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1. Introduction 
 

Cracks located in structural members may cause 
catastrophic failures of civil engineering and mechanical 
engineering applications. Presence of cracks lead to 
stiffness reduction of structural elements. Thus, the 
dynamic behaviour of a structure is changed when one or 
more structural members are damaged. For cracked beams, 
the forward problem that consists of free vibration analysis 
considering known crack location and properties was 
investigated in many studies (Ostachowicz and Krawczuk 
1991, Khaji et al. 2009, Zhou et al. 2016, Zhou et al. 2016, 
Liu et al. 2017, Zhou and Abdel Wahab 2017, Rajasekaran 
and Khaniki 2018, Gillich et al. 2019). Besides forward 
approach, crack detection of beam-like structures has been 
an attractive research area for many years as identification 
of cracks plays a very important role in structural health 
monitoring (SHM). One of the effective non-destructive 
tests for SHM is a vibration-based method such as modal 
analysis. Rizos et al. (1990) used an analytical approach for 
crack detection of a cantilever Euler-Bernoulli beam 
considering the crack as a massless rotational spring. Narkis 
(1994) applied analytical solution for inverse problem of 
cracked simply supported Euler -Bernoulli beams.  
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Nandwana and Maiti (1997) obtained crack location and 

size of damaged stepped cantilever beams using finite 

element based natural frequencies. In this study, the inverse 

approach was based on plotting variation of spring stiffness 

of crack with crack location for first two or three modes. 

Lele and Maiti (2002) studied inverse problem of cracked 

cantilever Timoshenko beams. Nahvi and Jabbari (2005) 

performed crack detection analysis of a cantilever using 

experimental modal data and finite element model. 

Dansheng et al. (2007) used TBT for detection of cracks on 

a simply supported beam via anti-resonant frequencies. 

Barad et al. (2013) calculated crack locations and 

magnitudes of a cantilever Euler-Bernoulli beam by using 

plots of variation between crack/depth ratio and crack 

location. Kindowa-Petrova (2014) performed a crack 

detection analysis using Euler-Bernoulli beam theory (EBT) 

and analytical solution. In this study, it was seen that the 

accuracy of crack detection was strictly related to spring 

stiffness calculation approach. Fekrazadeh and Khaji (2017) 

applied a crack detection approach to simply supported 

Timoshenko beams using a test mass. Jena and Parhi (2015) 

used a modified particle swarm optimization (PSO) 

technique for crack detection of cantilever beams according 

to EBT. Mungla et al. (2016) investigated inverse problem 

of cracked Euler-Bernoulli beams under clamped-clamped 

boundary condition. Frequency-based analytical method 

was used in this study. Khiem and Huyen (2017) proposed a 

solution to detect single crack in functionally graded 

Timoshenko beam. Moezi et al. (2018) applied Cuckoo-

Nelder-Mead optimization method for crack detection of 

cantilever beams. Khatir et al. (2016) applied BAT 

algorithm and Particle Swarm Optimization (PSO) 
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technique for damage identification and localization of 

single and multiple cracked simply supported beams. Khatir 

et al. (2018) performed a crack identification analysis of a 

cantilever beam and plane frame structure using PSO 

method. In this study, the natural frequencies of intact and 

damaged beam model are calculated experimentally as well 

as finite element method (FEM). Rosales et al. (2009) 

applied crack detection approach to beam-like structures 

using power series technique and artificial neural networks 

(ANN). Khnaijar and Benamar (2017) proposed a new 

discrete model for forward and inverse problem of cracked 

beam vibrations. The popularity of non-destructive 

evaluation is not limited to beam-like elements. 

Nanthakumar et al. (2013) proposed an iterative method for 

inverse problem for detecting cracks in piezoelectric 

structures. Nanthakumar et al. (2016)  solved inverse 

problem of detecting inclusion interfaces in a piezoelectric 

structure using level set method. Inverse analysis techniques 

are not limited to crack detection in structures. A potential 

modelling approach, which can be used for damaged 

structures, is based on IGA, e.g. Phung Van et al. (2019), 

Le et al. (2018) and Phung Van et al. (2018). Vu-Bac et al. 

(2018) applied NURBS-based inverse analysis for 

recovering the applied loads and deformations of thin shell 

structures considering kinematic and constitutive 

nonlinearities. Ghasemi et al. (2017) presented a 

methodology which was a combination of isogeometric 

analysis (IGA), level set and point wise mapping technique 

for topology optimization of flexoelectric materials. 

Ghasemi et al. (2018) proposed a design methodology for 

topology optimization of multi-material based flexoelectric 

composites. In recent studies, the extended IGA (XIGA), 

which is the combination of IGA and extended FEM was 

applied to crack detection and quantification of plate 

structures (Khatir and Abdel Wahab 2019). Khatir et al. 

(2019) presented results of a combined IGA-FEM approach 

for damage assessment of a free-free beam structure. 

In the most of the studies concerned with vibrations of 

cracked beam-like structures, the beams are modelled 

according to EBT and TBT. It is known that the natural 

frequencies of Euler-Bernoulli beams are overestimated due 

to the assumption that a cross-section remains rigid and 

perpendicular to the axis of the beam. TBT, which 

considers shear deformation and rotational inertia provides 

more realistic results when compared to EBT. It should be 

noted that TBT needs a parameter called shear coefficient to 

reduce the error arised from assumption of constant shear 

stress distribution of cross-section (Han et al. 1999). 

Therefore, some researchers studied high-order beam 

theories that based on considering a realistic shear stress 

distribution because of cross-section of beams does not 

remain plane after bending (Levinson 1981, Bickford 1982, 

Reddy 1984, Heyliger and Reddy 1988). Due to 

complicated formulations and time consuming solutions of 

high-order beam and plate theories, a research area that 

focuses on simple and realistic beam and plate theories is 

arised. Shimpi (2002) presented a refined plate theory that 

aimed to consider shear and bending components of 

displacements. Shimpi et al. (2006) studied on two 

displacement based shear deformation theories involving 

two functions for bending of plates. Klouche et al. (2017) 

studied on an original SVSDT for buckling analysis of 

isotropic plates. Abdelbari et al. (2018) investigated 

bending analysis of thick beams using a single variable 

shear deformation model. Shimpi et al. (2017) presented a 

SVSDT that had parabolic shear stress distribution along 

cross-section of beam element. The SVSDT did not need a 

shear correction factor and provided a fourth order 

governing equation of motion. Bozyigit and Yesilce (2018) 

investigated natural frequencies of multi-bay and multi-

storey frames using SVSDT. The SVSDT was applied to 

harmonic response analysis of fixed supported multi-storey 

frame structures by Bozyigit and Yesilce (2018). One of the 

key assumptions of SVSDT is considering transverse 

displacement as assembly of bending and shearing 

components. Based on this assumption, a nonlocal shear 

deformation beam theory was applied to bending, buckling 

and vibrations of FG nanobeams (Zemri et al. 2015). A 

nonlocal quasi-3D theory including shear deformation and 

thickness stretching effects was used for free flexural 

vibrations of FG nanobeams (Bouafia et al. 2017). Free 

vibration analysis of nanoscale beams was investigated by a 

general beam model based on Gurtin-Murdoch continuum 

surface elasticity theory (Youcef et al. 2018). A two-

unknown trigonometric shear deformation beam theory was 

used for investigating the effects of moisture and 

temperature on free vibrations of FG nanobeams on elastic 

foundation (Mouffoki et al. 2017). Free vibration analysis 

of simply supported porous FG beam was investigated by 

using a higher order trigonometric shear deformation theory 

(Bourada et al. 2019). A nonlocal trigonometric shear 

deformation theory based on neutral surface position was 

developed for bending, buckling and vibration of FG 

nanobeams (Ahouel et al. 2016). A nonlocal hyperbolic 

refined plate theory was used for free vibrations of FG 

plates (Belkorissat et al. 2015). The wave propagation of 

FG plates was investigated using various high-order shear 

deformation plate theories(Ait Yahia et al. 2015). The free 

vibration analysis of FG sandwich plates was performed 

using a 3-unknown hyperbolic shear deformation theory 

which does not require a shear correction factor (Belabed et 

al. 2018). It should be noted that high order shear 

deformation theories would be more suitable in some cases 

such as laminated structures. However, SVSDT which has 

significantly simple formulations when compared to high 

order shear deformation theories, is an important alternative 

for a realistic vibration analysis of beam-like structures.   

The research area about simple, accurate and effective 

beam theories like SVSDT is not limited to vibration 

analysis of structures. A novel simple two unknown beam 

theory which presents a parabolic shear stress distribution 

without a shear correction factor was used for post-buckling 

analysis of composite beams (Abdelhakim et al. 2018). The 

bending analysis of FG beams was investigated by using a 

simple two unknown hyperbolic shear deformation theory 

(Zidi et al. 2017). A simple three-unknown shear 

deformation theory was used for bending analysis of FG 

plate (Mohammed Sid Ahmed et al. 2016, Hachemi et al. 

2017) and buckling analysis of graphene sheet (Mohammed 

Sid Ahmed et al. 2018). 
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The transfer matrix method (TMM) is an effective tool 

for free vibration analysis of beams and beam-assembly 

structures. The results of TMM are exact as the method uses 

analytical mode shapes. After obtaining local transfer 

matrices of beam segments, the global transfer matrix of 

whole vibrating system is constructed. The TMM has been 

used for free vibrations of different beam models using 

different beam theories (Lin and Chang 2005, Attar 2012, 

Wu and Chang 2013, Lee and Lee 2016, Lee and Lee 2017, 

Lee and Lee 2018, Lee and Lee 2018). 

In this study, transfer matrix formulations are adapted to 

an analytical crack detection approach based on plots of 

variation of rotational spring flexibility with crack location 

using the first three natural frequencies. The SVSDT is 

applied to dynamic analysis of cracked beams by means of 

both forward and inverse problem. At first, natural 

frequencies of cracked beams are calculated using TMM 

and SVSDT. The relative errors of free vibration analysis 

using SVSDT and TBT are tabulated according to results in 

literature. Then, crack detection procedure is performed 

using SVSDT comparatively with TBT. Various numerical 

examples including beams have free-free, fixed-free and 

simple supported boundary conditions are given to 

demonstrate the effectiveness of proposed method. The 

accuracy of analytical based crack detection approaches are 

strictly related to beam theories. From this point of view, 

the authors are encouraged to study on analytical based 

crack detection of structures using a beam theory which 

considers a realistic shear stress distribution along cross-

section unlike previous studies. The novelty of this study is 

based on application of SVSDT for crack detection in 

beam-like structures. Moreover, TMM is combined with 

SVSDT for an analytical based inverse problem for 

detecting cracks.  

 
 

2. Theoretical model and formulation  
 

One of the effective crack modelling approach in beam-

like structures is using a linear rotational spring that divides 

beams into segments. By this way, the methods that use 

analytical formulations such as TMM becomes effectively 

applicable to vibration problems of cracked beams. A 

representation of a single cracked beam element using a 

linear rotational spring is presented in Fig. 1, where CR is 

spring flexibility, b is width of the cross section, h is height 

of the cross section, L* and L are location of crack and 

length of the beam, respectively. The spring flexibility CR 

can be obtained by using Eqs. (1)-(2) as (Ostachowicz and 

Krawczuk 1991): 

2

72π (α)
R

f
C

Ebh
=

 
(1) 

f(α) = 0.6384α2 – 1.035α3 + 3.7201α4 – 5.1773α5 + 

7.553α6 – 7.332α7 + 2.4909α8 
(2) 

where α is crack ratio (lc/h), lc is crack length, E is 

elastic modulus and f(α) is local compliance function 

calculated according to linear elastic fracture mechanics 

(Kindowa-Petrova 2014). 

The following assumptions are considered in this study: 

1. The material of beam is homogeneous and isotropic. 

2. The cross-section of beam is uniform. 

3. The behavior of beam is linear elastic. 

4. The crack remains open under bending. 

5. The damping is neglected. 

It should be noted that crack representation in Fig. 1 

does not limit the study for edge cracks located lower part 

of cross-sections. Whether the crack is at the top or bottom 

of cross-section does not change the result as equivalent 

spring flexibility is calculated by means of decrease in the 

elastic deformation energy at cross-section.   

The total transverse displacement function of a beam in 

free vibration is defined as assembly of bending and 

shearing components according to SVSDT formulations as 

(Shimpi et al. 2017):  

S
b sW W W= +

 
(3) 

where WS is total transverse displacement, Wb and Ws are 

displacement components of bending and shearing, 

respectively. The governing equation of motion of a beam 

in free vibration according to SVSDT is written as (Shimpi 

et al. 2017): 

( )

( )

4 4 2
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+   
− + + 

    

+ 
+ =

  

(4) 

where x is beam coordinate, A is cross-sectional area, μ is 
Poisson’s ratio, m̅ is mass per unit length, I is area moment 
of inertia, t is time. It should be noted that the details of 
derivation of Eq.(4) are not presented herein to improve the 
readability of paper. The further details of SVSDT can be 
investigated in some papers about different applications of 
theory (Shimpi et al. 2017, Bozyigit and Yesilce 2018, 
Bozyigit and Yesilce 2018). 

It is seen from Eq.(4) that the governing motion 
equation of SVSDT is constructed in terms of only bending 
component of total displacement. The solution of Eq.(4) 
gives the Wb function. Using separation of variables 
approach with the assumption of Wb(x,t) = Wb(x)eiωt, Eq.(5) 
is obtained, where ω is natural angular frequency. 

4 2
2 2 4
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(5) 
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The solution of Wb(z) is written as: 

 ( ) isz
bW z D e=

 
(6) 

where {D} represents vector of integration constants. 

Wb(z) function can be rewritten as Eq.(7) using Eq.(6): 

1 2 3 4
1 2 3 4( ) ( )is z is z is z is z

bW z D e D e D e D e= + + +
 

(7) 
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where s1, s2, s3, s4 are characteristic roots of the equation 
that can be calculated by substituting Eq.(6) into Eq.(5).The 
bending component of slope function can be written as 
follows:  

1 2 3 4
1 1 2 2 3 3 4 4( )b is z is z is z is zdW

is D e is D e is D e is D e
dz

= + + +
 

(8) 

The bending moment function MS(z) and shear force 

function QS(z) are defined in SVSDT as Eq.(9) and (10), 

respectively (Shimpi et al. 2017). 

2

2 2
( ) bS EI d W

M z
L dz

= −
 

(9) 

3 2

3 3

ω
( ) b bS EI d W mI dW

Q z
AL dzL dz

= − −
 

(10) 

By using Eq. (7), MS(z) and QS(z) functions can be 

rewritten as:  

1 2

3 4

2 2
1 1 2 2

2 2
3 3 4 4

( ) (

             )

S is z is z

is z is z

M z Hs D e Hs D e

Hs D e Hs D e
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 (11) 
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3 4
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( ) ( )
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= − + −

+ − + −
 

(12) 

where ( ) ( )2 3 2/ , / , ω /H EI L J EI L K mI AL= = =  

WS and WS functions can be given in final form as Eqs. 

(13) and (14), respectively. 
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2

2
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where 
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( )212 1 μ

; ω /
5

T P mI A
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The total slope function is achieved as assembly of 

bending and shearing components as: 

( ) ( )

( ) ( )
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(15) 

 

 

where R=P/L 

 

 

3. Transfer matrix method (TMM) formulations 
 

The transfer matrix of a beam element is constructed 

using force and displacement relations of two end (z=0 and 

z=1). The state vector (Z) of left-hand side (z=0) is written 

as:  

1 2 3 4 1

1 2 3 4 2
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1 2 3 4 4
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=

 
    
        =   
    
      

    

(16) 

where 
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Eq. (16) can be expressed in closed form by 

{Z}z=0 = [T0]{D} (17) 

where 

 

1 2 3 4

1 2 3 4

0
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The state vector of right-hand side (z=1) of beam 

element is given in Eq. (18).  
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(18) 

Eq. (17) can be written in a simple form as: 

{Z}z=1 = [T1]{D} (19) 

where 
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Fig. 1 Representation of a single cracked beam element by means of a linear rotational spring 
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The arbitrary constant vector {D} can be derived as 

Eqs.(20) and (21) by using Eqs.(17) and (19), respectively. 

{D} = [T0]-1{Z}z=0 (20) 

{D} = [T1]-1{Z}z=1 (21) 

The relationship between state vectors {Z}z=0  and 

{Z}z=1 can be obtained using Eqs. (20) and (21) as follows: 

{Z}z=1 = [T1] [T0]-1{Z}z=0 (22) 

{Z}z=1 = [T*]{Z}z=0 (23) 

where [T*]=[T1] [T0]-1 and [T*] represents transfer matrix of 

beam element. 

If the beam is divided into m sub-segments along its 

length, the global transfer matrix of the system can be 

obtained by a chain multiplication of transfer matrices of 

beam segments as:  

[TG
* ]= [T*]m [T*]m-1 ... [T*]2[T*]1 (24) 

where [TG
* ] is global transfer matrix of whole vibrating 

system.  

In this study, due to using a rotational spring for crack 

modelling, a discontinuity occurs between slopes of beam 

segments. Therefore, an additional matrix that represent the 

discontinuity of slope at crack location must be embedded 

in Eq.(24). The global transfer matrix of the system is 

expressed in Eq.(25) for a single cracked beam element 

(Attar 2012) where [C*] represents the discontinuity of 

slope at crack location. 

[TG
* ] = [T*]2 [C*][T*]1 (25) 

where  

 

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

RC
C*

 
 
 =
 
 
   

According to characteristics of TMM, Eq. (25) can be 

extended for multi-span beams or multi-stepped beams 

having different material properties in each section. 

However, the material of each section must be 

homogeneous. Any flexibility jumps due to local non-

homogeneities may cause false crack detections.  

It should be noted that the formulations of TMM for 

cracked Timoshenko beams can be derived without any 

difficulties using same approach. The details of analytical 

formulations and TMM approach for Timoshenko beams 

are not presented in this study to shorten the paper. Further 

details of TMM formulations for different types of 

Timoshenko beams can be found in open literature (Lin and 

Chang 2005, Wu and Chang 2013, Al Rjoub and Hamad 

2017, El-Sayed and Farghaly 2017). 
 

3.1 Solution of forward problem 
 

After obtaining the global transfer matrix of system, a 

matrix reduction procedure is applied. The reduced global 

transfer matrices of beams having various boundary 

conditions are presented in Table 1. 

Table 1 Reduced global transfer matrices for different 

boundary conditions 

Boundary 

condition 

Reduced Global Transfer Matrix 

Free-Free 
3 1 3 2

4 1 4 2

 
 
 

* *

G G

* *

G G

T ( , ) T ( , )

T ( , ) T ( , )
 

Fixed-Free 
3 3 3 4

4 3 4 4

 
 
 

* *

G G

* *

G G

T ( , ) T ( , )

T ( , ) T ( , )
 

Simple-Simple 
1 2 1 3

4 2 4 3

 
 
 

* *

G G

* *

G G

T ( , ) T ( , )

T ( , ) T ( , )
 

 

 

The natural frequencies of cracked beam models are 

calculated by equating the determinant of reduced global 

transfer matrices to zero. A root finding algorithm that 

based on a trial and error on interpolation can be used for 

calculation of roots. The sign change between trial values 

means that there must be root lying in this interval.  

 

3.2 Solution of inverse problem 
 

The measured first three natural frequencies of cracked 

beams are used to plot the variation of CR versus crack 

location. Since the spring flexibility representing the crack 

is irrespective of the vibration modes, the plots should 

intersect at one point that represents actual crack location 

and rotational spring flexibility (Lele and Maiti 2002). After 

the crack is located with CR, the crack length can be 

calculated by using Eqs. (1) and (2). There may be two 

intersection points representing possible crack positions if 

the boundary, loading and geometry conditions of beam 

model are symmetrical. In this case, for real applications, 

both symmetrical crack locations must be checked carefully 

to avoid false crack detection. It should be noted that the 

three plots cannot intersect on a point in some cases due to 

graphical procedures. To vanish this errors, origin of the 

intersection region should be chosen as actual crack 

location (Kindowa-Petrova 2014). However, in some cases, 

the plots of variation of CR with crack location of first two 

natural frequencies are intersected at one common point. 

For this type of graphs, there is no need to add plot of third 

mode. Moreover, elastic modulus value must be updated 

using Eq. (26) for each mode to perform an accurate crack 

detection. This calibration procedure is also known as 

“zero-setting” (Nandwana and Maiti 1997, Lele and Maiti 

2002, Kindowa-Petrova 2014). 

2

updated measured

n

analytical

E E




 
=  
 
   

(26) 

where ωmeasured is measured natural frequency of intact 

beam, ωanalytical is calculated natural frequency of intact 

beam by TMM and En
updated is calibrated elastic modulus 

value, where n is mode number (n= 1, 2, 3). 

The proposed crack detection approach can be used 

effectively in most of the common beam systems if number 

of crack is one. For multiple cracked beam systems, the 
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analytical crack detection procedures using plots of CR with 

crack location become unmanagable as the main idea is 

obtaining CR for each simulated position of crack along 

beam axis. It should be noted that the proposed inverse 

problem solution is not suitable for multiple crack detection 

approaches contrary to optimization methods such as 

Particle Swarm Optimization (PSO) (Khatir et al. 2018) and 

Cuckoo-Nelder-Mead Optimization Algorithm (COA-NM) 

(Moezi et al. 2018). Moreover, due to need of chain 

multiplication of member global transfer matrices of 

structures in TMM, the proposed approach is inapplicable 

for crack detection of multi-bay and multi-story frames. 

However, TMM can be applied to both forward and inverse 

problem of single cracked one-bay one-story frame 

structures.  
 

 

4. Experimental validation 
 

For experimental validation, free vibration analysis and 

crack detection procedure is performed for a free-free beam 

using following data: L = 0.75 m, b = 0.025 m, h = 0.006 m, 

E = 2×108 kN/m2, μ = 0.3, m̅ = 0.0012 kNs2/m2. The 

experiment was accomplished using a Bruel and Kjaer type 

8206–001 impact hammer, a Bruel and Kjaer DeltaTron™ 

type 4507 accelerometer and a National Instruments NI 

9234 analog-to-digital converter. The free-free boundary 

conditions were modelled by very flexible springs. A saw 

cut was used for damage generation on the beam (Khatir et 

al. 2018).  

First four natural frequencies of the beam obtained from 

experiment (Khatir et al. 2018) and using SVSDT and TBT 

via TMM are presented in Table 2. The relative error of 

using SVSDT and TBT for intact and cracked beams can be 

seen from Fig. 2 where the relative errors of SVSDT are 

relatively higher for α = 0.5 (3 mm crack). Theoretically, 

SVSDT should provide more realistic results when 

compared to TBT as SVSDT considers a parabolic shear 

stress distribution along cross-section. However, the cross-

section of beam used in experimental validation is very 

small. Therefore, for the thin beam used in the experiment, 

relatively high α values like 0.5 may provide imperfect 

results for SVSDT as effects of non-constant shear stress 

distribution on cross-sections are remarkable for thick 

beams.  

It can be seen from Table 2 that TBT and SVSDT 

provide same natural frequencies for intact beam. However, 

the effects of SVSDT becomes observable for cracked 

beams by providing lower natural frequencies when 

compared to TBT. As it can be seen from Table 2, the 2nd 

and 4th frequencies are not effected by cracks. This situation 

is a result of location of crack as there is a node at the 

middle of free-free beam for 2nd and 4 th modes, 

theoretically. Thus, experimentally measured natural 

frequencies (Khatir et al. 2018) are decreased by increasing 

crack depth for all modes. The relative error between 

experimental modal analysis and TMM results are 

acceptable as experiment conditions cannot ensure ideal 

boundary conditions, exact material properties, geometrical 

properties and crack length. The crack detection analysis of 

free-free beam model is performed using experimentally  

 
Fig. 2 The relative error between transfer matrix 

formulations and experimental study 

 

Table 2 First four natural frequencies of beam model with 

free-free boundary conditions 

Crack 

length 

(mm) 

Crack 

location 

(m) 

Natural 

frequency 

ƒ1 

(Hz) 
ƒ2 (Hz) ƒ3(Hz) ƒ4(Hz) 

Intact 

TBT 
55.51

73 

152.96

84 

299.68

88 

494.97

19 

SVSDT 
55.51

73 

152.96

84 

299.68

88 

494.97

19 

Khatir et al. 

(2018) 
56.75 156.39 306.19 506.15 

1           

0.375 

TBT 
55.35

66 

152.96

84 

299.00

44 

494.97

19 

SVSDT 
55.09

18 

152.96

84 

297.90

62 

494.97

19 

Khatir et al. 

(2018) 

56.38

35 

156.30

35 

305.46

99 

506.02

38 

3           

0.375 

TBT 
53.78

84 

152.96

84 

292.68

59 

494.97

19 

SVSDT 
51.22

30 

152.96

84 

283.34

35 

494.97

19 

Khatir et al. 

(2018) 

54.30

88 

156.07

88 

296.33

72 

505.54

42 
 

 

measured natural frequency values in Table 2. The relations 

of spring flexibility values and crack locations are plotted 

for the first three natural frequencies (Fig. 3). 

Using Fig. 3, the cracks of free-free beam model are 

localized by graphically detecting intersection of curves CR 

vs L* of first three modes. For the curves that do not a have 

a unique intersection point, the origin of intersection area is 

considered at crack location. Then, crack lengths are 

calculated using Eqs. (1) and (2) without any difficulty. The 

results of crack detection procedure according to TBT and 

SVSDT are presented in Table 3. 

According to Table 3, SVSDT is more accurate in 

comparison with TBT for 1 mm crack length. However, 

TBT provides better crack detection results for 3 mm crack 

length. It is clearly seen from Table 3 that TMM 

formulations provides significantly better results for crack 

localization when compared to crack length prediction 

according to experimental modal analysis results of free-

free beam model (Khatir et al. 2018). It should be noted that 

analytically calculated natural frequencies of modes 2 and 4 

are not influenced by crack length as crack is located on a 

node for 2nd and 4th mode. However, especially for 

symmetrical beams by means of boundary conditions, the 

proposed analytical based crack detection approach needs 

CR vs L* plots for at least three modes to prevent false crack 

localization. Thus, 2nd natural frequency values are taken  
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into account even the change due to crack is negligibly 

small or zero. The plot of CR vs L* for 4th mode is 

unnecessary in this case as the intersection point of three 

curves is revealed. For unsymmetrical beams like 

cantilevers, even CR vs L* plots for first two modes 

intersect on a common point. Plotting similar curves for 

higher modes is not necessary. 

 

 

5. Numerical case studies 
 

5.1 Simply supported beam 
 

In the first numerical case study, a simply supported 

beam model is considered for free vibrations and crack 

detection approach using the following beam properties 

(Kindowa-Petrova 2014): L = 3 m, b = 0.18 m, h = 0.30 m, 

E = 2.1×108 kN/m2, μ = 0.3, m̅ = 0.424 kNs2/m2. 

The first three natural frequencies of the beam 

calculated using finite element method (FEM) (Kindowa-

Petrova 2014) and using SVSDT and TBT via TMM are 

presented in Table 4. The relative error between TMM 

formulations and FEM can be seen in Fig. 4 for simply 

supported beam model.  

Table 4 shows that the agreement between SVSDT and 

FEM are better in comparison with agreement between TBT 

and FEM (Kindowa-Petrova 2014). Natural frequencies of 

simply supported beam are decreased with cracks. For  

 

Table 3 Actual and predicted crack properties using TBT 

and SVSDT for free-free beam model 

Case Theory 

Crack Properties 

Actual 

length 

(mm) 

Predicted 

length (mm) 

Actual 

location (mm) 

Predicted 

location (mm) 

1 
TBT 

1 1.38 375 330 

2 3 3.2 375 375 

1 SVSD

T 

1 0.82 375 360 

2 3 2.3 375 360 

 

 
Fig. 4. The relative error between transfer matrix 

formulations and FEM (Kindowa-Petrova 2014) for 

simply supported beam 
 

 

intact beam, there is perfect agreement between TBT and 

SVSDT. However, SVSDT provides more realistic result 

when cracks are considered. 

 

Fig. 3 a) Plots of CR vs L* using TBT (3 mm crack); b) Plots of CR vs L* using TBT (1 mm crack); c) Plots of CR vs L* 

using SVSDT (3 mm crack); d) Plots of CR vs L* using SVSDT (1 mm crack) 
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Fig. 6 The relative error between transfer matrix 

formulations and analytical solution (Jena and Parhi 2015) 

for cantilever beam 
 
 

The relative errors presented in Fig.4 may be a result of 

modelling approach of FEM. An 8-node solid element 

model is used and the cross section is divided into 48 parts. 

The length of the beam is divided into 20 parts (Kindowa-

Petrova 2014). Increasing element numbers of FEM 

modelling may decrease the relative error between results of 

TMM and FEM. 

The natural frequency values presented in Table 4 are 

considered in the crack detection procedures of simply 

supported beam model. Fig. 5 represents the plots of spring 

flexibility vs crack location for the first three natural 

frequencies of simply supported beam. Using Fig. 5, the 

cracks of beam with simply supports are detected. The 

results of crack detection procedure according to TBT and  

 

 

SVSDT are presented in Table 5. 

According to Table 5, SVSDT is more accurate in 

comparison with TBT for crack length identification of 

simply supported beams. On the other hand, the prediction 

of crack location using TBT provides better results for 

cracks located near middle of the simply supported beam. 
 

5.2 Cantilever beam 
 

The second numerical case study is based on a 

cantilever beam having the following properties (Jena and 

Parhi 2015): L = 0.8 m, b = 0.05 m, h = 0.006 m, E = 

72.4×106 kN/m2, μ = 0.33, m̅ = 0.00084 kNs2/m2. 

The calculated first three natural frequencies of the 

cantilever beam using analytical formulations according to 

EBT (Jena and Parhi 2015) and using SVSDT and TBT via 

TMM are presented in Table 6. The relative errors between 

TMM formulations for TBT, SVSDT and analytical 

solutions of EBT are presented in Fig. 6. Table 6 reveals 

that SVSDT provides lower natural frequencies compared 

with TBT. Increasing crack length cause a decrement in 

natural frequencies for all theories. As the results of 

reference study (Jena and Parhi 2015) are analytical, there is 

a perfect agreement between the results of TBT, SVSDT 

and EBT. 

Using the natural frequency values in Table 6, the crack 

detection procedures of cantilever beam model is 

 
Fig. 5 a) Plots of CR vs L* using TBT (crack located at 0.9 m) b) Plots of CR vs L* using TBT (crack located at 1.2 m) c) 

Plots of CR vs L* using SVSDT (crack located at 0.9 m) d) Plots of CR vs L* using SVSDT (crack located at 1.2 m) 
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performed. Fig. 7 shows the variation of spring flexibility 

and crack locations for first two natural frequencies of 

cantilever beam. The comparison of actual and predicted 

crack properties can be seen from Table 7. 

It can be seen from Fig. 7 that, for cantilever beam 

model, the plots of spring flexibility vs crack location of 

first two modes are good enough for crack detection as they 

are exactly intersected on a point unlike other numerical 

examples.  

Table 7 shows that the TMM formulations perform a 

perfect crack localization for the cantilever beam model.   

 

 
 

For the crack length prediction, the error of SVSDT is high 

in comparison with TBT for both crack length values. The 

accuracy of crack detection in cantilever beam model is 

significantly better when compared to free-free and simply 

supported models. This result is not about boundary 

conditions. As proposed approach is analytical based, the 

difference between natural frequencies calculated 

analytically and natural frequencies used for detection 

(obtained values from experiment, FEM or analytical 

solution) is an important sign of accuracy of crack 

detection. 

Table 4 First three natural frequencies of beam model with simple-simple boundary conditions 

Crack length (m) Crack location (m) Natural frequency ƒ1 (Hz) ƒ2 (Hz) ƒ3(Hz) 

Intact 

Present study (TBT) 76.9066 293.8955 619.1764 

Present study (SVSDT) 76.9066 293.8955 619.1764 

Kindowa-Petrova (2014) 80.5483 307.1372 644.9117 

0.15               1.2 

Present study (TBT) 61.2250 276.0065 585.3560 

Present study (SVSDT) 63.3129 285.6195 585.7857 

Kindowa-Petrova (2014) 66.0079 285.8582 612.8261 

0.15               0.9 

Present study (TBT) 60.4433 250.3985 610.8526 

Present study (SVSDT) 64.4228 267.2371 611.6406 

Kindowa-Petrova (2014) 68.6451 257.1785 633.2934 

Table 5 Actual and predicted crack properties using TBT and SVSDT for simply supported beam model 

Case Theory 
Crack Properties 

Actual length (cm) Predicted length (cm) Actual location (cm) Predicted location (cm) 

1 
TBT 

15 14.56 90 78 

2 15 14.36 120 124 

1 
SVSDT 

15 14.86 90 78 

2 15 14.86 120 107 

Table 6 First three natural frequencies of beam model with fixed-free boundary conditions 

Crack length (mm) Crack location (m) Natural frequency ƒ1 (Hz) ƒ2 (Hz) ƒ3(Hz) 

Intact 

Present study (TBT) 7.7019 48.2536 135.0521 

Present study (SVSDT) 7.6717 47.9709 134.5313 

Jena and Parhi (2015) 7.6829 48.1669 134.8128 

1.8                  0.4 

Present study (TBT) 7.6891 47.9033 135.0513 

Present study (SVSDT) 7.6707 47.4121 135.1296 

Jena and Parhi (2015) 7.6717 47.8427 134.8120 

2.4                  0.4 

Present study (TBT) 7.6772 47.5860 135.0506 

Present study (SVSDT) 7.6413 46.6634 135.1281 

Jena and Parhi (2015) 7.6612 47.5604 134.8120 

Table 7 Actual and predicted crack scenarios using TBT and SVSDT for cantilever beam model 

Case Theory 
Crack Properties 

Actual length (mm) Predicted length (mm) Actual location (mm) Predicted location (mm) 

1 
TBT 

1.8 1.7 400 400 

2 2.4 2.3 400 400 

1 
SVSDT 

1.8 1.5 400 400 

2 2.4 2.0 400 400 
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6. Conclusions 
 

The transfer matrix formulations are combined with an 

analytical crack detection approach based on plots of 

variation of crack location and spring flexibilities for 

cracked beam structures. The SVSDT is applied to both 

forward and inverse vibration problems of cracked beams. 

The results of SVSDT are presented comparatively with 

TBT results. Experimental data from literature were used to 

validate the proposed approach. Furthermore, numerical 

case studies were presented. It is seen that relative error of 

TMM on forward problem can be used a sign of accuracy 

for the inverse approach. The results indicate that proposed 

crack detection approach can be used effectively for 

different types of boundary conditions for beam-like 

structures. Moreover, it can be extended for beam assembly 

structures such as multi-span beams and simple frame 

structures. 

The SVSDT provides more realistic results in 

comparison with TBT, theoretically. However, to observe 

the effects of parabolic shear stress distribution along cross-

section, the beams should be relatively thick. The 

computational time of SVSDT is better than TBT for both 

forward and inverse problem. Moreover, EBT results can be 

obtained from SVSDT directly by ignoring shear  

 

 

deformation related parts of governing equation of motion. 

This advantage of SVSDT would be important for crack 

detection in thin beam-like structures. 
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