquake”, Int. J. Steel Struct., 5(2), 133-140. 

Moazed, R., Szyszkowski, W.-Ã., and Fotouhi, R. (2009), “The in-

plane behaviour and FE modeling of a T-joint connection of 

thin-walled square tubes”, Thin-Walled Struct., 47(6-7), 816-825. 

https://doi.org/10.1016/j.tws.2009.01.006. 

Mohammadnejad, M. and Kazemi, H.H. (2018), “A new and 

simple analytical approach to determining the natural frequencies 

of framed tube structures”, Struct. Eng. Mech., 65(1), 111-120. 

https://doi.org/10.12989/sem.2018.65.1.111. 

Okumura, T. and Ishizawa, N. (1968), “The design of knee joints 

for rigid steel frames with thin walled section”, Trans. Japan 

Soc. Civ. Eng., 1968(153), 1-18.  

https://doi.org/10.2208/jscej1949.1968.153_1. 

Reissner, E. (1941), “Least-work solutions of shear lag problems”, 

J. Aeronaut. Sci., 8(7), 284-291. https://doi.org/10.2514/8.10712. 

Reissner, E. (1946), “Analysis of shear lag in box beams by the 

principle of minimum potential energy”, Q. Appl. Math., 4(3), 

268-278. https://www.jstor.org/stable/43633559. 

Sasaki, E., Takahashi, K., Ichikawa, A., Miki, C. and Natori, T. 

(2001), “Influences of stiffening methods on elasto-plastic 

behavior of beam-to-column connections of steel rigid frame 

piers”, Proc. the Japan Soc. of Civ. Eng., 689(57), 201-214. 

https://doi.org/10.2208/jscej.2001.689_201. 

Serrano-López, M.A., López-Colina, C., González, J. and López-

Gayarre, F. (2016), “A simplified FE simulation of welded I 

beam-to-RHS column joints”, Int. J. Steel Struct., 16(4), 1095-

1105. https://doi.org/10.1007/s13296-016-0028-5. 

Shi, Q.X. and Wang, B. (2016), “Simplified calculation of 

effective flange width for shear walls with flange”, Struct. 

Design Tall Spec. Build., 25(12), 558-

577.  https://doi.org/10.1002/tal.1272. 

Tahan, N., Pavlovic, M.N., and Kotsovos, M.D. (1997), “Shear-lag 

revisited: the use of single fourier series for determining the 

effective breadth in plated structures”, Comput. Struct., 63(4), 

759-767. https://doi.org/10.1016/S0045-7949(96)00065-X. 

Tanabe, A. (2005), “Fatigue Retrofitting of Steel Bridge Frame 

Piers with High Seismic Performance”, Ph.D. Dissertation; 

Tokyo Institute of Technology, Tokyo, Japan. 

Tenchev, R.T. (1996), “Shear lag in orthotropic beam flanges and 

plates with stiffeners”, Int. J. Solids Struct., 33(9), 1317-1334. 

http://dx.doi.org/10.1016/0020-7683(95)00093-3. 

Timoshenko, S. and Woinowsky-Krieger, S. (1987), Theory of 

Plates and Shells, McGraw-Hill, Inc., Singapore. 

Winter, G. (1940), “Stress Distribution in and Equivalent Width of 

Flanges of Wide, Thin-Walled Steel Beams”, NACA Technical 

Note No. 784; Cornell University, U.S.A. 

Zhou, W.-W., Jiang, L.Z., Liu, Z.J., and Liu, X.J. (2012), “Closed-

form solution to thin-walled box girders considering effects of 

shear deformation and shear lag”, J. Cent. South. Univ., 19(9), 

2650-2655. https://doi.org/10.1007/s11771-012-1323-8. 

 

 

CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

178

https://en.wikipedia.org/wiki/V%C3%A9lizy-Villacoublay
https://en.wikipedia.org/wiki/V%C3%A9lizy-Villacoublay
https://doi.org/10.1061/(ASCE)0733-9445(1987)113:1(20)
https://doi.org/10.1016/j.jcsr.2014.07.003
https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2675)
https://doi.org/10.1061/9780784412848.204
https://doi.org/10.1016/0143-974X(90)90002-X
https://doi.org/10.1061/(ASCE)0733-9445(1996)122:9(1097)
https://doi.org/10.1061/(ASCE)0733-9445(1996)122:9(1097)
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(450)
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(450)
http://dx.doi.org/10.1016/j.engstruct.2011.05.022
https://doi.org/10.1016/j.tws.2009.01.006
https://doi.org/10.2208/jscej1949.1968.153_
https://doi.org/10.2514/8.10712
https://www.jstor.org/stable/43633559
https://doi.org/10.2208/jscej.2001.689_201
https://doi.org/10.1007/s13296-016-0028-5
https://doi.org/10.1002/tal.1272
https://doi.org/10.1016/S0045-7949(96)00065-X
http://dx.doi.org/10.1016/0020-7683(95)00093-3
https://doi.org/10.1007/s11771-012-1323-8


 

A simplified method for evaluation of shear lag stress in box T-joints considering effect of column flange flexibility 

 

Appendix A: least-work solution for shear lag in 
the box T-joints 

 

The total energy of the box T-joint system can be 

written in forms of 
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Substitute Eqs. (10a)-(10b) into Eq. (9), the total energy 

of the system becomes,  
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Minimize the total energy, the equilibrium equations are 

summarized as: 
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Then, substitute Eqs. (A-3)-(A-4) into Eq. (A-2), the 

differential equations can be obtained as 
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and Q is the beam shear force. 

To solve 2nd order ODE systems as shown in Eqs. (33) 

and (34), let 31 uu =  and 42 uu = , the 1st order ODE 

system can be written as: 
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Let a matrix A,  
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Eigenvalues of matrix A can be expressed as  
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