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1. Introduction 
 

Resonant vibrations of a bridge excited by a train is an 
interesting topic for structural engineers. When successive 
moving loads with high velocity travel on bridges, they may 
suffer from excessive vibrations that can seriously affect the 
comfort of passengers and bridge’s structural performance 
(Adam and Salcher 2014, Podworna 2017). Various control 
systems can be developed for suppressing the resonant 
vibrations. Among them, the use of passive tuned mass 
dampers is very simple and economic. This property has 
rendered the tuned mass dampers (TMDs) attractive to 
researchers. Therefore, there is a vast literature about 
reducing the resonant responses of bridges due to moving 
trains by TMDs. Therein, the general purpose is to obtain 
the optimum parameters of TMD device to provide it to 
work with its best performance. For example, Wang et al. 
(2003), Li et al. (2005), Wu (2006), Moghaddas et al. 
(2012), Samani et al. (2013), Rostam et al. (2015) and 
Miguel et al. (2016) obtained the optimum parameters of 
the vibration absorber for suppressing the resonant response 
of single-span simply supported beams. In these studies, the 
absorber is considered as either a single or a multiple tuned 
mass damper (MTMD) in which the TMD units are 
connected each other in parallel, and it was installed at the 
midspan of the beam. Unlike the above-mentioned works, 
Yau and Yang (2004a,b) and Luu et al. (2012) studied the 
multiple resonant peaks of train-induced vibrations of 
continuous railway bridges by using a MTMD system. 
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Series tuned mass dampers (STMDs) are another form 

of multiple tuned mass dampers in which the TMD units are 

connected each other in series. Most of the previous work 

on the STMDs is concerned with the reduction of structural 

vibrations under the ground acceleration and base 

excitations (Li and Zhu 2006, Zuo 2009, Asami 2017, 

Asami et al. 2018). Only Kahya and Araz (2017) 

investigated the application of STMDs in suppressing the 

resonant vibrations of simply supported single-span bridges 

under moving loads. 

Recently, the tuned mass damper inerter (TMDI) is 

developed and used to control the vibrations of engineering 

structures (Giaralis and Petrini 2017, Ruiz et al. 2018, Xu et 

al. 2019). 

As seen in the above-given literature review, the 

investigations on reduction of the first resonant responses of 

bridges were carried out by a number of researchers. This is 

not, however, sufficient for multi-span bridges, because 

they have multiple resonant peaks. To the best of the 

authors’ knowledge, there is no study in which a STMD 

device have been used to control the multiple resonant 

peaks of a continuous railway bridge. Thus, this paper deals 

with the optimization and applicability of STMDs to reduce 

the multiple resonant peaks of a continuous bridge under 

high speed trains. For this purpose, two-span elastic beam 

under the action a series of moving loads is considered as 

the continuous beam-train model. A STMD consisting of 

two TMD units, one has greater mass than the other, is 

installed on the beam. Optimum properties of the STMD are 

obtained by using the Sequential Programming Technique 

(SQP) based on the minimization of the maximum resonant 

responses of the bridge. 
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Abstract.  This paper presents the applicability of series tuned mass dampers (STMDs) to reduce the multiple resonant 

responses of continuous railway bridges under high-speed train. The bridge is modeled by two-span Bernoulli-Euler beam with 

uniform cross-section, and a STMD device consisting of two TMD units installed on the bridge to reduce its multiple resonant 

vibrations. The system is assumed to be under the action of a high-speed train passage which is modeled as a series of moving 

forces. Sequential Programming Technique (SQP) is carried out to find the optimal parameters of the STMD that minimizes the 

maximum peak responses of the bridge. Comparisons with the results available in the literature are presented to demonstrate the 

effectiveness and robustness of STMD system in reducing the multiple resonant responses of the continuous railway bridges 

under high-speed trains. 
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2. Mathematical formulation 
 

The system configuration consists of a two-span 

continuous bridge with a STMDs and the number n of the 

TMDs units contained in MTMD system installed at the 

middle of each span as shown in Fig. 1.  

Each STMD device consists of two TMD units 

connected each other in series, thus we refer to this system 

as STMD-4 which means there are four TMD units installed 

on the bridge. 

Equation of motion for the bridge with STMD-4 and 

high-speed train shown in Fig. 1 can be written as (Wang et 

al. 2010) 

( , ) ( , ) ( , ) ( , ) ( , )IV

b b v TEIy x t m y x t c y x t F x t F x t+ + = +  (1) 

where ( , )y x t , EI, mb and cb denote the displacement, the 

flexural stiffness, the mass per unit length and the damping 

of the beam, respectively. Primes and dot denote the 

derivative with respect to x and t, respectively. ( , )vF x t and

( , )TF x t  are the external forces acting on the bridge due to 

the train and the STMD systems, respectively. ( , )vF x t can 

be defined as 

( ) ( )
1

( , ) ( )
K

v k k k k

k

F x t P δ x x H t t H t t t
=

= − − − − −    (2) 

where xk is the distance of the kth load from the left-hand 

end of the continuous beam, tk = xk / v is the arrival time of 

the kth load at the beam, Δt = 2L / v is the time of the load 

passing the beam, K is total number of axle forces, Pk is the 

magnitude of the kth axle force,  (-) is Dirac delta function 

and H(-) is Heaviside unit step function. ( , )TF x t  can be 

defined as follows 

,1 ,2( , ) ( , ) ( , )T T TF x t F x t F x t= +  (3) 

where 
,1( , )TF x t  and 

,2 ( , )TF x t  are the forces acting on the 

bridge from the STMDs at the first and second midspans, 

respectively, as  

1,1 1,1 ,1

,1 ,1

1,1 1,1 ,1

( ) ( , )
( , ) ( )

( ) ( , )

s

T s

s

c z t y x t
F x t δ x x

k z t y x t

  − +   
= − 

 −   

 (4) 

2,1 2,1 ,2

,2 ,2

2,1 2,1 ,2

( ) ( , )
( , ) ( )

( ) ( , )

s

T s

s

c z t y x t
F x t δ x x

k z t y x t

  − +   
= − 

 −   

 (5) 

where xs,1 and xs,2 denote the installation points of the 

 
(a) 

 
(b) 

Fig. 1 Two-span bridge installed with TMDs under train loads: (a) STMD-4 and (b) MTMD-2n 
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STMDs, respectively. 

Equations of motion for the STMD at the first span can 

be written as 

1,1 1,1 1,1 1,1 ,1

1,1 1,1 ,1 1,2 1,2

( ) ( ) ( , )

( ) ( , ) 0

s

s

m z t c z t y x t

k z t y x t m z

 + − + 

 − − = 

 (6) 

1,2 1,2 1,2 1,2 1,1 1,2 1,2 1,1( ) ( ) ( ) ( ) ( ) 0m z t c z t z t k z t z t   + − + − =     (7) 

where z
1,1

, m
1,1

, c
1,1

 and k
1,1 are the displacement, mass, 

damping and stiffness of the first TMD unit, z
1,2

, m
1,2

, c
1,2

 

and k
1,2 are the displacement, mass, damping and stiffness 

of the second TMD unit in the first STMD, respectively.  

Equations of motion for the STMD at the second 

midspan can be written as 

2,1 2,1 2,1 2,1 ,2

2,1 2,1 ,2 2,2 2,2

( ) ( ) ( , )

( ) ( , ) 0

s

s

m z t c z t y x t

k z t y x t m z

 + − + 

 − − = 

 (8) 

2,2 2,2 2,2 2,2 2,1

2,2 2,2 2,1

( ) ( ) ( )

( ) ( ) 0

m z t c z t z t

k z t z t

 + − + 

 − = 

 (9) 

where z
2,1

, m
2,1

, c
2,1

 and k
2,1 are the displacement, mass, 

damping and stiffness of the first TMD unit, z
2,2

, m
2,2

, c
2,2

 

and k
2,2 are the displacement, mass, damping and stiffness 

of the second TMD unit in the second STMD, respectively.  

Assume the displacement of the bridge as 

1

( , ) ( ) ( )
N

i i

i

y x t q t φ x
=

=  (10) 

where N is the number of modes, qi(t) is the generalized 
coordinate of ith vibration mode of the bridge and φi(x) is 
modal shape function for the ith mode. Substituting Eq. (10) 
into Eq. (1), multiplying the resulting expression by φm(x), 
carrying out the integration with respect to 0 and 2L, and 
using the modal orthogonality, the ith modal equation of 
motion for the system can be obtained as 

22i i i i i i vi Tiq ξ ωq ω q F F+ + = +  (11) 

where 
iξ  and 

iω  are the damping ratio and natural 

frequency for the ith mode of beam vibrations, respectively.       

The ith modal force Fvi induced by the train is expressed 

as 

( ) ( )
1

1
( , ) ( )

K

vi k i k k k

ki

F x t P φ x H t t H t t t
M =

= − − − −    (12) 

and the ith modal force FTi induced by STMDs are 
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where Mi is the modal mass of ith mode and it can be 

written as 

2

2

0

( )

L

i b iM m φ x dx=   (14) 

where mb is the constant mass per unit length of the 

bridge, and 
iφ  is the nth modal shape function of the 

bridge. 

Substituting Eq. (10) into Eqs. (6) and (8), we have the 

followings:  

1,1 1,1 1,1 1,1 ,1

1
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1
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=

=
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− − = 

 





 (16) 

Eqs. (7), (9), (11), (15) and (16) constitute a system of 

coupled second-order differential equations that can be 

solved by direct numerical integration. Here, the Newmark 

method is used to solve the above equations taking the first 

five modes of the bridge into account (β = 1/4 and γ = 1/2). 

 

 

3. Sequential programming technique 
 

The optimization problem considered is solved by 

means of a gradient-based constrained optimization 

algorithm implemented in the MATLAB Optimization 

Toolbox (Matlab, R2015b) which uses Sequential 

Programming Technique (SQP). The flowchart of SQP 

technique is presented in Fig. 2. The SQP technique 

consists of three main stages: 

1) Calculate an approximation of the Hessian matrix of 

the Lagrangian function using quasi-Newton method. 

2) Calculate a formulation of the quadratic programming 

(QP) problem. 

3) Calculate a line search and objective function.  

 Maximum displacement at the second midspan is 

considered as an objective function, and the fmincon is 

applied to find out simultaneously the optimal parameters of 

STMDs.  
For the sake of numerical stability, the following 

dimensionless variables for STMDs are defined: 

1,1 1,2 2,1

1,1 1,2 2,1

1,1 1,1 1,2 1,2 2,1 2,1

2,2 1,1 1,2 2,1

2,2 1 2 3

2,2 2,2

2,2 2 4 1 2

4 1 2

1 3 3 4

1,1 1,2 2,1 2,2

1,1 1,2 2,1 2,2

1 1 1 1

, , ,
2 ω 2 ω 2 ω

, , , ,
2 ω

, , , ,

, , ,

T T T

c c c
ξ ξ ξ

m m m

c m m m
ξ μ μ μ

m mL mL mL

m μ μ μ μ
μ μ μ μ

mL μ μ μ μ

ω ω ω ω
f f f f

ω ω ω ω

= = =

= = = =

+
= = = =

+

= = = =

 

(17) 
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Fig. 2 The flowchart of SQP technique 
 

 

where 
1,1f , 

1,2f , 
2,1f  and 

2,2f  are the frequency ratios, 

ξ1,1, ξ1,2, ξ2,1 and ξ2,2 are the damping ratios, ω1,1, ω1,2, ω2,1 

and ω2,2 are the natural frequencies, and μ1, μ2, μ3 and μ4 are 

the mass ratios of each TMD in STMD devices, 

respectively. 

μ1T and μ2T are the mass ratios of the smaller TMD to the 

larger one in STMDs, respectively. 𝜇 = ∑ 𝜇𝑗
4
𝑗=1  is the total 

mass ratio. 

Within the present concerns, the optimization problem 

might be basically stated as follows: 

min ( ) with b bJ q l q u   (18) 

where q, J(q), lb and ub represent the optimization variables, 

objective function, lower and upper bounds of the 

optimization variables, respectively. The following ranges 

are selected for the control parameters of STMDs. The 

search increment for the variable parameter and objective 

function set to be 10−6. 

1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2 1 2[ , , , , , , , , , , ],

[0, 0, 0,0,0.8, 0.8, 0.8, 0.8, 0, 0, 0],

[0.5, 0.5, 0.5,0.5,1.8,1.8,1.8,1.8,1,1,1]

T T T

b

b

q f f f f

l

u

=

=

=

      

 (19) 

 

 

4. Numerical results 
 

To suppress the multiple resonant peaks of a two-span 

continuous bridge with different TMD systems, some  

Table 1 Properties of the HSLM-A high-speed trains 

Universal 

train 

Number of 

intermediate 

coaches, N 

Coach 

length (m) 

Bogie axle 

spacing (m) 

Point 

force (kN) 

HSLM-A7 13 24 2 190 

HSLM-A8 12 25 2.5 190 

HSLM-A9 11 26 2 210 

 

 

Fig. 3 Maximum displacements under the train passage 
 

 

illustrated examples are presented in this section. For 

numerical analyses, each span of the beam with constant 

cross section is modeled as a Bernoulli-Euler beam with the 

following properties: L = 20m, EI = 2.51010 Nm2, mb = 

34,088 kg/m,  = 0.025 (Wang et al. 2010). To study the 

phenomenon of train-induced resonance on railway bridges, 

a train is often simulated as a series of moving loads with 

regular intervals (Yau et al. 2001, Luu et al. 2014). Wang et 

al. (2003) also indicate that the use of the different train 

models brings about a change in resonant train speeds about 

2.5%. Thus, the effects of vehicle–structure interaction are 

neglected in this paper. The high-speed train model HSLM-

A8 is used in numerical analyses, which is one of the high-

speed passenger train models in Eurocode 1 (refer to Table 

1). The resonant speeds of a train are dependent upon two 

factors: the modal frequencies of the bridge and the load 

spacing of the train (Wang et al. 2003). Resonant or critical 

speeds of a train are thus given by 

, , 1,2,3,...
2

i

i p

ωd
v p

πp
= =  (20) 

where 
iω  and d are ith the natural circular frequency of 

the bridge and the distance between two bogies or a length 

of the coach, respectively, p denotes the resonant number.  

The maximum displacements computed for the each 

midspan of the continuous beam is plotted against the 

different train speeds from 100 km/h to 600 km/h in Fig. 3. 

As seen, there are two resonant peaks on the bridge when 

the train speeds are close to 300 km/h and 470 km/h, 

respectively. With the first two natural circular frequencies 

of the bridge 
1 21.13 rad/sω =  and 2 33.03 rad/sω = , the  
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Fig. 4 Effect of different modes on the maximum 

displacement of bridge at the second midspan 

 

 
Fig. 5 Effect of different locations on the maximum 

displacement of bridge at the second midspan 
 

 

corresponding resonant speeds of the train according to 

Eq.(20) are 302.7 km/h and 472.9 km/h, respectively.  

Fig. 3 also indicates that the maximum displacement of 

the second span is larger than the first one for both critical 

speeds. Therefore, only the response of the second midspan 

is considered. In addition, the two-span continuous beam 

has two resonant peaks. Thus, two different STMDs are 

used in order to reduce the two resonant peaks.  

Contribution of different modes on the maximum 

displacements at the second midspan of the bridge is shown 

in Fig. 4. As seen, first two modes that dominate the total 

response of the bridge are very important to compute the 

displacement response of the considered two-span 

continuous bridge under moving train. Thus, in the study, 

the STMDs are designed to control the first two modes of 

vibration of the bridge.  

 
Fig. 6 Effect of location of the installation on the 

effectiveness of the STMD 
 

 
Fig. 7 Comparison of the analytical and numerical 

dynamic analysis results for dynamic vertical 

displacements of the second midspan with speed of 302.7 

km/h 

 

Table 2 Optimal parameters for various types of TMD 

systems with 2% total mass ratio 

Type No xs/Lt fi ξi (%) μi (%) 

STMD-4 1 1/4 1.372 0.000 0.575 

 2 1/4 1.193 10.810 0.135 

 3 3/4 1.373 0.000 1.126 

 4 3/4 1.539 13.310 0.164 

MTMD-4 1 1/4 0.949 2.872 0.775 

(Luu et al. 

2012) 
2 1/4 1.035 3.132 0.651 

 3 3/4 1.553 4.699 0.289 

 4 3/4 1.556 4.737 0.285 

TMD-2 1 1/4 0.987 4.553 1.421 

(Luu et al. 

2012) 
2 3/4 1.546 7.128 0.579 

Note: xs is the distance of the ith TMD to the left-hand end 

of the continuous beam, Lt is total length of the continuous 

bridge, fi, ξi and μi are the optimal frequency, damping and 

mass ratio of the ith TMD 
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Fig. 8 Variation of displacement response for different 

optimization cases 
 

 

Maximum displacements at different locations of the 

bridge is shown in Fig. 5. As seen, the displacement 

response at the midpoint of second span of the bridge is 

maximum. Fig. 5 also indicates that the displacement 

response decreases in the locations closer to the supports. 

Effect of location of the STMD is investigated in Fig. 6. 

Here, maximum displacements of the second span are 

shown when the STMD is installed on different locations. 

As clearly seen, the optimal location is obtained as the 

middle of the span, i.e., 0.5L. This conclusion is consistent 

with that of previous works by Wang (2003), Luu et al. 

(2012), and Yau and Yang (2004a,b). 

In Fig. 7, the midpoint deflection time-history of two-

span bridge with single TMD on each span for undamped 

case is given. TMD parameters are selected as m = 6.82 t, c 

= 14.41 kNs/m and k = 3044 kN/m. Analytical results are 

compared with that of the finite element method (FEM) 

solutions obtained by SAP2000 software (CSI). TMD is 

modeled via a link element in SAP2000. As can be seen, the 

results obtained for both methods perfectly agree very well 

with each other. 

When the lower and upper bounds for all of the 

optimization variables in Eq. (19) are limited to non-

negative values, the optimum damping ratio of the first 

TMD in STMD device is equal to zero. If negative damping 

ratio is allowed in the optimization process, the optimum 

damping ratio of the first TMD becomes a negative value. 

The maximum displacements of the bridge with optimal 

STMD for the zero and negative damping cases are 

compared in Fig. 8. As can be seen, the best effectiveness of 

the STMD is obtained when the damping coefficient of the 

first TMD gets negative value, which means an active 

damper need to be added to the TMD unit. Even so, 

negative damping cannot be obtained for the passive 

vibration control (Asami, 2017). Thus, the damping 

constant of the first TMD must be configured to be zero. 

The optimal parameters for STMD-4 and MTMD-4 

from Luu et al. (2012) are given in Table 2. For STMD-4,  

 
Fig. 9 Variation of displacement response for different 

damping ratio of the first TMD in STMD 

 

 

Fig. 10 Maximum displacements of second midspan of 

the bridge with optimum absorbers 

 

 

optimum parameters are obtained by SQP while H2 

procedure was used for MTMD-4 which consists of four 

parallel connected TMD units. As seen, in STMDs, the 

optimum damping ratio of the first TMD is equal to zero. 

Thus, there is no need for the damping element in the first 

TMD in the STMD system. This finding is the same as 

those found by Li and Zhu (2006), Zuo (2009), Kahya and 

Araz (2017), Asami (2017) and Asami et al. (2018). It is 

also found that the optimum damping ratios obtained for the 

smaller TMD in STMDs are significantly larger than those 

of each TMD unit in MTMD-4 system. Optimum frequency 

ratios vary from 1.193 to 1.539 for STMD-4 while 0.949 to 

1.556 for MTMD-4. 
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Fig. 11 Time histories of the second midspan of the 

bridge for the speed of 302.7 km/h 
 
 

Fig. 9 presents the variation of displacement response 

against damping ratio of first TMD unit in STMD. As can 

be seen, the effectiveness of STMD decreases with the 

increase in the damping ratio of the first TMD. We also 

observe here that the smallest responses are obtained in case 

of zero-damping in the first TMD unit. Another observation 

from this figure, the optimal STMDs are very effective in 

reducing dynamic responses of bridge during resonant 

speeds. But their effectiveness rapidly decreases when the 

optimum design parameters of STMDs are changed. 

Fig. 10 shows the variation of maximum displacements 

of the bridge with regard to the train speed for three 

optimum TMDs (i.e. TMD-2, MTMD-4 and STMD-4). 

Here, TMD-2 system is assumed to contain single TMD at 

the each midspan (refer to Table 2). Fig. 10 indicates that 

the STMD-4 has slightly better effectiveness than TMD-2 

with the same mass ratio in suppressing the maximum 

displacement response of the bridge due to high-speed 

trains. The maximum displacement can be reduced up to 41.4, 

45.9 and 49.4 for TMD-2, MTMD-4 and STMD-4, 

respectively. 

The vertical displacement and acceleration time 

histories of the bridge for the first critical speed (302.7 

km/h) are illustrated in Figs. 11, respectively. The 

maximum displacement and acceleration at the second 

midspan are 15.141 mm and 0.686g without TMDs, 7.239 

mm and 0.332g with STMD-4, and 8.039 mm and 0.366g 

with MTMD-4, respectively. The vibrations are reduced by 

52.2% and 46.9% for the maximum displacement response 

and 51.6% and 46.6% for the maximum acceleration  

 
Fig. 12 Maximum displacements at the second midspan 

of the bridge with STMD-4 in case of detuning 

 

 

Fig. 13 Maximum displacements at the second midspan 

of the bridge with MTMD-4 in case of detuning 

 

 

response with the installation of STMD-4 and MTMD-4, 

respectively. For railway bridge design, the maximum 

vertical acceleration must be smaller than 0.35g (Annex A2). 

Thus, MTMD-4 has a disadvantage for the considered 

bridge when compared to the STMD-4 system. 

Maximum displacements at the second midspan with 

STMD-4 and MTMD-4 systems for 2.5% deviation from 

the optimum TMD frequency are shown in Figs. 12 and 13, 

respectively. As can be seen, a small deviation from the 

frequency tuning ratio causes detuning that results in large 

changes in the bridge response. According to these figures, 

the effectiveness of STMD-4 is better than that of MTMD-4. 
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Fig. 14 Maximum displacements at the second midspan 

for different frequency tuning errors 
 

 

Fig. 15 Maximal displacements of the bridge with and 

without TMDs under HSLM-A7 

 

 

The sensitivity of a system to a certain parameter is 

determined by comparing the optimal case with those 

obtained using variations of the parameters of interest. In 

this study, the robustness of the STMD system is examined 

for optimum tuning frequency, i.e. the rest of the parameters 

except the one examined are the optimum values for STMD 

system. As an example of such a detuning, a reduction of 

the TMD’s optimum tuning frequency ratio by 5% is 

considered which has been simulated by reducing the 

TMD’s stiffness to 90.25% of the optimal value. The 

formula of tuning error is expressed by Error % = (fd  - fopt) 

/ fopt. Here, fopt is optimum tuning frequency ratio and fd is 

detuned frequency ratio. 

 

Fig. 16 Maximal displacements of the bridge with and 

without TMDs under HSLM-A9 

 

 

To evaluate the robustness of three TMD devices, Fig. 

14 shows comparison of three different tuned mass dampers 

(STMD-4, MTMD-4 and MTMD-10) when the frequency 

detuning ratios change between -10 and +10. The abscissa 

is the error from the estimated tuning frequency ratio of the 

TMD unit while the ordinate is the maximum displacement. 

As can seen, the dynamic response of the bridge system 

increases if the tuning frequency ratio is either increased or 

decreased in comparison with the optimal value. Fig. 14 

also indicates that STMD-4 designed by using the SQP 

technique is the best in terms of the robustness compared to 

the others for the frequency detuning in greater than 2.5%. 

In order to improve the generality of the STMD control 

effectiveness, the bridge with TMDs are also analyzed 

under different rail loading scenarios. HSLM-A7 and 

HSLM-A9 trains are used in numerical analysis, which 

defined in Eurocode 1. The maximum displacement curves 

of the bridge under trains with speeds ranging from 100 to 

600 km/h are illustrated in Figs. 15 and 16. Compared with 

MTMD-4, the STMD is shown to be more effective in 

reducing the dynamic bridge responses when the train 

travels at critical speeds for both train models. 
 

 

5. Conclusions 
 

Series tunes mass dampers for suppression of multiple 

resonant peaks of continuous railway bridges under high-

speed trains are presented in this study. A two-span bridge 

is considered as the case study. HSLM-A8 high-speed train 

model is used in numerical analyses, which is one of the 

high-speed passenger train models in Eurocode 1. The SQP 

technique is used for optimum parameters of STMD. 

Comparisons with several types of multiple tuned dampers 

available in the literature are made in terms of the control 

effectiveness and robustness. The following conclusions 

can be drawn from the study: 
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• In multi-span continuous bridges, it is observed 

the resonance peaks up to the number of spans, e.g., for a 

two-span bridge, there is two resonant peaks. Therefore, the 

number of MTMD or STMD devices to be installed on the 

bridge should not be smaller than the number of resonant 

peaks for effective vibration control.  

• For continuous bridges, the first few modes of 

vibration not smaller than the number of spans is enough for 

the design of STMDs. 

• Optimum location of STMDs is on the middle of 

each span. 

• For the first TMD unit in a STMD, optimal 

damping is always obtained to be zero.  

• For optimal case, i.e., no detuning, both STMDs 

and MTMDs show the approximately same control 

effectiveness.  

• The optimal STMD-4 achieves approximately the 

same level of response reduction as the optimum MTMD-

10. Thus, STMDs are more economic and advanced control 

devices than MTMDs. 

• STMD’s effectiveness is better than that of the 

MTMDs considered when the shift (or detuning) of the 

frequency tuning ratio is larger than 2.5%. 
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