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1. Introduction 
 

Laminated composite structures are widely used in 
many engineering applications such as civil, mechanical 
and aircraft due to the excellent performance in strength, 
stiffness and lightness (Mahi and Tounsi 2015, Draiche et 
al. 2016, Bellifa et al. 2017, Chikh et al. 2017, Bakhadda et 
al. 2018, Kaci et al. 2018, Zine et al. 2018, Draoui et al. 
2019). Therefore, knowledge of behavior of laminated 
composite plates are of great practical importance and 
significance for design in engineering applications (Zuo et 
al. 2015). 

In the literature, different theories were proposed in 
order to study isotropic and composite plates such as 
Kirchhoff plate theory, first order and higher-order shear 
deformation theories which are known equivalent single 
layer theories (Beldjelili et al. 2016, Boukhari et al. 2016, 
Bousahla et al. 2016, Fahsi et al. 2017, Tu et al. 2017, 
Belkacem et al. 2018, Yousfi et al. 2018, Bourada et al. 
2019, Meksi et al. 2019).  

The Kirchhoff plate theory (KHOPLT), well known as 
the classical plate theory, which neglects the interlaminar 
shear deformation and rotary inertia, therefore it is 
acceptable for thin plates. By neglecting transverse shear 
effects, the KHOPLT leads to inaccurate results for 
composites.  

The first order shear deformation plate theory (FOPLT) 
(Whitney 1969) is proposed for in the middle thick plates  
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based on Reissner (1945) and Mindlin (1951) assumptions 

which include the transverse shear effects with a linear 

variation of transverse shear strain through the plate 

thickness. This theory is needed a shear correction to 

correct variation of transverse shear stress and shear strain 

through thickness. However, FOPLT does not satisfy the 

condition of zero transverse shear stress at the top and 

bottom surfaces of plates and consider a linear transverse 

shear distribution through the plate thickness 

(Yaghoubshahi and Alinia 2015). Also, the shear correction 

factor dependents on layer orientation, loading conditions, 

geometric parameters and boundary conditions of plates. To 

eliminate the deficiencies of KHOPLT and FOPLT, the 

higher-order shear deformation plate theories (HOPLT) are 

the most favorable due to including non-linear distributions 

of shear stress through thickness and satisfies the zero 

transverse shear stress condition on the top and bottom 

surfaces of plates. Therefore no shear correction factors are 

used. Regarding ensure to non-linear distributions of shear 

stress in HOPLT, various models with different shear strain 

shape functions have been purposed by authors (Daouadji 

and Adim, 2017, Attia et al. 2018, Javed et al. 2018, Houari 

et al. 2018). There are cubic shape functions 

(Ambartsumian 1958, Reissner 1975, Reddy 1984, Zhen 

and Wanji 2008), trigonometric shape functions (Stein 

1986, Touratier 1991, Soldatos 1992, Abualnour et al. 2018, 

Benchohra et al. 2018), exponential shape functions 

(Karama et al. 2003, Aydogdu 2009), hyperbolic shape 

functions (Grover et al. 2013, Grover et al. 2014, Belabed 

et al. 2018, Taleb et al. 2018). The buckling analysis of 

hybrid FGM plates using a novel four variable refined plate 

theory is presented by Bourada et al. (2018). In this theory 

the distribution of transverse shear deformation is parabolic 
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across the thickness of the plate by satisfying the surface 

conditions. Bouadi et al. (2018) are developed A new 

nonlocal HOPLT for buckling properties of single graphene 

sheet. The proposed nonlocal HOPLT contains a new 

displacement field which incorporates undetermined 

integral terms and contains only two variables. An analysis 

of the propagation of waves of functionally graduated plates 

is presented by Fourn et al. (2018) with using a HOPLT. 

This theory has only four variables, which is less than the 

FOPLT. Bellifa et al. (2017) are proposed an efficient and 

simple refined theory for buckling analysis of functionally 

graded plates by using a new displacement field which 

includes undetermined integral variables. This theory 

contains only four unknowns, with is even less than the 

FOPLT. Abdelaziz et al. (2017) are developed a simple 

hyperbolic HOPLT and applied for the bending, vibration 

and buckling of powerly graded material sandwich plate 

with various boundary conditions. The displacement field of 

the present model is selected based on a hyperbolic 

variation in the in-plane displacements across the plate's 

thickness. Menasria et al. (2017) used a new displacement 

field that includes undetermined integral terms for 

analyzing thermal buckling response of FGM sandwich 

plates. The proposed kinematic uses only four variables, 

which is even less than the FOPLT and the conventional 

HOPLT. El-Haina et al. (2017) presented a simple analytical 

approach to investigate the thermal buckling behavior of 

thick FGM sandwich plates by employing both the 

sinusoidal HOPLT. 

Various numerical methods, such as finite element 

method (FEM), for analysis of complex structures have 

been considered. The FEM is a powerful numerical 

computation method in engineering areas, because of its 

versatility in handing complex geometries and boundary 

conditions (Zhang and Yang 2009). Further, developments 

of FEM to take into account shear deformation theories, and 

HOPLT in particular, have been performed for composite 

structures which have exhibited very good performance in 

analysis (Aagaah et al. 2003, Desai et al. 2003, Mantari et 

al. 2012, Ramu and Mohanty 2012). A FEM can only be 

considered in relation with a variational principle and a 

functional space. Changing the variational principle and the 

space in which it is posed leads to a different FEM 

approximation. In the last decade mixed finite elements for 

the solution of partial differential equations have known 

substantial developments. The mixed-FEM is far more 

efficient due to variables can be chosen independently, the 

forces and moments can be calculated with less number of 

elements but more sensitive. In the past years, mixed-FEM 

based on higher-order shear deformation theories has been 

introduced. The elements have shown quite good 

performances for beam, plate and shell problems 

(Zienkiewicz et al. 1981, Capsoni and Corradi 1997, 

Bischoff and Bletzinger 2004, Cervera et al. 2010). 
In the mixed-FEM, having field equations one needs a 

method to obtain the functional. Hu-Washizu and Hellinger-
Reissner principles or weak formulation are popular 
approaches to establish a functional, which provide 
functionals that are essential for finite element formulation 
(Reddy 1993). The Gâteaux differential (GD) method is a 
useful alternative to Hu-Washizu and Hellinger-Reissner 

principles. Recently, Aköz and his co-workers successfully 
have employed GD to construct the functionals for various 
problems (Aköz et al. 1991, Aköz and Uzcan 1992, Aköz 
and Kadioğlu 1996, Aköz and Kadioǧlu 1999, Akoz and 
Eratli 2000, Aköz and Özütok 2000, Özütok and Madenci 
2013, Ozutok et al. 2014). Although, the same functionals 
can be obtained by the Hellinger-Reissner and Hu-Washizu 
principles and GD for a relatively simple problem, the GD 
has some advantages and nice properties. It provides the 
consistency of the field equations that all field equations are 
enforced to the functional; the boundary conditions are can 
be constructed easily; method doesn’t use any artificial 
numerically adjusted factors; potential test provides 
accuracy of field equations (Eratlı and Aköz 1997, Eratli 
and Akoz 2002). 

The main purpose of this paper is to employ mixed-

FEM to investigate the static problems of laminated 

composite plates with high order shear deformation plate 

theories. The virtual displacement principle was applied to 

obtain the partial differential field equations for laminated 

composite plates. These field equations were written in 

operator form then by using the Gâteaux differential 

approach, the functionals which including the dynamic and 

geometric boundary conditions is obtained after provide 

potential conditions. Based on HOPLT, the present mixed-

FEM models represent non-linear variation of transverse 

shear stresses across the plate thickness. The transverse 

shear stresses are vanishes at the plate surfaces. Therefore, 

the shear correction factor is neglected. The mixed-finite 

element HOPLT44 is developed based on this function 

which has four nodes with eleven degrees of freedom per 

node. The displacements, rotations, internal forces, normal 

moments and higher-order moments in particular, of 

composite plates are calculated independently. Several 

numerical examples are conducted considering side to 

thickness ratio, modulus ratio, number of layers and layer 

orientation. 
 

 

2. Theoretical formulation 
 

Consider a rectangular laminated plate of length “L”, 
width “b” and total thickness “h” with orthotropic layers as 
shown in Fig. 1. The plate is located in Cartesian coordinate 
system (x-y-z). Upon the effects of transverse shear 
deformation and rotary inertia for different plate theories, 
general displacement fields of laminated composite plates 
can be defined as Eq (1) 

 

 

 

Fig. 1 A n-layered laminated composite plate 
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where the in-plane displacement and transverse 

displacement components are denoted as “ u “, “ v “ and “ w

“, respectively. The “ 1 “ and “ 2 “ are the transverse shear 

strains of any point. The term ( )f z  represents the higher 

order shape function determining the parabolic distribution 

of transverse shear effect through thickness of plate in this 

study . And also “ ,(...) x “ and “ ,(...) y “ are the partial 

derivatives with respect to x and y axis, respectively. 

The strains associated with the displacement field are 

written as Eq. (2). 

, 1,

,yy 1,y

1, , 2,

, 1

, 2

( )

( )

( ) 2 ( )

( )

( )

x xx x

y

xy y xy x

xz z

yz z

u
zw f z

x

v
zw f z

y

u v
f z zw f z

y x

u w
f z

z x

v w
f z

z y

 

 

  

 

 


= = − +



= = − +


 
= + = − +
 

 
= + =
 

 
= + =
 

 (2) 

By performing the transformation rule of stresses/strain 

between the lamina and the laminated coordinate system, 

the stress-strain relations in the Cartesian x-y-z coordinate 

system can be obtained as Eq.(3) 
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where “ 
( )k

 “, “  “ and “
( )k

Q   “ are the stress vector, 

the strain vector and the transformed rigidity matrix of kth 

lamina, respectively (Reddy 2004). The components of the 

matrix in Eq. (3) in terms of the stiffness coefficients in the 

direction of principal axes of material orthotropy can be 

written as Eq.(4) 
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where “c” is “ cos “ and “s” is “ sin “ and “ “ is the 

angle between material orientation and x-axis. The terms of 

engineering constants of the kth orthotropic lamina are 
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The equilibrium equations can be derived using the 

principle of the virtual displacement; the following 

expressions can be obtained 
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where “ “ is an operate to show the variation of any 

parameter, “q“ is the load term, and “ K “, “ M “ and “T ” 

are the resultant moments, “ K “, “ M “ and “T “ are the 

higher-order moments, “ S “ and “ Q “ are the higher-order 

shear forces, which can be defined as following integrations 

   

 
1

2

2

1

; ; ; ;

; ;
k

k

h

x y xy

h

zN

x y xy

k z

K M T zdz

zdz

  

  
+

−

=

=

=



 

 (8) 

   

 
1

2

2

1

; ; ; ; ( )

; ; ( )
k

k

h

x y xy

h

zN

x y xy

k z

K M T f z dz

f z dz

  

  
+

−

=

=

=



 

 (9) 

   

 
1

2

,

2

,

1

; ; ( )

; ( )
k

k

h

xz yz z

h

zN

xz yz z

k z

S Q f z dz

f z dz

 

 
+

−

=

=

=



 

 (10) 

99



 

Emrah Madenci and Atilla Özütok 

 

The Euler-Lagrange equations are derived from Eq. (7) 

by integrating the displacement gradients by parts and 

setting the coefficients of “ w “, “
1 “, “

2 “ to zero 

separately. The Euler-Lagrange equations are obtained as 

, , ,

1 , ,

2 ,

: 2 0

: 0

: 0

xx yy xy

x y

y x

w K M T q

K T S

M T Q







− − − − =

− − + =

− − + =
 

(11) 

By substituting the stress-strain relations into the Eqs. 

(8-11) the following constitutive equations are obtained as 
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where the laminate material stiffnesses are given by 
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The present study is corned with cross-ply laminated 

composite plates. Therefore, the following stiffness 

components are not considered in the above equations 
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Based on plate theories, the constitutive equations of the 

high order laminated composite HOPLT44 plate element 

can be expressed in Eq. (15). 
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Gâteaux differential (GD) method is more suitable that 

are essential for mixed-type FEM. Dynamic and boundary 

conditions are written in symbolic form as Eq. (18). 
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The quantities in Eqs. (16-17) with hat have known 

values on the boundary “ , , ,R M u  “are representing the 

force, moment rotation and deflection vectors, respectively. 

All field equations and boundary conditions are completely 
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the Gâteaux differential method. The field equations 

including boundary conditions for laminate plate can be 
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T T S Q
y y y

D D A A

L D D L D D

L D L

 
 

+ 
 
 
+ − − + − + 

     
= − = =     

    

= + = +

= = 11 , 12 ,

4 4
(.) (.) ;

5 5
xx yyD D− −

 

(19) 
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1,8 12 , 22 , 1,9 66

2,4 11 , 2,5 12 , 2,6 66 ,

2,7 11 , 2,8 12 ,

2,9 66 , 2,10 55 3,4 12 ,

3,5

4 4 8
(.) (.) ; (.)

5 5 5

68 68 68
(.) ; (.) ; (.) ;

85 85 85

68 68
(.) ; (.) ;

105 105

68 68
(.) ; (.); (.) ;

105 85

68

85

xx yy xy

x x y

x x

y x

L D D L D

L D L D L D

L D L D

L D L A L D

L D

= − − = −

= = =

= − = −

= = =

= 22 , 3,6 66 , 3,7 12 ,

3,8 22 , 3,9 66 , 3,10 44

4,1 11 , 12 , 4,2 11 ,

4,3 12 , 4,4 11 4,5 12

4,7 11 4,

68 68
(.) ; (.) ; (.) ;

85 105

68 68
(.) ; (.) ; (.);

105 105

4
(.) (.) ; (.) ;

5

4
(.) ; (.); (.);

5

4
(.);

5

x x x

x x

xx yy x

y

L D L D

L D L D L A

L D D L D

L D L D L D

L D L

= = −

= − = =

= + = −

= − = − = −

= 8 12 5,1 12 , 22 ,

5,2 12 , 5,3 22 , 5,4 12

5,5 22 5,7 12 5,8 22

4
(.); (.) (.) ;

5

4 4
(.) ; (.) ; (.);

5 5

4 4
(.); (.); (.)

5 5

xx yy

x y

D L D D

L D L D L D

L D L D L D

= = +

= − = − = −

= − = =

 

(19) 

6,1 66 , 6,2 66 , 6,3 66 ,

6,2 66 6,9 66 7,1 11 , 12 ,

7,2 11 , 7,3 12 , 7,4 11

7,5 12 7,7 11 7,8

4 4
2 (.) ; (.) ; (.) ;

5 5

4 4 4
(.); (.); (.) (.) ;

5 5 5

68 68 4
(.) ; (.) ; (.);

105 105 5

4 68 68
(.); (.);

5 105 1

xy y x

xx yy

x y

L D L D L D

L D L D L D D

L D L D L D

L D L D L

= = − = −

= − = = − −

= = =

= = − = − 12

8,1 12 , 22 , 8,2 12 ,

8,3 22 , 8,4 12 8,5 22

8,7 12 8,8 22 9,1 66 ,

9,2 66 , 9,3 66 , 9,

(.);
05

4 4 68
(.) (.) ; (.) ;

5 5 105

68 4 4
(.) ; (.); (.);

105 5 5

68 68 8
(.); (.); (.) ;

105 105 5

68 68
(.) ; (.) ;

105 105

xx yy x

y

xy

y x

D

L D D L D

L D L D L D

L D L D L D

L D L D L

= − − =

= = =

= − = − = −

= = 6 66

9,9 66 10,2 55 10,10 55

11,3 44 11,11 44

4
(.);

5

68
(.); (.); (.);

105

(.); (.)

D

L D L A L A

L A L A

=

= − = = −

= = −
 

The Gâteaux derivative of an operator is defined as; 

0

( )
d ( )

P y y
P y,y





 =

 +
=


 (20) 

where “ “ is a scalar quantity. A required and sufficient 

condition for “P” to be a potential is 

* *( , ), ( , ),dP y y y dP y y y =   (21) 

where parentheses indicate the inner products. If the 

operator “P” is a potential, then the functional 

corresponding to the field equations will be given as for 

HOPLT; 

 

   

   

 

, , , , , , , ,

1, 1, 2, 1 2

2,

66 66

, , , ,

, ( ), , ,

, , , ,
2

, , , ,
2

105 85
, , , ,

2 2

x x y y x y y xy

x y x

y

I K w M w w T w T

K T S Q

M K K K M M K

K M K K M M M M

T T T T K K K M
D D

    








      = + + +       

     + + + + +       

     + + +  +    

   − − − +   

    + − + −   

 

66 55 44

525 1 1
, , , ,

늿2 8 2 2

,

M M T T S S Q Q
D A A

q w boundary conditions



 

      + − − −       

− +
 

(22) 

where the boundary conditions and constants are given Eqs. 

(23-25) 

  , , 1 20 0 00

, , 1 20 0 00

, , , ,

, , , ,

R,u x y

x y

K w M w K M

T w T w T T

 

 

      = − − − −      

      − − − −        

(23) 

  , , 1 20 0 00

, , 1 20 0 00

, , , ,

, , , ,

M, x y

x y

w K w M K M

w T w T T T

 

 

       = − − − −      

      − − − −        

(24) 

12 12

12 12

12 12

12 12

22 11

2 2

22 11 22 11

22 22

2 2

22 11 22 11

11 12

2 2

22 11 22 11

12 11

2 2

22 11 22 11

12

22 11

85 85
; ;

( ) ( )

525 105
; ;

4( ) ( )

525 105
; ;

4( ) ( )

85 105
; ;

( ) ( )

525

4(

D D

D D D D D D

D D

D D D D D D

D D

D D D D D D

D D

D D D D D D

D

D D

 





= =
− + − +

=  =
− + − +

=  =
− + − +

 =  =
− + − +

 =
−

12

2 )D+
 

(25) 

The development of the finite element matrix is 

presented for laminated plates. A rectangular serendipity 

element is used as in Fig. 2.  

The parent shape functions is calculated as 

( ) ( )( )

( )

1
, 1 1

4

1, 1 1,..., 4

i i i

i i i

    

 

= + +

=  =  =

 (26) 
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Fig. 2 A four noded rectangular a plate element with the 

local and the global coordinate system 
 

 

where the subscripted non-dimensional parent coordinates 

take the values  

1 2 1 3

3 4 2 4

1

1

   

   

= = = = −

= = = =
 (27) 

The sub-matrices are defined below for the each theory 

for composite plates given in Eq. (28).  

     

     

1 2 , 3 ,

4 , , 5 , , 6 , ,

; ;

; ;

i j i x j i y j

A A A

i x j x i y j y i x j y

A A A

k dA k dA k dA

k dA k dA k dA

     

     

= = =

= = =

  

  
 

(28) 

The explicit expressions of submatrices are given in the 

Eq. (29). 

4 9 4 18 4 18 4 36

4 18 4 9 4 36 4 18

4 18 4 36 4 9 4 18

4 36 4 18 4 18 4 9

i j

A

ab ab ab ab

ab ab ab ab
dA

ab ab ab ab

ab ab ab ab

 

 
 
 =
 
 
 



  

(29a) 

, ,

3 6 3 6

6 3 6 3

3 6 3 6

6 3 6 3

i x j x

A

b a b a b a b a

b a b a b a b a
dA

b a b a b a b a

b a b a b a b a

 

− − 
 

− −
 =
 − −
 
− − 



  

(29b) 

, ,

3 3 6 6

3 3 6 6

6 6 3 3

6 6 3 3

i y j y

A

a b a b a b a b

a b a b a b a b
dA

a b a b a b a b

a b a b a b a b

 

− − 
 
− −
 =
 − −
 
− − 



  

(29c) 

, ,

1 4 1 4 1 4 1 4

1 4 1 4 1 4 1 4

1 4 1 4 1 4 1 4

1 4 1 4 1 4 1 4

i y j x

A

dA 

− − 
 
− −
 =
 − −
 
− − 



  

(29d) 

,

3 6 3 6

6 3 6 3

3 6 3 6

6 3 6 3

i x j

A

b b b b

b b b b
dA

b b b b

b b b b

 

− − − − 
 
− − − −
 =
 
 
 



  

(29e) 

Table 1 Material properties 

1

2

E
E

  
12

  12G
  13G

  23G
  

25 0.25 20.5E
  20.5E

 20.2E
 

 

Table 2 Non-dimensional maximum displacements (w*) in 

three-layer (0°/90°/0°) SSSS laminated 

Study 
2a h  

10 20 100 

HOPLT44 1.0970 0.7787 0.6709 

Reddy (2004) 1.0900 0.7760 0.6705 

Sheikh and Chakrabarti (2003) 1.0910 0.7763 0.6708 

Sahoo and Singh (2013) 1.1237 --- 0.6709 

Xiao et. al. (2008) 1.1055 0.7694 --- 

Pagano and Hatfield (1972) 1.1533 --- 0.6712 

 

 

,

3 3 6 6

3 3 6 6

6 6 3 3

6 6 3 3

i y j

A

a a a a

a a a a
dA

a a a a

a a a a

 

− − − − 
 
 =
 − − − −
 
 

   (29f) 

The finite element matrix of HOPLT44 plate element is 

obtained as given in Eq. (30). 

 

 

3. Numerical examples 
 

In this section, the present mixed-type finite element 

approach is assessed through different static tests. Bending 

and stress analysis of cross-ply laminated composite plates 

are considered. To show the efficacy of the present models 

several numerical examples were compared with those of 

other shear deformation theories. For analysis of laminated 

composite plate, a program is made on FORTRAN. The 

following normalized quantities (Eq. 31) are defined for 

deflection, stresses and moments 

( )

( )

( )

*

3

2

4

0

22

* 2 * 2 * 2

* *

* * *

* *

.100
2

, , 2

, 2

(2 ) , (2 ) , (2 )

(2 ), (2 )

, ,

,

xx yy xy

xz yz

xx yy xy

xz yz

b

E h
w w

q

h b

h b

K K q a M M q a T T q a

S S q a Q Q q a

  

 

  

 

 
=  

 
 

 =  

 =  

= = =

= =

  
(31) 

The mechanical properties of each layer are given in 

Table 1. All layers have the same thickness. Simply 

supported plate subjected. 

 
3.1 Three layer symmetric cross-ply composite plate 
 

In this example, a three-layered simply-supported 

(SSSS) symmetric (0°/90°/0°) cross-ply square laminated  
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plate under uniform load is studied. The non-dimensional 

deflection and stresses are computed using present method. 

By varying the side to thickness ratio “ 2a
h “ is 10 to 100 

(thick to thin), the static analysis is performed and the 

results are tabulated in Table 2 and Table 3. 

The membrane stress was evaluated at the this 

locations”𝜎𝑥𝑥
∗ (𝑎, 𝑏, ℎ 2⁄ )”, ”𝜎𝑦𝑦

∗ (𝑎, 𝑏, ℎ 4⁄ )”and”𝜏𝑥𝑦
∗ (2𝑎, 2𝑏, ℎ 2⁄ )”. 

The transverse shear stresses are calculated using the 

constitutive equations. The “𝜏𝑥𝑧
∗ ” is evaluated at  in layers 

1 and 3, and “𝜏𝑦𝑧
∗ ” is computed at (2a,0), (0,2 )b  in layers 

2. The results of the present method are in excellent 

agreement with other solutions. For further comparisons, 

the variation of distribution of normal stress “𝜎𝑥𝑥
∗ ”

 
and the 

transverse shear stress “𝜏𝑥𝑧
∗ ” “𝜏𝑥𝑦

∗ ” and “𝜏𝑦𝑧
∗ ” of the present 

models are plotted through the thickness in Figure 3. The 

HOPLT44 plate element is satisfy the condition of zero 

transverse shear stress at the top and bottom surfaces of 

plates and considers a parabolic transverse shear stress. 

In order to investigate the normal and higher-order 

moments values which are effective in stresses of plate 

calculated with shear deformation theories. As the 

displacement of components of composite plate element  

 
 

based upon high order theory was obtained with the aim of 

virtual displacement principle, moment values expressions 

caused by higher-order terms are included in field equation 

like the one shown at Eq. 20. In Tables 4-9., the variation 

between the moment values 𝐾, 𝑀̅ and 𝑇̅ caused by high 

order terms and normal moments K, M and T is shown. 
 

Table 4 Non-dimensional moments K*(a,b), M*(a,b), 

T*(a,b) and higher-order moments *( , )K a b , 
*( , )M a b , 

*(2 ,2 )T a b  values for SSSS (0°/90°/0°) laminated plate 

(E1/E2=10)  

2 10a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1085 0.0182 0.0151 0.0866 0.0146 0.0120 

2 20a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1118 0.0160 0.0144 0.0120 0.0894 0.0128 

2 100a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1128 0.0153 0.0141 0.0902 0.0122 0.0011 

                     

 

     

     

       

     

   

   

 

 

 

 

1 2

1 1

1

1

6

2 3 1

3 2 1

1 1 1 1

1 1 1

1

1

66

54

1 1
66 66

55

44

525
4

85 105

1

1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

. 0 0

T T

T T

el

D

A

A

D D

w K M T K M T S Q

k k k

k k k

k k k k

k k k

k k

k

sym k

k

k k

k

k

k k

k

 









− −

−

−



−



−

−

−

 



 
 

      
 










   










 

=






















 (30) 

 

Table 3 Non-dimensional stresses in three-layer (0°/90°/0°) SSSS laminated plate 

2a
h

 Study 
*

xx
 

*

yy
 

*

xy
 

*

xz
 

*

yz
 

100 
HOPLT44 0.80702 0.1917 0.0423 0 0.2466 

Reddy (2004) 0.8072 0.1925 0.0426 0.7744 0.2842 

20 

HOPLT44 0.8186 0.2299 0.0428 0 0.2536 

Reddy (2004) 0.7983 0.2227 0.0453 0.7697 0.2902 

Xiao et. al. (2008) 0.8125 0.2300 0.0458 1.070 0.3570 

10 

HOPLT44 0.8434 0.3393 0.0436 0 0.2772 

Reddy (2004) 0.7719 0.3072 0.0514 0.7548 0.3107 

Xiao et. al. (2008)  0.7660 0.2900 0.0484 0.660 0.285 
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Table 5 Non-dimensional higher-order shear forces 
*(2 ,0)S a and 

*(0,2 )Q b  values for SSSS (0°/90°/0°)  

laminated plate (E1/E2=10) 

2 10a
h
=   2 20a

h
=  2 100a

h
=  

*S  
*Q  *S  

*Q  *S  
*Q  

0.1128 0.0153 0.0141 0.0902 0.0122 0.0011 

 

Table 6 Non-dimensional moments K*(a,b), M*(a,b), 

T*(a,b) and higher-order moments *( , )K a b , 
*( , )M a b , 

*(2 ,2 )T a b  values for SSSS (0°/90°/0°) laminated plate 

(E1/E2=25) 

2 10a
h =  

*K  *M  
*T  

*K  *M  
*T  

0.1232 0.0140 0.0085 0.0978 0.0112 0.0068 

2 20a
h =  

*K  *M  
*T  

*K  *M  
*T  

0.1285 0.0099 0.0075 0.1026 0.0079 0.0059 

2 100a
h =  

*K  *M  
*T  

*K  *M  
*T  

0.1304 0.0086 0.0072 0.1041 0.0068 0.0056 

 

 

 

Table 7 Non-dimensional higher-order shear forces 
*(2 ,0)S a and 

*(0,2 )Q b  values for SSSS (0°/90°/0°)  

laminated plate (E1/E2=25) 

2 10a
h
=   2 20a

h
=  2 100a

h
=  

*S  
*Q  *S  

*Q  *S  
*Q  

0.3845 0.1243 0.4035 0.1138 0.4105 0.1106 

 

Table 8 Non-dimensional moments K*(a,b), M*(a,b), 

T*(a,b) and higher-order moments *( , )K a b , 
*( , )M a b , 

*(2 ,2 )T a b  values for SSSS (0°/90°/0°) laminated plate 

laminated plate (E1/E2=40) 

2 10a
h =  

*K  *M  
*T  

*K  *M  
*T  

0.1265 0.0139 0.0063 0.1000 0.0111 0.0050 

2 20a
h =  

*K  *M  
*T  

*K  *M  
*T  

0.1337 0.0082 0.0054 0.1061 0.0068 0.0041 

2 100a
h =  

*K  *M  
*T  

*K  *M  
*T  

0.1349 0.0064 0.0047 0.1079 0.0051 0.0038 

  

(a)   Non-dimensional normal stress “
*

xx “ distribution (b)  Non-dimensional shear stress “
*

xz “ distribution 

  
(c) Non-dimensional shear stress “ *

yz “distribution (d) Non-dimensional shear stress “ xy “ distribution 

Fig. 3 Non-dimensional stress distributions of HOPLT44 (0°/90°/0°) composite plate element 
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Table 9 Non-dimensional higher-order shear forces 
*(2 ,0)S a and 

*(0,2 )Q b  values for SSSS (0°/90°/0°)  

laminated plate (E1/E2=40) 

2 10a
h
=   2 20a

h
=  2 100a

h
=  

*S  
*Q  *S  

*Q  *S  
*Q  

0.3836 0.1194 0.4092 0.1050 0.4816 0.1004 

 

Table 10 Non-dimensional displacement of SSSS 

(0°/90°/0°) laminated plate for different “
1 2E E “ ratio 

1 2E E  
2a h  

10 20 100 

3 3.247 3.0325 2.961 

7 2.180 1.9213 1.837 

10 1.798 1.5188 1.426 

15 1.438 1.138 1.038 

20 1.231 0.920 0.8154 

40 0.8788 0.5510 0.4382 

 

Table 11 Non-dimensional maximum displacements 
*( )w  

in four-layer (0°/90°/90°/0°) SSSS laminated 

Study 
2a h  

10 20 100 

HOPLT44 1.120 0.7981 0.6848 

Thai et. al. (2012) 1.1184 0.7966 --- 

Xiao et.al. (2008) 0.9730 0.7506 --- 

Sahoo and Sing (2013) 1.1143 0.7951 0.6844 

Pagano and Hatfield (1972)  1.1393 0.8026 0.6847 

 
3.2 Four layer symmetric cross-ply composite plate 

 

In this example, the same example as in the previous 

section (Section 3.1.) is considered with four-layer 

symmetric (0°/90°/90°/0°) laminated composite plate. Other 

approaches available in open literature are given for further 

comparison. Table 11. and Table 12 contain the non-

dimensional deflection and stresses as defined in example 

3.1., respectively. Table 11 and Table 12 show that the 

present results are in good agreement with 3D-elasticity 

solution in deflection and stresses. 

 

Table 13 Non-dimensional moments K*(a,b), M*(a,b), 

T*(a,b) and higher-order moments *( , )K a b , 
*( , )M a b , 

*(2 ,2 )T a b  values for SSSS (0°/90°/90°/0°) laminated 

plate (E1/E2=10) 

2 10a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.0981 0.0295 0.0147 0.0782 0.0236 0.0117 

2 20a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1029 0.0259 0.0139 0.0823 0.0207 0.0111 

2 100a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1046 0.0246 0.0136 0.0836 0.0197 0.0109 

 

Table 14 Non-dimensional higher-order shear forces 
*(2 ,0)S a and 

*(0,2 )Q b  values for SSSS (0°/90°/90°/0°) 

laminated plate (E1/E2=10) 

2 10a
h
=   2 20a

h
=  2 100a

h
=  

*S  
*Q  *S  

*Q  *S  
*Q  

0.3433 0.1783 0.3579 0.1705 0.3630 0.1680 

 

Table 15 Non-dimensional moments K*(a,b), M*(a,b), 

T*(a,b) and higher-order moments *( , )K a b , 
*( , )M a b , 

*(2 ,2 )T a b   values for SSSS (0°/90°/90°/0°) laminated 

plate (E1/E2=25) 

2 10a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1080 0.0312 0.0079 0.0856 0.0250 0.0062 

2 20a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1174 0.0233 0.0069 0.0937 0.0187 0.0055 

2 100a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1211 0.0201 0.0065 0.0968 0.0161 0.0052 

 

Table 12 Non-dimensional stresses in four-layer (0°/90°/90°/0°) SSSS laminated plate 

2a
h

 Study 
*

xx
 

*

yy
 

*

xy
 

*

xz
 

*

yz
 

100 
HOPLT44 0.8246 0.3565 0.0394 0 0.3071 

Belinha and Dinis (2006) 0.8230 0.3548 0.0391 0.8430 0.3330 

20 

HOPLT44 0.82247 0.4168 0.0397 0 0.3202 

Reddy (2004) 0.7980 0.4819 0.0399 0.6856 0.3108 

Xiao et. al. (2008) 0.7975 0.4725 0.0385 0.600 0.2845 

10 

HOPLT44 0.8230 0.5654 0.0392 0 0.3588 

Reddy (2004) 0.7561 0.4966 0.0425 0.713 0.3320 

Xiao et. al. (2008) 0.7577 0.5006 0.0470 0.7986 0.3499 
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Table 16 Non-dimensional higher-order shear forces 
*(2 ,0)S a and 

*(0,2 )Q b  values for SSSS (0°/90°/90°/0°)  

laminated plate (E1/E2=25) 

2 10a
h
=   2 20a

h
=  2 100a

h
=  

*S  
*Q  *S  

*Q  *S  
*Q  

0.3478 0.1676 0.3784 0.1495 0.3901 0.1434 

 

Table 17 Non-dimensional moments *( , )K a b , 
*( , )M a b , 

*( , )T a b and higher-order moments *( , )K a b , 
*( , )M a b , 

*(2 ,2 )T a b  values for SSSS (0°/90°/90°/0°) laminated 

plate (E1/E2=40) 

2 10a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1079 0.0349 0.005671 0.0852 0.0279 0.004487 

2 20a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1207 0.0237 0.004777 0.0962 0.0189 0.003807 

2 100a
h
=  

*K  *M  
*T  

*K  *M  
*T  

0.1262 0.01887 0.004340 0.1010 0.01510 0.003471 

 

Table 18 Non-dimensional higher-order shear forces 
*(2 ,0)S a and 

*(0,2 )Q b  values for SSSS (0°/90°/90°/0°)  

laminated plate (E1/E2=40) 

2 10a
h
=   2 20a

h
=  2 100a

h
=  

*S  
*Q  *S  

*Q  *S  
*Q  

0.3376 0.1712 0.3806 0.1455 0.3986 0.1358 

 

Table 19 Non-dimensional displacement of SSSS 

(0°/90°/90°/0°) laminated plate for different “ 1 2E E “ ratio 

1 2E E  
2a h  

10 20 100 

3 3.284 3.047 2.967 

7 2.220 1.941 1.848 

10 1.838 1.540 1.440 

15 1.472 1.160 1.052 

20 1.260 0.939 0.829 

40 0.886 0.567 0.4508 

 
 

5. Conclusions 
 

The conclusions that quit from this study can be 

summarized as follows: 

•  A generalized high order functional and formulation 

are developed for shear deformation theories that includes 

shear strain function. Gâteaux differential method has been 

used. 

•  Using the virtual work principle the governing 

differential equations are derived. 

•  Boundary conditions terms are constructed and 

introduced to the functional in a systematic way. 

•  The closed form of the element equation HOPLT44 

is obtained which eliminate the time-consuming numerical 

inversion of the element matrix. It has has four nodes with 

eleven degrees of freedom per node and total fourty-four 

freedoms. 

•  The variables chosen independently, the 

displacements, rotations, shear forces, moments and higher-

order moments calculated clearly with less number of 

elements but more sensitive. 

•  A computer program is developed in FORTRAN 

language to carry out the analyses. 

•  The comparison studies concerning the influences of 

length-to-thickness ratios, layer numbers and Young’s 

modulus ratios demonstrate deflections, stress, moments, 

shear forces and higher-order moments of cross-ply 

laminated plates. 

•  Numerical results are in excellent agreement with 

those of available results in literature. 
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