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1. Introduction 
 

Axially loaded beams are important structural members 

and have many applications in structural, mechanical and 

aerospace systems such as water tanks, wind turbines, and 

construction members. The loading conditions for these 

beams may be quasi-static or dynamic, therefore close 

attention should be paid to their dynamic and vibrational 

characteristics.   
Timoshenko (1922) was the first to introduce the effect 

of transverse shear deformation on the vibration of beams. 
Huang (1961) introduced the solution of Timoshenko beam 
without axial load under different boundary conditions. The  
shear coefficients in the Timoshenko’s beam theory was 
driven by Cowper (1966). The effect of axial load on the 
transverse vibration of Timoshenko beams was introduced 
by (Kounadis 1980, Sato 1991). Farghaly and Shebl (1995) 
investigated the vibration problem of axially loaded single 
span Timoshenko beams with system of complex end 
conditions, in which extensive comparisons between Sato 
and Kounadis contributions were presented. Several 
investigators discussed the axially loaded vibrating beams 
with simple end conditions, with and without end mass. 
From these contributors,(Takahashi 1980, Grossi and Laura 
1982, Abbas 1984, Kanaka Raju and Venkateswara Rao 
1984, Bokaian 1988, Stephen 1989, Abramovich 1992, 
Farghaly 1992, Demirdag and Yesilce 2011, El-Sayed and 
Farghaly 2017) 

Recently, researchers have shown an increased interest 
in investigating beam systems with complex end conditions, 
see for example, (El-Sayed and Farghaly 2016, Farghaly  
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and El-Sayed 2016, Malaeke and Moeenfard 2016, El-
Sayed and Farghaly 2018, Rezaiee Pajand, Aftabi Sani et al. 
2018). El-Sayed and Farghaly (2016) investigated the 
natural frequencies, mode shapes and the critical buckling 
load coefficients of a single span axially loaded 
Timoshenko beam system with complex end conditions, 
including mass spring sub-system. Malaeke and Moeenfard 
(2016) investigated the large amplitude flexural–extensional 
free vibration of tapered cantilever beams carrying both 
transversely and axial eccentric end mass. A few number of 
literature concerning the exact free vibration and stability of 
partially filled tank are available, from these (Feodosyev 
1983, Ibrahim 2005, Badran and Gaith et al. 2012). 

In the present work the transverse vibration of an axially 
loaded beam-column system with double eccentric end-
mass is investigated. The end mass is represented as a 
partially filled rigid storage tank. The symbolic and explicit 
formulae of the modal frequency equation and mode shape 
for such a complex model are developed. The study 
includes both of Timoshenko’s beam theory (TBT), as well 
as Bernoulli-Euler beam theory (EBT). Both elevated and 
suspended tank situations are considered. The sloshing 
inside the tank is neglected. The generalized formula for 
frequency equations according to both TBT and EBT are 
derived. In addition, two categories of application examples 
with clamped base models are investigated numerically 
using the present analytical solutions. For the validation of 
the current work, selected examples are modeled using 
ANSYS finite element software and the obtained results are 
compared with the present frequency equations results. 

 
 
2. Mathematical model  

 

Figure 1 shows an axially loaded beam-column system 

with root and end flexibilities. An eccentric mass is rigidly 
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Fig. 1 Schematic for complex beam-column model 

 
 
connected to the end of the column. This is mass cylindrical 

partially filled tank. A set of design variables, such as the 

modulus of elasticity E, moment to of inertia I, beam area 

A, beam material density𝜌, shear modulus of elasticity 𝐺, 

shear geometrical factor 𝑘′ and span length L, are 

considered. End translational and rotational spring 

stiffness’s  (𝑘1ˎ 𝜙1)ˎ (𝑘2ˎ 𝜙2) are acting at the base point 1 

and at a distance 𝛿 from the end point of attachment 2, 

respectively. The mass of the tank is 𝑚𝑡 and its radius of 

gyration is 𝜅. The center of gravity of the tank mass is 

located at distance 𝑒𝑎, 𝑒𝑡 from the point 2 in the axial and 

transverse directions respectively. The centroid of the fluid 

mass 𝑚𝑓 is located at distance 𝑒𝑓   from point 2. The 

system is also subjected to a constant axial load 𝑃𝑎 applied 

at point 4 and fluid load 𝑃𝑓 . Two situations of the storage 

tank are considered which are the elevated and suspended 

situations as shown in Fig. 2(a) and (c) respectively.  
 

 

3. Equation of motion and boundary conditions  
 

In the current paper, the transverse free vibration is 

investigated using both Timoshenko and Bernoulli-Euler 

beam theories. The boundary conditions include an 

eccentric rigid partially filled storage tank connected at 

point 2. The detailed derivations of the bending moment 

and its arm acting on the end point of attachment 2 are 

given in section 3.2.1.  

 
Fig. 2 Elevated (a, b), and suspended (c, d), cylindrical 

tank situations 
 
 

3.1 Equation of motion  
 

3.1.1 According to Timoshenko beam theory (TBT) 
The equation of motion for uniform classical 

Timoshenko beam theory are presented using two coupled 

Eqs. (1) and (2). The two coupled equations are function in 

lateral deflection 𝑦(𝑥, 𝑡) and slope due to bending 𝜓(𝑥, 𝑡), 

see for example, (Sato 1991). 

(𝑘′𝐺𝐴)(𝑦′′ − 𝜓′)(𝑥, 𝑡) − 𝑃𝑦′′(𝑥, 𝑡) − 𝜌𝐴𝑦̈(𝑥, 𝑡) = 0; (1) 

𝐸𝐼𝜓′′(𝑥, 𝑡) + (𝑘′𝐺𝐴)(𝑦′ − 𝜓)(𝑥, 𝑡) − 𝜌𝐼𝜓̈(𝑥, 𝑡) = 0 (2) 

The prime ( )′  indicates 
𝜕( )

𝜕𝑥
 and the dot 

( )̇ indicates 
𝜕( )

𝜕𝑡
 

Let 

𝑦(𝑥, 𝑡) = Y(𝜁)𝑒𝑗𝜔𝑡 (3) 

𝜓(𝑥, 𝑡) = 𝛹(𝜁)𝑒𝑗𝜔𝑡  (4) 

𝜁 =
𝑥

L
 (5) 

where 𝑌(𝜁) is the normal function of y,𝛹(𝜁) is the 

normal function of 𝜓, 𝜁 is the non-dimensional length of 

beam span, and 𝑗 = √−1. 

Substituting by Eqs. (3)-(5) into Eqs. (1) and (2) results 

in the following non-dimensional equations  
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𝑝𝑠
2𝑌′′(𝜁) + 𝜆4𝑠2𝑌(𝜁) − 𝐿Ψ′(𝜁) = 0; (6) 

𝑠2𝐿Ψ′′(𝜁) + (𝜆4𝑠2𝑟2 − 1)𝐿𝛹(𝜁) + 𝑌′(𝜁) = 0 (7) 

Here, the prime (. )′ means d ( )/d𝜁 and  

𝑟2 = 𝐼/𝐴𝐿2;  𝜆4 = 𝜌𝐴𝜔2𝐿4/𝐸𝐼;  𝑠2 = 𝑟2𝐸/𝐺𝑘′; 

  𝑝𝑠
2 = 1 − 𝑠2𝑝2, 𝑝2 = 𝑃𝐿2/𝐸𝐼 

(8a-e) 

Substituting by 𝑌′(𝜁) in Eq. (7) into the differentiation 

of Eq. (6) results in the decoupled fourth order differential 

Eq. (9). Also, substituting by 𝐿Ψ′(𝜁) in Eq. (6) into the 

differentiation of Eq. (7) results in Eq. (10).  

𝑌′′′′(𝜁) + 𝛼̅ 𝑌′′(𝜁) + 𝛽̅2 𝑌(𝜁) = 0, (9) 

𝐿𝛹′′′′(𝜁) + 𝛼̅ 𝐿𝛹′′(𝜁) + 𝛽̅2𝐿𝛹(𝜁) = 0 (10) 

The complementary solutions, for Eqs. (9) and (10) are 

as follows: 

𝑌(ζ) = 𝐴1 𝑠𝑖𝑛(𝑎 ζ) + 𝐴2 𝑐𝑜𝑠(𝑎 ζ)
+ 𝐴3 𝑠𝑖𝑛ℎ(𝑏 ζ) + 𝐴4 𝑐𝑜𝑠ℎ(𝑏 ζ); (11) 

𝐿 𝛹(ζ) = − (
𝛿1

𝑎
) 𝐴1 𝑐𝑜𝑠(𝑎 ζ) + (

𝛿1

𝑎
) 𝐴2 𝑠𝑖𝑛(𝑎 ζ)

+ (
𝛿2

𝑏
) 𝐴3𝑐𝑜𝑠ℎ(𝑏 ζ)  

+ (
𝛿2

𝑏
) 𝐴4 𝑠𝑖𝑛ℎ(𝑏 ζ) 

(12) 

 

For the present model,  

𝛿1 = 𝜆4𝑠2 − 𝑎2𝑝𝑠
2 and  𝛿2 = 𝜆4𝑠2 + 𝑏2𝑝𝑠

2    (13 a-b) 

where 

𝑎2 = (𝛼̅/2) + [(𝛼̅/2)2 − 𝛽̅2]
½

, 

 𝑏2 = −(𝛼̅ 2⁄ ) + [(𝛼̅ 2⁄ )2 − 𝛽̅2]
½

 , 

𝛼̅ = [λ4(𝑟2 + 𝑠2) − 𝑝2(λ4𝑟2𝑠2 − 1)]/𝑝𝑠
2;     

and 𝛽̅2 = λ4(λ4𝑟2𝑠2 − 1)/𝑝𝑠
2; 

(14 

e-h) 

 

3.1.2 According to Euler-Bernoulli theory (EBT) 
The equation of motion for the axially loaded beam 

according to Bernoulli-Euler beam bending theory can be 

written in the form  

𝐸𝐼𝑦′′′′(𝑥‚ 𝑡) + 𝑃𝑦′′(𝑥‚ 𝑡) + 𝜌𝐴𝑦̈(𝑥‚ 𝑡) = 0 (15) 

Let 𝑦(𝑥‚ 𝑡) = 𝑌(𝜁)𝑒𝑗𝜔𝑡 and omitting the factor 

𝑒𝑗𝜔𝑡ˎ Eq. (15) becomes 

𝑌′′′′(𝜁) + 𝑝2𝑌′′(𝜁) − 𝜆4𝑌(𝜁) = 0.     𝜁 = 𝑥/𝐿 (16) 

The complementary solution for the differential Eq. (16) 

is as follows: 

𝑌(ζ) = 𝐴1 𝑠𝑖𝑛(𝑎 ζ) + 𝐴2 𝑐𝑜𝑠(𝑎 ζ) + 𝐴3 𝑠𝑖𝑛ℎ(𝑏 ζ) +
𝐴4 𝑐𝑜𝑠ℎ(𝑏 ζ);  

(17) 

where, 

𝑎2 = (𝑝2/2) + [(𝑝2/2)2 + 𝜆4]½ and 

𝑏2 = −(𝑝2/2) + [(𝑝2/2)2 + 𝜆4]½. 
(18a,b) 

 

3.2 Boundary conditions  
 

3.2.1 Derivation of the bending moment due to fluid 
inside the tank  

The storage tank consists of two masses 𝑚𝑡  for the 

rigid tank and 𝑚𝑓 for the fluid mass inside the tank. When 

the storage tank is fully filled or empty, the end mass can be 

considered as a rigid mass 𝑀 = (𝑚𝑡 + 𝑚𝑓). The rigid tank 

is connected inflexibly to the point of attachment 2. In this 

section, 𝜙 and 𝜃 are trigonometrical angles used to define 

the fluid element as shown in Fig. 2. The derivation of the 

fluid bending moment for elevated and suspended tank 

situations are obtained as follows  
 

3.2.1.1 Elevated partially filled tank, Fig. 2 (a, b) 
Referring to Fig. 2 (b), the volume of the fluid slice is  

𝑥 𝑧 𝑑𝑦 . This slice applies vertical load 𝑑𝑝 =  𝛾 𝑥 𝑧 𝑑𝑦 . 

The following analysis is based on the assumption of small 

oscillations; therefore, the following approximations can be 

used. 𝑠𝑖𝑛 𝜙 = 𝜙 , tan 𝜙 = 𝜙, and  𝑐𝑜𝑠 𝜙 = 1 

 The bending moment 𝑑𝑀𝑓𝑒 due to 𝑑𝑝 becomes  

𝑑𝑀𝑓𝑒 = 𝑑𝑝(𝑦 𝑐𝑜𝑠 𝜙 + (𝑥 2)⁄ 𝑠𝑖𝑛 𝜙)

= 𝑑𝑝 [ 𝑦 +  𝜙(ℎ + 𝑦𝜙 2⁄ )] 
(19) 

where 𝑥 = ℎ + 𝑦𝜙                
By expanding Eq. (19) and eliminating the higher order, 

of 𝜙 , Eq. (19) can be reduced to:  

𝑑𝑀𝑓𝑒 = 𝑧 𝛾 (𝑦2 𝜙 + ℎ𝑦 + ℎ2
𝜙

2
)  𝑑𝑦 (20) 

From the geometric relation of the fluid element Fig. 2b, 

the following equations can be obtained 

𝑧 = 2 𝑅 𝑠𝑖𝑛 𝜃 and (21) 

𝑦 = 𝑅 𝑐𝑜𝑠 𝜃 (22) 

Differentiating both sides of Eq. (22)   

𝑑𝑦 = −𝑅 𝑠𝑖𝑛 𝜃  d 𝜃 (23) 

Substituting by Eq. (23) and Eq. (21) into Eq. (20) 

results in the following equation  

𝑑𝑀𝑓𝑒 =  −2 𝛾𝑅2 (𝑅2𝜙 cos2 𝜃 sin2 𝜃

+ ℎ𝑅 cos 𝜃 sin2 𝜃 +
ℎ2𝜙 

2
sin2 𝜃) d𝜃 

(24) 

Substituting by the trigonometric relations in Appendix 

A, Eqs. (76-82) into Eq. (24) results in the following 

equation  

𝑑𝑀𝑓𝑒 =  −2 𝛾𝑅2 [𝑅2𝜙 
sin2  2𝜃

4

+  
ℎ𝑅

4
(𝑐𝑜𝑠 𝜃 − cos 3𝜃)

+  
ℎ2𝜙 

2
sin2 𝜃] 𝑑𝜃 

(25) 
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by integrating over 𝜃 from 𝜋 to 0;    

𝑀𝑓𝑒 = ∫ 𝑑𝑀𝑓𝑒

0

𝜋

= {−2 𝛾𝑅2 [
𝑅2𝜙

4
(

𝜃

2
− 

𝑠𝑖𝑛4𝜃

8
)

+
ℎ𝑅

4
(𝑠𝑖𝑛𝜃 −

sin3𝜃

3
)

+
ℎ2𝜙 

2
(

𝜃

2
−  

𝑠𝑖𝑛2𝜃

4
)]}

𝜋

0

 

𝑀𝑓𝑒 = 𝛾
𝜋𝑅2

4
(2ℎ2 + 𝑅2) 𝜙 = 𝛾𝐴𝑓ℎ (

ℎ

2
+

𝑅2

4ℎ
) 𝑦′(𝐿) 

= 𝑃𝑓

ℎ

4
(2 + (

𝑅

ℎ
)

2

) 𝑦′(𝐿) 

(26) 

The expression of the fluid bending arm 𝐵𝑒, for the case 

of elevated tank situation, becomes  

𝐵𝑒 =
ℎ

4
[2 + (

𝑅

ℎ
)

2

] 𝑦′(𝐿) (27) 

 

3.2.1.2 Suspended partially filled tank, Fig. 2 (c, d) 
The second case of Fig. 2 (d) is concerned with the 

derivation of the expressions governing the bending 

moment and its associated bending arm for partially filled 

tank suspended from the point of attachment 2.  In this 

case the axial load due to fluid inside the tank causes a 

tensile load in the beam. The volume of the used fluid 

element is 𝑥 𝑧 𝑑𝑦 and the vertical load due to this fluid 

element 𝑑𝑝 = 𝛾 𝑥 𝑧 𝑑𝑦. 

The bending moment 𝑑𝑀𝑓𝑠 due to 𝑑𝑝 becomes  

𝑑𝑀𝑓𝑠 = 𝑑𝑝 [𝑦 cos 𝜙 − sin 𝜙 (𝐻 −
𝑦

2
)] 

(28) 
= 𝑑𝑝 [(1 −

𝜙2

2
) 𝑦 − 𝜙 (𝐻 −

𝑦

2
)]  = 𝛾 𝑥 𝑧 [(1 −

𝜙2

2
) 𝑦 − 𝜙 (𝐻 −

𝑦

2
)] 𝑑𝑦 

Substituting by 𝑥 = ℎ + 𝑦 tan 𝜙 = ℎ + 𝑦𝜙  into Eq. 

(28) and expanding with elimination of higher order of 𝜙. 

The fluid element bending moment can be written as follow 

𝑑𝑀𝑓𝑠 = 𝑧𝛾 [𝑦 + (
ℎ

2
− 𝐻) 𝜙] (ℎ + 𝑦𝜙) 𝑑𝑦 

= 𝑧𝛾 [𝑦2𝜙 + ℎ𝑦 + ℎ (
ℎ

2
− 𝐻) 𝜙]  𝑑𝑦 

(29) 

Using the relations in Eq. (21-23) leads to 

∴ 𝑑𝑀𝑓𝑠 = −2 𝛾 𝑅2 [𝑦2𝜙 + ℎ𝑦

+ ℎ (
ℎ

2
− 𝐻) 𝜙] sin2 𝜃 𝑑𝜃 

(30) 

= −2 𝛾 𝑅2 [𝜙 𝑅2 sin2 𝜃 cos2 𝜃 + ℎ 𝑅 sin2 𝜃 cos 𝜃

+ 𝜙 ℎ (
ℎ

2
− 𝐻) sin2 𝜃] 𝑑𝜃 

= −2 𝛾 𝑅2 [𝜙 𝑅2
sin2 2𝜃

4
+

ℎ 𝑅

2
(cos 𝜃 − cos  3𝜃)

+ ℎ (
ℎ

2
− 𝐻) 𝜙 sin2 𝜃] 𝑑𝜃 

By integration over 𝜃 from 𝜋 to 0; 

𝑀𝑓𝑠 = ∫ 𝑑𝑀𝑓𝑠

0

𝜋

 

= {−2 𝛾𝑅2 [
𝜙 𝑅2

4
(

𝜃

2
−  

𝑠𝑖𝑛4𝜃

8
)

+
ℎ𝑅

2
(sin 𝜃 −

sin3𝜃

3
)

+ ℎ (
ℎ

2
− 𝐻) 𝜙 (

𝜃

2
− 

𝑠𝑖𝑛2𝜃

4
)]}

𝜋

0

 

(31) 

= 𝛾
𝜋𝑅2

4
(𝑅2 + 2ℎ2 − 4ℎ𝐻) 𝜙 

𝑀𝑓𝑠 = 𝛾
𝜋𝑅2

4
(𝑅2 + 2ℎ2 − 4ℎ𝐻)𝑦′(𝐿)

= 𝛾 𝐴𝑓 ℎ
ℎ

4
(2 + (

𝑅

ℎ
)

2

− 4
𝐻

ℎ
) 𝑦′(𝐿) 

(32) 

= 𝑃𝑓 ∙  
ℎ

4
(2 + (

𝑅

ℎ
)

2

− 4
𝐻

ℎ
) 𝑦′(𝐿) 

where,          

𝑃𝑓 = 𝛾𝑓𝐴𝑓ℎ             and        

          𝐴𝑓 = 𝜋𝑅2 
(33a-b) 

Therefore, the expression of the fluid bending arm 𝐵𝑠, 

for the suspended tank situation, can be written in the form 

𝐵𝑠  =
ℎ

4
[2 + (

𝑅

ℎ
)

2

− 4 (
𝐻

ℎ
)] 𝑦′(𝐿) (34) 

 

3.2.2 Boundary conditions according to TBT 
The boundary conditions for the system shown in Fig. 1 

may be developed in the dimensional expressions at 𝑥 = 0 

and at 𝑥 = 𝐿 as follows 

at 𝑥 = 0; 

𝐸𝐼𝜓′(0) = 𝜙1𝜓(0); (35) 

(𝑘′𝐺𝐴)(𝑦′(0) − 𝜓(0)) = (𝑃𝑎 + 𝑃𝑓)𝑦′(0) + 𝑘1 𝑦(0) (36) 

at 𝑥 = 𝐿; 

𝐸𝐼𝜓′(𝐿) = −[−𝜔2𝑚𝑡(𝑒𝑎
2 + 𝑒𝑡

2 + 𝜅2) − 𝜔2𝑚𝑓𝑒𝑓
2

+ (𝜙2 + 𝑘2𝛿2)]𝜓(𝐿)

+ (𝑃𝑎𝑒𝑎 + 𝑃𝑓𝐵𝑎)𝑦′(𝐿)

− (−𝜔2𝑚𝑡𝑒𝑎 − 𝜔2𝑚𝑓 ℎ 2⁄

+ 𝑘2𝛿)𝑦(𝐿) 

(37) 
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(𝑘′𝐺𝐴) (𝑦′(𝐿) − 𝜓(𝐿))

= −(−𝜔2𝑚𝑡𝑒𝑎 − 𝜔2𝑚𝑓𝑒𝑓

+ 𝑘2𝛿) 𝜓 (𝐿) + (𝑃𝑎 + 𝑃𝑓) 𝑦′(𝐿)

− (−𝜔2𝑚𝑡 − 𝜔2𝑚𝑓 + 𝑘2)𝑦(𝐿) 

(38) 

where 𝐵𝑎 = 𝐵𝑒 in case of elevated tank and 𝐵𝑎 = 𝐵𝑠 in 

case of suspended tank. 𝑒𝑓 = ℎ/2 in case of elevated tank.  

Eqs. (35-38) can be rewritten in the non-dimensional 

form, at  𝜁 = 0 and 𝜁 = 1, as follows: 

at 𝜁 = 0; 

𝐿𝛹′(0) − 𝛷1𝐿𝛹(0) = 0, (39) 

𝑝𝑠
2𝑌′(0) − 𝑍1𝑠2𝑌(0) − 𝐿𝛹(0) = 0  (40) 

and at 𝜁 = 1; 

−𝑝𝑡
2𝑌′(1) − 𝛽 𝑌(1) + 𝐿Ψ′(1) − 𝛼𝑇𝐿Ψ(1) = 0.  (41) 

   𝑝𝑠
2𝑌′(1) − 𝑠2 𝜃 𝑌(1) − 𝛽𝑠 𝐿Ψ(1) =0 (42) 

where 𝛼𝑇 ‚ 𝛽‚ 𝛽𝑠 and 𝜃 are developed and introduced as 

follows   

𝛼𝑇 = 𝜆4 [𝑚̅𝑡(𝑒̅𝑎
2 + 𝑒̅𝑡

2 + 𝜅̅2) + 𝑚̅𝑓𝑒̅𝑓
2 ]

− (𝑍2𝛿̅2 + Φ2); 

(43 a-d) 𝜃 = 𝜆4( 𝑚̅𝑡 + 𝑚̅𝑓) − 𝑍2; 

𝛽 = 𝜆4(𝑚̅𝑡𝑒̅𝑎 + 𝑚̅𝑓𝑒̅𝑓) − 𝑍2𝛿;̅ 

𝛽𝑠 = 1 + 𝑠2𝛽 

where  

Φ1 = 𝜙1𝐿/𝐸𝐼; 𝑒̅𝑎 = 𝑒𝑎/𝐿; 𝑝𝑎
2 = 𝑃𝑎𝐿2/𝐸𝐼; 

(44 a-r) 

𝑍1 = 𝑘1𝐿3/𝐸𝐼; 𝑒̅𝑡 = 𝑒𝑡/𝐿; 𝑝𝑓
2 = 𝑃𝑓𝐿2/𝐸𝐼; 

Φ2 = 𝜙2𝐿/𝐸𝐼; 𝜅̅ = 𝜅/𝐿; ℎ̅ = ℎ/𝐿; 

𝑍2 = 𝑘2𝐿3/𝐸𝐼; 𝑚̅𝑡 = 𝑚𝑡/𝜌𝐴𝐿; 𝑅̅ = 𝑅/𝐿; 

𝛿̅ = 𝛿/𝐿; 𝑚̅𝑓 = 𝑚𝑓/𝜌𝐴𝐿; 𝐻̅ = 𝐻/𝐿 

𝑒𝑓̅ = 𝑒𝑓/𝐿 𝑒̅𝑓 = ℎ̅ 2⁄  (elevated tank) 

 
3.2.3 Boundary conditions according to EBT 
The boundary conditions for the system shown in Fig. 1, 

may be written in the dimensional format due to the 

bending moment and the shear force, acting at the end point, 

respectively, as follows 

at 𝑥 = 0; 

𝐸𝐼𝑦′′(0) = 𝜙1𝑦′(0)‚ (45) 

𝐸𝐼𝑦′′′(0) = −(𝑃𝑎 + 𝑃𝑓)𝑦′(0) + 𝑘1𝑦(0) (46) 

at 𝑥 = 𝐿; 

𝐸𝐼𝑦′′(𝐿) = −[−𝜔2𝑚𝑡(𝑒𝑎
2 + 𝑒𝑡

2 + 𝜅2) − 𝜔2𝑚𝑓 (ℎ/2)2

+ (𝑘2𝛿2 + 𝜙2 + 𝑃𝑎𝑒𝑎

+ 𝑃𝑓𝐵𝑎)]𝑦′(𝐿)

− (−𝜔2𝑚𝑡𝑒𝑎 − 𝜔2𝑚𝑡  ℎ/2
+ 𝑘2𝛿)𝑦(𝐿) 

(47) 

𝐸𝐼𝑦′′′(𝐿) = −[−𝜔2𝑚𝑡𝑒𝑎 + (𝑘2𝛿 + 𝑃𝑎 + 𝑃𝑓)]𝑦′(𝐿)

− (−𝜔2𝑚𝑡 − 𝜔2𝑚𝑓 ℎ/2 + 𝑘2)𝑦(𝐿) (48) 

Equations (45-48) can be rewritten in the following non-

dimensional format as shown below 

at ζ = 0; 

𝑌′′(0) − 𝛷1𝑌′(0) = 0; (49) 

𝑌′′′(0) + 𝑝2𝑌′(0) − 𝑍1𝑌(0) = 0 (50) 

at ζ = 1 

𝑌′′(1) − 𝛼𝐸𝑌′(1) − 𝛽𝑌(1) = 0; (51) 

𝑌′′′(1) − 𝛾 𝑌′(1) − 𝜃𝑌(1) = 0 (52) 

where 

𝛼𝐸 = 𝛼𝑇 − 𝑝𝑡
2; and      𝛾 = 𝛽 − 𝑝2 (53 a, b) 

 
 
4. Characteristics determinants 

 
4.1 Derivation of the characteristics elements 
 

Substitution by the general solutions into the non-

dimensional boundary conditions leads to a system of four 

homogenous linear algebraic equations in 

𝐴1‚ 𝐴2‚ 𝐴3 and 𝐴4. These equations may be presented in a 

matrix format of order 4×4. The elements according to this 

matrix of TBT are presented in Eqs. (55 a-p) and in case of 

EBT are presented in Eqs. (56 a-p), all are based on the 

suggested equation. 

[

𝑎1

𝑎5

𝑎2

𝑎6

𝑎3

𝑎7

𝑎4

𝑎8
𝜖1

𝜖5

𝜖2

𝜖6

𝜖3

𝜖7

𝜖4

𝜖8

]      {

𝐴1

 𝐴2

 𝐴3

𝐴4

} = 0 (54) 

where, 

For TBT 

𝑎1 = Φ1(𝛿1/𝑎); 𝜖1 = [−(𝛽 − 𝛿1) 𝑠𝑖𝑛 𝑎 + 𝜂1𝑐𝑜𝑠 𝑎] 

(55 a-p) 

𝑎2 = 𝛿1; 𝜖2 = −[𝜂1𝑠𝑖𝑛 𝑎 + (𝛽 − 𝛿1) 𝑐𝑜𝑠 𝑎] 

𝑎3

= − Φ1(𝛿2/𝑏); 
𝜖3 = −[(𝛽 − 𝛿2) 𝑠𝑖𝑛ℎ 𝑏 + 𝜂2𝑐𝑜𝑠ℎ 𝑏] 

𝑎4 = 𝛿2; 𝜖4 = −[𝜂2 𝑠𝑖𝑛ℎ 𝑏 + (𝛽 − 𝛿2)𝑐𝑜𝑠ℎ 𝑏] 

𝑎5 = 𝛿3; 𝜖5 = [−𝑠2 𝜃 𝑠𝑖𝑛 𝑎 + 𝜂3𝑐𝑜𝑠 𝑎] 
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𝑎6 = −Z1𝑠2; 𝜖6 = −[𝜂3 𝑠𝑖𝑛 𝑎 + 𝑠2𝜃 𝑐𝑜𝑠 𝑎] 

𝑎7 = 𝛿4; 𝜖7 = [−𝑠2𝜃 𝑠𝑖𝑛ℎ 𝑏 + 𝜂4 𝑐𝑜𝑠ℎ 𝑏] 

𝑎8 = −Z1𝑠2; 𝜖8 = [𝜂4 𝑠𝑖𝑛ℎ 𝑏 − 𝑠2𝜃 𝑐𝑜𝑠ℎ 𝑏]                                            

For EBT 

𝑎1 = − Φ1𝑎; 𝜖1 = [(𝛽 + 𝑎2) 𝑠𝑖𝑛 𝑎 + 𝑎 𝛼𝐸  𝑐𝑜𝑠 𝑎 ] 

(56 a-p) 

𝑎2 = − 𝑎2; 
𝜖2 = [−𝑎 𝛼𝐸  𝑠𝑖𝑛 𝑎 + (𝛽

+ 𝑎2) 𝑐𝑜𝑠 𝑎] 

𝑎3 = − Φ1𝑏; 
𝜖3 = [(𝛽 − 𝑏2) 𝑠𝑖𝑛ℎ 𝑏

+ 𝑏 𝛼𝐸  𝑐𝑜𝑠ℎ 𝑏 ] 

𝑎4 = 𝑏2; 
𝜖4 = [𝑏 𝛼𝐸  𝑠𝑖𝑛ℎ 𝑏 + (𝛽

− 𝑏2)𝑐𝑜𝑠ℎ 𝑏 ] 

𝑎5 = 𝑎 (𝑝2 − 𝑎2); 𝜖5 = [−𝜃 𝑠𝑖𝑛 𝑎 + 𝑎 (𝛾 + 𝑎2) 𝑐𝑜𝑠 𝑎] 

𝑎6 =  Z1; 𝜖6 = [−𝑎 (𝛾 + 𝑎2) 𝑠𝑖𝑛 𝑎 − 𝜃 𝑐𝑜𝑠 𝑎] 

𝑎7 = 𝑏 (𝑝2 + 𝑏2); 
𝜖7 = [−𝜃 𝑠𝑖𝑛ℎ 𝑏 + 𝑏 (𝛾

− 𝑏2) 𝑐𝑜𝑠ℎ 𝑏] 

𝑎8 = −Z1; 𝜖8 = [𝑏 (𝛾 − 𝑏2) 𝑠𝑖𝑛ℎ 𝑏 − 𝜃 𝑐𝑜𝑠ℎ 𝑏] 

 
4.2 Suggested formulae for expanding of the 

characteristics determinant 
 

For non-trivial solution of Eq. (54), the following 

determinant should be equal to zero. 

det [

𝑎1 𝑎2 𝑎3 𝑎4

𝑎5 𝑎6 𝑎7 𝑎8

𝜖1 𝜖2 𝜖3 𝜖4

𝜖5 𝜖6 𝜖7 𝜖8

] = 0 (57) 

The 4×4 determinant equations can be expanded as 

follows  

𝐺1 + 𝐺2 + 𝐺3 + 𝐺4 + 𝐺5 + 𝐺6 = 0 (58) 

where, 

𝐺1 = (𝑎1𝑎6 − 𝑎5𝑎2)14(𝜖3𝜖8 − 𝜖7𝜖4)22 ; 

(59 a-f) 

𝐺2 =    (𝑎3𝑎8 − 𝑎7𝑎4)22(𝜖1𝜖6 − 𝜖5𝜖2)14 ; 

𝐺3 = −(𝑎1𝑎7 − 𝑎5𝑎3)16(𝜖2𝜖8 − 𝜖6𝜖4)20 ; 

𝐺4 = −(𝑎2𝑎8 − 𝑎6𝑎4)20(𝜖1𝜖7 − 𝜖5𝜖3)16 ; 

𝐺5 =    (𝑎1𝑎8 − 𝑎5𝑎4)18(𝜖2𝜖7 − 𝜖6𝜖3)18 ;and 

𝐺6 =    (𝑎2𝑎7 − 𝑎6𝑎3)18(𝜖1𝜖8 − 𝜖5𝜖4)18 

 

4.3 Generalized explicit frequency equation 
 
4.3.1 Timoshenko beam generalized frequency 

equation 
The Timoshenko beam frequency equation can be 

obtained by substituting Eqs. (55 a-p) into Eqs.(58-59). 

After extensive mathematical manipulations, one can obtain 

the frequency equation in its explicit form, for system with 

different classical and/or non-classical, simple and/or 

complex end conditions. Therefore, the generalized 

frequency equation according to TBT can be written in the 

following explicit form:  

𝑓(𝜆) = ( 𝜂5 𝛽1 + 𝜂6𝛽2 ) + [−𝛿5(𝜂3𝜂2 + 𝜂1 𝜂4) −
𝑠2𝜃 𝛿6 (𝛿1−𝛿2) + (𝜂7𝛽3 − 𝜂8𝛽4)] ŝ ŝh +  [(𝛿5𝛽3 −
𝛿6𝛽4) − 𝜂7(𝜂3𝜂2 + 𝜂1 𝜂4) −  𝑠2𝜃𝜂8(𝛿1−𝛿2)] ŝ ĉh +
 [−(𝛿5𝛽4 + 𝛿6𝛽3) − 𝑠2𝜃𝜂7(𝛿1−𝛿2) + 𝜂8(𝜂3𝜂2 +
𝜂1 𝜂4)] ĉ ŝh +  [−𝑠2𝜃𝛿5(𝛿1−𝛿2) + 𝛿6(𝜂3𝜂2 + 𝜂1 𝜂4) −
(𝜂7𝛽4 + 𝜂8 𝛽3)] ĉ ĉh = 0 

(60) 

where 

𝜂1 = −𝑝𝑡
2𝑎 + 𝛼𝑇(𝛿1/𝑎); 

(61 a-p) 

𝜂2 = 𝑝𝑡
2𝑏 + 𝛼𝑇(𝛿2/𝑏); 

𝜂3 = 𝑝𝑠
2𝑎 + 𝛽𝑠(𝛿1/𝑎); 

𝜂4 = 𝑝𝑠
2𝑏 − 𝛽𝑠(𝛿2/𝑏); 

𝜂5 = −[ 𝛷1 𝑍1𝑠2(𝛿1/𝑎) + 𝛿1𝛿3]; 

𝜂6 = [𝛷1 𝑍1𝑠2(𝛿2/𝑏) − 𝛿2𝛿4]; 

𝜂7 = −[𝛷1 𝑍1𝑠2(𝛿1/𝑎) + 𝛿2𝛿3]; 

𝜂8 = −[𝛷1 𝑍1𝑠2(𝛿2/𝑏) − 𝛿1𝛿4]; 

𝛽1 = [𝜂2𝑠2𝜃 + 𝜂4(𝛽 − 𝛿2)]; 

𝛽2 = [−𝜂1𝑠2𝜃 + 𝜂3(𝛽 − 𝛿1)]; 

𝛽3 = [𝜂1𝑠2𝜃 − 𝜂3(𝛽 − 𝛿2)]; 

𝛽4 = [𝜂2𝑠2𝜃 + 𝜂4(𝛽 − 𝛿1)]  and 

𝛿3 = 𝑝𝑠
2𝑎 + (𝛿1/𝑎); 

𝛿4 = 𝑝𝑠
2𝑏 − (𝛿2/𝑏); 

𝛿5 = −Φ1 [(𝛿1𝛿4/𝑎)  + (𝛿2𝛿3/𝑏)]; 

𝛿6 = Z1𝑠2(𝛿1−𝛿2) 

where 

𝑝𝑡𝑒
2 = 𝑝𝑎

2𝑒̅𝑎 + 𝑝𝑓
2𝐵̅𝑒; 𝑝𝑡𝑠

2 = 𝑝𝑎
2𝑒̅𝑎 + 𝑝𝑓

2𝐵̅𝑠; 

(62 a-d) 

𝐵̅𝑒 = ℎ̅ [2 + (𝑅̅/ℎ̅)
2

] /4;  𝐵̅𝑠 = 𝐵̅𝑒 − (𝐻/4) 

The sign of 𝑝𝑎
2 and 𝑝𝑓

2 in Eqs. (62 a, b) is obtained 

according to Figure 1 (a), (c). The positive sign for 𝑝𝑎
2  

represents a compressive axial load, and negative sign for 

𝑝𝑎
2 represents a tensile load condition. The positive sign 

for 𝑝𝑓
2 is for elevated tank, and the negative sign for  𝑝𝑓

2 is 

for suspended tank situation. 

Equations (60-62) are functions in the following 

dimensionless parameters 𝜆ˎ 𝑠2ˎ  𝑟2ˎΦ1ˎ  𝑍1ˎ  𝑚̅ˎΦ2ˎ 𝑍2ˎ  
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𝑒̅𝑎ˎ 𝑒̅𝑡ˎ 𝜅̅ˎ 𝛿̅ˎ  𝑝𝑎
2ˎ 𝑝𝑓

2ˎ ℎ̅ˎ 𝐻 and 𝑅̅ . It is important to note that, 

during the expansion procedures, several non-dimensional 

system design groups,  𝛼𝑇ˎ 𝛼𝐸ˎ 𝛾ˎ 𝛽ˎ 𝛽𝑠ˎ 𝑝𝑡𝑒 
2 ˎ 𝑝𝑡𝑠 

2 ˎ𝐵̅𝑒 and 

𝐵̅𝑠 are developed. Fig. 3 shows a schematic representation 

for the present model variables, non-dimensional 

parameters and non-dimensional groups.  

 

4.3.2 Generalized frequency equation for Bernoulli-
Euler beam  

The frequency equation of the beam based on Bernoulli-

Euler model can be obtained by substituting Eqs. (56 a-p) 

into Eqs. (58-59). The generalized frequency equation 

according to EBT can be written in the following explicit 

form:  

𝑓(𝜆) = (𝜂9 𝛽5 + 𝜂10 𝛽6 ) + [𝛿7𝛼𝐸  𝑎𝑏 (𝑎2 +
𝑏2) − 𝜃𝛿8(𝑎2 + 𝑏2) + (𝜂11𝛽7 + 𝜂12𝛽8)]ŝ ŝh +

 [(𝛿7𝛽7 − 𝛿8𝛽8) + 𝜂11𝛼𝐸  𝑎𝑏 (𝑎2 + 𝑏2) +
 𝜃𝜂12(𝑎2 + 𝑏2)] ŝ ĉh +  [(𝛿7𝛽8 + 𝛿8𝛽7) +

𝜃𝜂11(𝑎2 + 𝑏2) − 𝜂12𝛼𝐸𝑎𝑏(𝑎2 + 𝑏2)] ĉ ŝh +
 [𝜃𝛿7(𝑎2 + 𝑏2) − 𝛿8𝛼𝐸𝑎𝑏(𝑎2 + 𝑏2) + (𝜂11𝛽8 −

𝜂12 𝛽7)] ĉ ĉh = 0 

(63) 

𝜂9 =  𝑎 [𝛷1𝑍1 + 𝑎2(𝑝2 − 𝑎2)]; 

(64 a-i) 

𝜂10 = 𝑏 [𝛷1𝑍1 − 𝑏2(𝑝2 + 𝑏2)]; 

𝜂11 = 𝑎 [𝛷1𝑍1 − 𝑏2(𝑝2 − 𝑎2)]; 

𝜂12 = −𝑏 [𝛷1𝑍1 + 𝑎2(𝑝2 + 𝑏2)]; 

𝛽5 = 𝑏[𝜃 𝛼𝐸 − (𝛽 − 𝑏2)(𝛾 − 𝑏2)]; 

𝛽6 = 𝑎[𝜃 𝛼𝐸 − (𝛽 + 𝑎2)(𝛾 + 𝑎2)] 

𝛽7 = −𝑎[ 𝛼𝐸𝜃 − (𝛾 + 𝑎2)(𝛽 − 𝑏2)]; 

𝛽8 = −𝑏 [𝜃𝛼𝐸 − (𝛽 + 𝑎2)(𝛾 − 𝑏2)] 

 

𝛿7 = Φ1𝑎𝑏(𝑎2 + 𝑏2)  

𝛿8 = −𝑍1(𝑎2 + 𝑏2) 

It is interesting to note that, the frequency Eqs. (60) and 

(63), in their simplified explicit formulae, have not 

appeared before in literature. 
 

4.4 Reduced generalized explicit frequency 
equations 

 

4.4.1 Reduced frequency equations for clamped 
base models  

In many industrial applications, the base is 

approximately clamped, i.e. 𝑍1 and Φ1 → ∞ . This 

simplifies the general Eqs. (60) and (63), by dividing their 

terms by Φ1ˎ 𝑍1 → ∞ . TBT frequency equation for 

clamped base model in an explicit form becomes 

𝑓(𝜆) =  (𝛿2𝛽2 𝑎 − 𝛿1𝛽1𝑏) + (−𝛿1𝛽3 𝑏 +
𝛿2𝛽4 𝑎) ŝ ŝh + [𝑠2𝜃  𝑎 𝛿2(𝛿1 − 𝛿2) + 𝛿1𝑏(𝜂3 𝜂2 +
𝜂1 𝜂4)] ŝ ĉh + [𝑠2𝜃 𝛿1𝑏 (𝛿1 − 𝛿2) − 𝛿2𝑎(𝜂3 𝜂2 +

𝜂1 𝜂4)] ĉ ŝh + (𝛿1𝛽4𝑏 + 𝛿2 𝛽3𝑎) ĉ ĉh = 0 

(65) 

similarly, EBT frequency equation for clamped base 

model in an explicit form becomes  

𝑓(𝜆) = (𝑎 𝛽5 + 𝑏𝛽6) + (𝑎 𝛽7 − 𝑏 𝛽8) ŝ ŝh
+ b(𝑎2 + 𝑏2)(𝑎2𝛼𝐸 − 𝜃) ŝ ĉh
+  𝑎 (𝑎2 + 𝑏2)(𝑏2𝛼𝐸 + 𝜃) ĉ ŝh
+ (𝑎 𝛽8 + 𝑏 𝛽7) ĉ ĉh = 0 

(66) 

 

4.4.2 Formulae for simple practical applications 
It is worth noting that Eqs. (65-66) may be reduced to 

simpler formulae, according the values of the following 

non-dimensional parameters αEˎ βˎ γˎ θˎ η1ˎ η2ˎ β5ˎ η3ˎ η4 

and αT. Five simplified cases with single effect boundary 

conditions [group I] are selected and presented in Fig. 4. 

The corresponding inputs parameters for these cases are a 

listed in Table 1. The formulae are tested through numerical 

examples as shown in Table 2. In addition, Fig. 4 shows  

 

Fig. 3 Timoshenko model design variables, non-dimensional parameters and non-dimensional groups. 𝑃1, means point 1, 

𝑃2 means point of attachment 2, and 𝑃1−2 means span between point 1 and 2 
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Fig. 4 Practical applications with a clamped base 

subjected to different design parameters: I, single effect. 

Π, double effects 
 
 

three different application examples in which two effects 

are acting at the point of attachment 2, as shown in the 

cases from II (a) to II (c). The last three cases are tested 

through numerical examples of Tables (3-5).  

 

4.5 Mode shapes 
 

The mode shape equation Eq.(11) can be plotted after 

obtaining the equation constants from the boundary 

conditions. The expressions for the mode shape constants 

𝐴1. 𝐴2 and 𝐴3  are obtained by solving the first three 

 

 

equations in Eq. (54) and  letting 𝐴4 = 1. 

 ⌈

𝐴1

𝐴2

𝐴3

⌉ = − [

𝑎1 𝑎2 𝑎3

𝑎5 𝑎6 𝑎7

𝜖1 𝜖2 𝜖3

]

−1

⌈

𝑎4

𝑎8

𝜖4

⌉ (67) 

The symbolic constants 𝐴1. 𝐴2 and 𝐴3 , respectively 

become 

𝐴1 = [−𝑎4(𝑎6𝜖3 − 𝑎7𝜖2) + 𝑎8(𝑎2𝜖3 − 𝑎3𝜖2)
− 𝜖4(𝑎2𝑎7 − 𝑎6𝑎3)]/∆; (68) 

𝐴2 = [𝑎4(𝑎5𝜖3 − 𝑎7𝜖1) − 𝑎8(𝑎1𝜖3 − 𝑎3𝜖1)
+ 𝜖4(𝑎1𝑎7 − 𝑎5𝑎3)]/∆; (69) 

𝐴3 = [−𝑎4(𝑎5𝜖2 − 𝑎6𝜖1) + 𝑎8(𝑎1𝜖2 − 𝑎2𝜖1)
− 𝜖4(𝑎1𝑎6 − 𝑎5𝑎2)]/∆; (70) 

where, 

∆= 𝑎1(𝑎6𝜖3 − 𝑎7𝜖2) − 𝑎2(𝑎5𝜖3 − 𝑎7𝜖1)
+ 𝑎3(𝑎5𝜖2 − 𝑎6𝜖1) (71) 

Substituting by Eqs. (55) into the above symbolic 

relations Eqs. (68-71) and using the relations in Eqs. (61), 

the explicit formulae for the mode shape constants can be 

obtained as follows, 

Δ𝐴1 = +𝜂1𝜂6 𝑠̂ + 𝜂6 (𝛽 − 𝛿1)𝑐̂ + (𝛿6(𝛽 − 𝛿2)
+ 𝜂2𝜂8) 𝑠̂ℎ
+ (𝜂8(𝛽 − 𝛿2) + 𝛿6 𝜂2)𝑐̂ℎ; 

(72) 

Δ𝐴2 = −𝜂6(𝛽 − 𝛿1)𝑠̂ + 𝜂1 𝜂6𝑐̂

+ (𝜂2𝛿5 + 𝜂7(𝛽 − 𝛿2))𝑠̂ℎ

+ (𝛿5(𝛽 − 𝛿2) + 𝜂2𝜂7)𝑐̂ℎ; 
(73) 

Table 1 Input parameters for the five models shown in Fig. 4 (I) 

Model 𝛼𝐸 𝛽 𝛾 𝜃 𝜂1 𝜂2 𝛽5 𝜂3 𝜂4 𝛼𝑇 

I(a) 0 0 0 0 0 0 1 
𝑎2 − 𝛿1

𝑎
 

𝑏2 − 𝛿2

𝑏
 0 

I(b) 0 0 0 −𝑍2  0 0 1 
𝑎2 − 𝛿1

𝑎
 

𝑏2 − 𝛿2

𝑏
 0 

I(c) −Φ2 0 0 0 
−𝛷2𝛿1

𝑎
 

−𝛷2𝛿1

𝑏
 1 

𝑎2 − 𝛿1

𝑎
 

𝑏2 − 𝛿2

𝑏
 Φ2 

I(d) 0 0 0 𝜆4𝑚̅ 0 0 1 
𝑎2 − 𝛿1

𝑎
 

𝑏2 − 𝛿2

𝑏
 0 

I(e) 0 0 −𝑝2 0 0 0 1 
𝑝𝑠

2𝑎2 + 𝛿1

𝑎
 

𝑝𝑠
2𝑏2 − 𝛿2

𝑏
 0 

Table 2 Explicit formulae for reduced frequency equations, for the five models shown in Fig. 4 (I) 

Model TBT EBT 

I (a) 2 − [(𝛿1
2 + 𝛿2

2)/𝛿1𝛿2] ĉ ĉh − [(𝑎2 − 𝑏2)/𝑎𝑏 ] ŝ ŝh = 0 ⇒ (𝐶𝐹𝑇) 1 + 𝑐̂ 𝑐̂ℎ = 0 (reference equation) ⇒ (𝐶𝐹𝐸) 

I (b) (𝐶𝐹𝑇) + [ 𝑍2(𝑎2 + 𝑏2)(𝛿2 𝑎 ŝ ĉh + 𝛿1𝑏 ĉ ŝh)/(𝜆4𝛿1𝛿2)] = 0 𝜆3(𝐶𝐹𝐸) + 𝑍2(ŝ ĉh − ĉ ŝh) = 0 

I (c) (𝐶𝐹𝑇) − Φ2(𝛿1 − 𝛿2) (𝑏 𝛿1 ŝ ĉh − 𝑎 𝛿2ĉ ŝh)/(𝑎𝑏 𝛿1𝛿2) = 0 𝜆(𝐶𝐹𝐸) +  Φ2(ŝ ĉh + ĉ ŝh) = 0 

I (d) (𝐶𝐹𝑇) − [𝑚̅(𝛿1 − 𝛿2)(𝛿2 𝑎 ŝ ĉh + 𝛿1 𝑏 ĉ ŝh)/𝛿1𝛿2] = 0 (𝐶𝐹𝐸) − 𝜆𝑚̅(ĉ ŝh − ŝ ĉh) = 0 

I (e) 

[(𝑝𝑠
2𝑎2 + 𝛿1) − (𝑝𝑠

2𝑏2 − 𝛿2)] 
+{[−𝛿1

2(𝑝𝑠
2𝑏2 − 𝛿2) + 𝛿2

2(𝑝𝑠
2𝑎2 + 𝛿1)]/𝛿1𝛿2} ĉ ĉh 

+{[𝑏2(𝑝𝑠
2𝑎2 + 𝛿1) + 𝑎2(𝑝𝑠

2𝑏2 − 𝛿2)]/𝑎𝑏} ŝ ŝh = 0 

[𝑎2(𝑝2 − 𝑎2) − 𝑏2(𝑝2 + 𝑏2)] 
+ [𝑏2(𝑝2 − 𝑎2) − 𝑎2(𝑝2 + 𝑏2)] ĉ ĉh 

+ 𝑎𝑏[(𝑝2 − 𝑎2) + (𝑝2 + 𝑏2)] ŝ ŝh = 0 
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Fig. 5 Finite element mesh for partially elevated tank 
 

 

Δ𝐴3 = −(𝛿6(𝛽 − 𝛿1) + 𝜂1𝜂7)𝑠̂ − (𝜂7(𝛽 − 𝛿1)
− 𝛿6𝜂1) 𝑐̂ + 𝜂2 𝜂5𝑠̂ℎ
+ 𝜂5(𝛽 − 𝛿2)𝑐̂ℎ; 

(74) 

Δ    =  −(𝜂8(𝛽 − 𝛿1) + 𝛿5 𝜂1)𝑠̂ − (𝛿5(𝛽 − 𝛿1)
− 𝜂1𝜂8)𝑐̂ − 𝜂5(𝛽 − 𝛿2)𝑠̂ℎ
− 𝜂2𝜂5 𝑐̂ℎ 

(75) 

Note that, 𝜂1. 𝜂2.  𝜂5. 𝜂6. 𝜂7. 𝜂8. 𝛿1. 𝛿2. 𝛿5. 𝛿6. and 𝛽 are 

already defined in Eqs. (61 a-p), and Eqs. (13 a,b). 
 

4.6 Finite element analysis 
 

For the validation of the current analytical model, 

selected examples were modeled using ANSYS workbench 

finite element model. The models are created using ANSYS 

workbench design modeler module. These models are then 

meshed using ANSYS workbench mesh module. 

SOLID186 element is used for the beam and the solid tank, 

meanwhile, FLUID220 element is chosen to model the fluid 

inside the tank. Fine mapped mesh is utilized in order to 

obtain accurate results. Fig.5 shows the mesh used to obtain 

the results of the model in Table 5. The boundary 

conditions and the interface between the fluid and solid 

elements are then identified. ANSYS modal analysis 

module is used to evaluate the partially filled tank natural 

frequencies. 
 

 

5. Results and discussion 
 

In this section, the results of the proposed explicit 

general formulae and simplified formulae are presented. 

Initially, the results when the end boundary condition  

 

 

includes only the effect of single parameter such as linear or 

torsional spring. Then the results of the cases when there 

are multiple boundary conditions at the end of the beam is 

considered using the general frequency equations presented 

in Eqs. (60) and (65) in case of TBT and Eqs. (63) and (66) 

in case of EBT. 
 

 5.1 Application models are subjected to a single 
effect 

 

In this section, group (I) applications shown in Fig.4 and 

Table 2 are considered. It consists of five simple models as 

shown in Fig. 4(I), (from I (a) to I (e)). Each case is 

subjected to a single effect of either, free, 𝑍2 . Φ2. 𝑚̅ and 

 𝑝𝑎
2 . The values of design parameters for cases (I (b) to I 

(e)), 𝑍2 . Φ2.  𝑚̅ and  𝑝𝑎
2 are taken as, 100, 100, 5 and 2 

respectively. In the TBT models  𝑟2 = 0.0016 . The 

reduced simple explicit formulae, shown in Table 2 are used 

to evaluate the results shown in Table 3. As can be seen 

from Table 3, that  𝑍2. Φ2. 𝑚̅ 𝑎𝑛𝑑 𝑝2  has the greatest 

effect on the fundamental mode of vibration compared with 

the other four modes. For these applications, the flexibility 

element 𝑍2 has higher effect on 𝑓𝑟 than  Φ2, Meanwhile, 

its effect on 𝑓𝑟 is negligible at the fourth mode. Also, the 

effect of tensile axial load parameter 𝑝2on 𝑓𝑟  is very small 

at higher modes. The end mass 𝑚̅  has a great effect on 𝑓𝑟 

in the first mode and its effect decreases for higher modes. 

It should be noted that the present results are validated 

using published analysis by the authors (Farghaly and El-

Sayed 2016). 

 
5.2 Application models are subjected to double 

effect 
 
In this section, the second group (II) in Fig. 4 is 

considered. This group consists of three end mass loaded 

models as shown in Fig. 4 (II), (from II (a) to II (c)). The 

results of 𝜆𝑖  𝑎𝑛𝑑  𝑓𝑟  are estimated, considering 𝑚̅ = 5 

using either Eq. (60) or Eq. (65). In the first application, II 

(a), the end mass has double eccentricity parameters  

Table 3 The first four frequency parameters 𝜆𝑖 and their associated relative frequency  𝑓𝑟 = (𝜆𝑖/𝜆𝑟)2  using formulae 

shown in Table 5, for the models shown in Fig. 5 (I) 

Input design 

parameters 

 

𝑓𝑟 

 

𝜆𝑖 

TBT (𝑟2 = 0.0016) EBT 

𝜆1 𝜆2 𝜆3 𝜆4 𝜆1 𝜆2 𝜆3 𝜆4 

case I (a), 𝜆𝑖 1.8615 4.4798 7.1286 9.4252 1.8751 4.6941 7.8548 10.9955 

free 𝑓𝑟 0.9924 0.9543 0.9075 0.8572 1 1 1 1 

case I (b), 𝜆𝑖 3.5557 5.4020 7.3766 9.5136 3.6405 5.6159 8.0800 11.0748 

𝑍2 = 100 𝑓𝑟 1.8963 1.1508 0.9391 0.8652 3.7694 1.4313 1.0581 1.0145 

case I (c), 𝜆𝑖 2.3206 5.1689 7.7030 9.9277 2.3564 5.4708 8.5982 11.7256 

Φ2 = 100 𝑓𝑟 1.2376 1.1011 0.9807 0.9029 1.5770 1.3583 1.1982 1.1372 

case I (d), 𝜆𝑖 0.86649 3.8156 6.5151 8.8881 0.8700 3.9499 7.0825 10.2199 

𝑚̅ = 5 𝑓𝑟 0.4621 0.8129 0.8294 0.8083 0.2153 0.7208 0.8130 0.8639 

case I (e), 𝜆𝑖 1.2346 4.3063 7.0366 9.3548 1.2573 4.5282 7.7737 10.9414 

 𝑝2 = 2 𝑓𝑟 0.6584 0.9174 0.8958 0.8508 0.4496 0.9306 0.9795 0.9902 
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(𝑒̅𝑎, 𝑒̅𝑡). The beam diameter and length are 0.02 m and 1 m 

respectively. The beam material elastic modulus and density 

are 2.1 × 1011Pa and 7850 kg/m3 respectively. 
Several values of 𝑒̅𝑎 and 𝑒̅𝑡 are investigated, as shown 

in Table 4. As can be seen from Table 4, that, the modal 

frequencies, estimated using Eq. (65), are decreased with 

the increase in the axial eccentricity parameters (𝑒̅𝑎) and 

transverse eccentricity parameters (𝑒̅𝑡). These results are 

observed from cases (a) to (k). It is noted that, the results of 

the two cases (a) and (k) are verified using the FEM.  

The second and third application in group (II) are for 

elevated and suspended partially filled tank, see Fig.4. The 

following beam model inputs are used: 

 

 

 

Beam diameter =0.03m , 𝐿=1 m, 𝐸=2.1 × 1011Pa , 

𝜌 =7850 kg/m3 . The tank dimensions are: 𝑅 =0.15 m, 

𝐻=0.3 m and ℎ=0.2 m. the mass of the tank, fluid and 

beam are 𝑚𝑡 = 10.053 kg  , 𝑚𝑓 = 6.2832 kg and 

𝑚𝑏𝑒𝑎𝑚 = 5.5488 kg  respectively. The tank radius of 

gyration is 𝜅 = 0.12477 m and the tank center of mass is 

located at distance 𝑒𝑎 = 0.15 𝑚 from the end of the beam. 

𝑒𝑓 = 0.1 m in case of elevated tank and 𝑒𝑓 = 0.2 m in case 

of suspended tank. The axial load is 𝑃𝑓 = 𝑚𝑓 ∗ 9.81 =

61.64 N. 

 Table 5 shows the results due to the effect of partially 

filling the tank on the model natural frequency for both 

elevated and suspended tank situations. The model is solved 

Table 4 The first four natural frequencies  𝜔𝑖 for system with end mass of 𝑚̅ = 5  and is subjected to double effect of in-

plane eccentricity parameters (𝑒̅𝑎ˎ 𝑒̅𝑡) 

Eccentricity 
(𝑒̅𝑎ˎ 𝑒̅𝑡) 

Method 
𝜔𝑖 (Hz) 

𝜔1 𝜔2 𝜔3 𝜔4 

       

(a) (0.00, 0.00) 
Eq. (65)* 3.0403 62.6518 201.3563 418.8763 

FEM 3.2039 62.7040 201.2800 418.7900 

(b) (0.05, 0.00) Eq. (65) 2.8353 56.9052 183.2147 382.4469 

(c) (0.00, 0.05) Eq. (65) 3.0322 50.2694 121.1405 260.3442 

(d) (0.05, 0.05) Eq. (65) 2.8285 47.7747 127.0790 269.0598 

(e) (0.10, 0.00) Eq. (65) 2.6523 52.1494 169.7502 358.8845 

(f) (0.00, 0.10) Eq. (65) 3.0082 32.6426 98.7286 251.6450 

(g) (0.10, 0.10) Eq. (65) 2.6292 33.4830 105.0598 256.9155 

(h) (0.20, 0.00) Eq. (65) 3.2421 45.1991 153.5284 335.3363 

(i) (0.00, 0.20) Eq. (65) 2.9152 18.0708 93.0857 249.6480 

(j) (0.20, 0.20) Eq. (65) 2.2766 21.4252 97.2589 293.0364 

(k) (0.50, 0.50) 
Eq. (65) 1.5572 13.1026 94.1444 251.5693 

FEM 1.6362 13.1000 93.8240 249.9000 

* Eq. (60), can be used also.  

Table 5 the first four frequencies 𝜔𝑖  for system with end storage tank partially filled and in both elevated and suspended 

positions 

 𝜔𝑖(Hz) 

 Method 𝜔1 𝜔2 𝜔3 𝜔4 

(a) Rigid tank without fluid:      

elevated situation Eq. (65)* 5.9778 57.5347 175.876 400.4476 

 FEM 5.9834 57.4820 176.090 401.380 

      

suspended situation Eq. (65) 5.9778 57.5347 175.876 400.4476 

 FEM 5.9834 57.4820 176.090 401.380 

(b) Rigid tank with fluid:      

elevated situation Eq. (65) 4.8779 57.1996 172.0884 394.9390 

 FEM 4.8512 56.7320 171.5700 394.2000 

      

suspended situation Eq. (65) 4.6470 56.0677 175.372 400.4026 

 FEM 4.7873 57.1170 175.130 398.4200 

* Eq. (60) can be used also. 
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Fig. 6 The effect of the end mass eccentricity on the 

modal shapes for the cases of Table 4 

 

 

using the present model and using ANSYS workbench FE 

modal analysis module. As can be seen from Table 5, that 

the results of the present model are in good agreement with 

those obtained using FEM.   

The first four mode shapes for four selected cases are 

plotted in Fig.6. These cases are clamped from first end and 

with dimensionless end mass 𝑚̅ = 5  at the other end. 

These cases are selected with the following end conditions 

(𝑒̅𝑎 = 0, 𝑒̅𝑡 = 0)  , (𝑒̅𝑎 = 0.5, 𝑒̅𝑡 = 0) , (𝑒̅𝑎 = 0, 𝑒̅𝑡 = 0.5) 

and (𝑒̅𝑎 = 0.5, 𝑒̅𝑡 = 0.5). The natural frequencies for the 

first and fourth cases are listed in Table 4 case(a) and case(k) 

respectively. Fig. 6 shows the effect of the eccentricity on 

the beam mode shapes. The most significant observation is 

that the nodal points disappeared from the second mode 

except for the case where (𝑒̅𝑎 = 0, 𝑒̅𝑡 = 0) . These 

observations are validated using FEM in addition to the 

present analytical one.  
 
 

6. Conclusions 
 

A complex mathematical model of beam-column system 

is investigated and solved analytically based on the exact 

solution analysis. The model considers the case in which the 

double eccentric end mass is a rigid storage tank containing 

fluid. Both Timoshenko and Bernoulli-Euler beam bending 

theories are considered. Equation of motion, general 

solution and boundary conditions for the present system 

model are presented in dimensional and non-dimensional 

format. Symbolic and/or explicit formula of generalized 

frequency and mode shape equations are formulated. Most 

of the presented closed form frequency equations based on 

Timoshenko and Euler bending theory have not appeared in 

literature. Eight reduced models, representing significant 

simple applications, are tested. Selected cases are validated 

using FEM. The beam-column investigated in this work is 

of significant importance for many engineering applications, 

especially, in mechanical and structural systems. 
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Nomenclature 
 

𝐴 cross-section area of the beam. 

𝐴𝑓 fluid cross-section area. 

𝐵𝑎 Bending arm due to fluid. 

𝐵̅𝑒 
non-dimensional fluid bending arm for elevated 

tank. 

𝐵̅𝑠 
non-dimensional fluid bending arm for 

suspended tank. 

𝑒𝑎 axial eccentricity.  

𝑒𝑡 transverse eccentricity. 

𝑒𝑓 
Distance between fluid center of mass and point 

2 

𝐸 Young’s modulus of elasticity 

𝑓𝑟 relative frequency, (𝜆𝑖/𝜆𝑟)2 

𝐺 shear modulus of rigidity. 

ℎ Fluid level in tank 

𝐻 Height of tank 

𝐻, ℎ̅ 
non-dimensional variables defined by 
(𝐻 𝐿⁄ )ˎ  (ℎ/𝐿)ˎ respectively. 

𝐼 
moment of inertia of the beam cross section 

about the neutral axis.  

𝑘′ shear deformation shape coefficient. 

𝜅̅ non-dimensional radius of gyration. 

𝐿 length of the beam (between 1 & 2). 

𝑀𝑓𝑒 end moment due to elevated tank. 

𝑀𝑓𝑠 end moment due to suspended tank. 

𝑚 mass of the beam, 𝜌𝐴𝐿. 

𝑚𝑓 Mass of the fluid inside the tank. 

𝑚𝑡 mass of the tank. 

𝑚̅𝑓 𝑚𝑓 𝑚⁄   

𝑚̅𝑡 𝑚𝑡 𝑚⁄   

𝑃𝑎 axial load 

𝑃𝑓 axial load due to fluid inside the tank. 

𝑝𝑎
2 axial load parameter (𝑃𝑎  𝐿2 𝐸𝐼⁄ ). 

𝑝𝑓
2 Fluid axial load parameter (𝑃𝑓𝐿2 𝐸𝐼⁄ ). 

𝑟2 rotary inertia parameter (𝐼/𝐴𝐿2). 

𝑠2 shear deformation parameter (Er2/G𝑘́ ). 

𝑌 non-dimensional lateral deflection. 

𝑥, 𝑦, 𝜓 system co-ordinates of the beam. 

𝑍1, 𝑍2 
end stiffness parameter defined as  𝑘1𝐿3/𝐸𝐼 , 

and 𝑘2𝐿3/𝐸𝐼 respectively. 

𝛾𝑓 mass density of the fluid. 

𝛿 
distance between point of attachment 2 and 

spring location. 

𝛿1, 𝛿2 parameter defined as in Eq. (13 a, b).  

𝛿3, 𝛿4 parameters defined as in Eqs. (61 m, n). 

𝛿5, 𝛿6 parameters defined as in Eqs. (61 o, p). 

𝛿7, 𝛿8 parameters defined as in Eqs. (64). 

𝜁 non-dimensional beam length 𝑥/𝐿. 

𝜆4 frequency parameters,  𝜌𝐴𝐿4𝜔2/𝐸𝐼. 

𝜈 Poison’s ratio. 

𝜌 mass density of the beam material. 

𝜙1, 𝜙2 end rotational spring stiffness. 

𝛷1, 𝛷2 
End rotational spring parameter 𝜙1𝐿 𝐸𝐼⁄  and 

𝜙2 𝐿/𝐸𝐼 respectively. 

𝜓 slope due to bending. 

𝐿𝛹 non-dimensional slope due to bending. 

𝜔 circular frequency. 

  

Abbreviations 
 

𝑠̂ 𝑠̂h sin(a) sinh (b). 

𝑠̂ 𝑐̂ℎ sin(a) cosh (b). 

𝑐̂ 𝑠̂h cos(a) sinh (b). 

𝑐̂ 𝑐̂h cos(a) cosh (b). 

vs very small value = 10 E-12. 

vl very large value = 10 E+12. 

TBT Timoshenko’s beam theory. 

EBT Euler’s beam bending theory. 
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Appendix A 
 

AA.1 Useful relations 

𝑠𝑖𝑛 2𝜃  = 2 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 (76) 

2 sin 𝐴 sin 𝐵 = cos (𝐴 − 𝐵) − cos (𝐴 + 𝐵) (77) 

sin2 𝜃 cos2 𝜃 =
sin2 2𝜃

4
 (78) 

sin2 𝜃 cos 𝜃 = sin 𝜃 sin 2𝜃 = cos 𝜃 − cos 3𝜃 (79) 

∫
sin2 2𝜃

4

0

𝜋

  𝑑𝜃 = |
𝜃

2
−

sin 4𝜃

8
|

𝜋

0

 (80) 

∫ (cos 𝜃 − cos 3𝜃)
0

𝜋

 𝑑𝜃 = |sin 𝜃 −
sin 3𝜃

3
|

𝜋

0

 (81) 

∫ sin2 𝜃 𝑑𝜃
0

𝜋

= |
𝜃

2
−

sin 2𝜃

4
|

𝜋

0

 (82) 
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