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1. Introduction 
 

The problem of torsion of bars of solid or open cross-

sections is an old, but important topic in structural 

engineering since applied torques render the members to 

fail. Therefore, the torsion of prismatic bars with solid, 

closed and open cross-sections has been extensively 

investigated in the literature (Timoshenko and Goodier 

1956). Exact and approximate solutions have been found 

for various solid cross-sectional shapes using the method of 

separation of variables, direct integration method, 

conformal mapping and semi-inverse method (Timoshenko 

and Goodier 1956, Rekach 1977, Venkatraman and Patel 

1970). On the same line, the torsion of cylindrical bars with 

corrugated surface has also been studied Wang (Wang 

1994). In recent years, especially, thin walled steel sections 

subjected to twisting moments have received great attention 

since they are prone to large angles of twist. Closed form 

solutions for the torsional analysis of thin-walled beams 

under various loads and boundary conditions were 

presented in many papers (Seaburg and Carter 1997, 

Barsoum and Gallagher 1970, Erkmen and Mohareb 2006) 

and vice versa. The elastic-plastic fracture of functionally 

graded circular shafts in torsion has been investigated by 

Rizov (Rizov 2016). Strength case of pre-stressed concrete 

beams in torsion has been investigated by Karayannis and 

Chalioris (Karayannis and Chalioris 2010). Mazloom, et 

al.2015, studied the compressive, shear and torsional 

strength of beams made of self-compacting concrete. Yoon 

et al (2017), investigated non-linear torsional analysis of 3D 

composite beams using the extended St. Venant solution.  
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Taborda et al. (2018), studied the effective torsional 

strength of axially restricted RC beams. 

Nguyen et al. (2018), studied the buckling analysis of an 

axially loaded thin-walled open-section beam with 

functionally graded materials. The latest works on the 

subject are rather based on finite element formulation. 

However, the torsion of some open cross-sections can still 

be examined via analytical methods and judiciously 

produced handy formulae can be presented for everyday 

usage. The results can also be compared with those 

available in the literature.  Such a practically important 

problem is depicted in Figs. 1(a), (b). In the present paper, 

first, the analysis of a bar with open circular cross-section 

twisted by the applied torque is to be proceeded. Second, 

the stress analysis of a bar of the cross-section with 

corrugated surfaces under twisting moments is examined. 

 

1.1 Theory and analysis  
 

In order to find the governing equation, let us consider a 

solid cylindrical bar with an arbitrary cross-section. The bar 

is assumed to undergo a twisting moment applied at the end 

planes in Fig. (1). According to the displacement approach, 

it is assumed that the displacement components of the 

problem are proposed in the forms 

= − = =,    ,    ( , ) u yz v xz w x y  (1) 

where u, v correspond to x and y axes and Ψ is a called the 

warping function. Accordingly, strain-displacement 

relations and nonzero shear stresses are shown to be 

    
 =  +  =  −   

   
,       

yz xz
x y

y x
 

(2a) 

and 
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 =  +  =  −   
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yz xz
G x G y

y x
 

(2b) 

If Eqs. (2b) are used in the stress-equilibrium equations, 

one obtains  

  =2 0
 

(3) 

On the other hand, if it is assumed that the stresses are 

derivable from a stress function ϕ such that  

 
 = −  =

 
,    

yz xzx y
 

(4) 

The equilibrium relation is satisfied. Taking  

 
 = −  =

 

1 1
,    

yz xzG x G y
 

(5) 

and putting into Eq.(2), one finds  

2 2 G  = − 
 

(6) 

Eq.(6) is to be solved under the boundary condition ϕ=0. 

In the present study, after solving the first part of the 

problem, we obtain the approximate analytical solution for 

the cross-section of corrugated boundaries using 

perturbation method.   

In the case of corrugated surfaces, the inner and outer 

boundaries are assumed to have corrugation defined by  

= +   = + 

= +  + = + 

1

2

(Inner) sin( )    

(Outher) sin( )

r a h i a h S

r b l m b l S
 

(7) 

Here, i, m are integers, φ is the phase shift, a, b are the 

inner and outher radii, h, l are non-negative numbers and ε 

is a small number. These corrugations may be imprecise 

machining or may be intentional.  

In terms of Prandtl stress function ϕ, the torsion problem 

is defined as  

2 2 G  = − 
 

(8) 

 =  =

 =  =

0 ,         ;      0 ,      on  

0 ,         ;      0 ,      on  

on C D

on A B
 

where G is the shear modulus of elasticity, α is the angle of 

twist per unit length. Recall that the stress function is zero 

both on the inner and outer boundary since the region is 

simply connected.  
 

1.2 The case of circular open cross-section 
 

The poisson equation (Eq.8) must be solved such that 

the stress function ϕ is zero on the boundaries A,B,C and D. 

In order to find an explicit solution satisfying Eq.(8) and the 

stress function ϕ must have the form  

0

2 1
( , ) ( )sin( ),            n

n

n
r f r

k



=

+
  =   =

. 

(9) 

 

Fig. 1 A Bar of non-circular cross-section subjected to 

twisting moment T 

 

 

(a) 

 

(b) 

Fig. 2 a) Open circular cross-section                  

b) Open corrugated cross-section 
 

 

where k is a real number. Recall that the boundary 

conditions on A and B are automatically satisfied by Eq. (9). 

We expand the right –hand side of the Eq. (8) in the interval 

0 ≤ θ < kπ into Fourier sinus series  

0

8 1
2 sin( ),  

2 1n

G
G

n



=

− 
−  = 

 +


 

(10) 
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Substituting Eqs. (9) and (10) into Eq. (8) yields  

2 2

2 2

1 8

(2 1)
n n

n

d f df G
f

dr r dr r n

 − 
+ − =

 +
 

(11) 

Here, the form of Laplace operator 2 in polar 

coordinates is used. It can be readily shown that the 

homogenous solution (fn(r))h and the proper solution (fn)p of 

Eq.(11) are given by  

2( ) ,       ( ( ))n n n n p nf r A r B r f r C r −= + =
 

(12) 

where An, Bn are undetermined constants and Cn is given by  

8 1
,  

(2 1) (2 )(2 )
n

G
C

n

− 
=
 + − +

 

(13) 

Hence, the general solution of Eq.(11) is written  

2( )n n n nf r A r B r C r −= + +
 

(14) 

In order to obtain the values of An, Bn, recall that the 

boundary conditions 
=


r a

= 0 and 
=


r b

= 0 require that 

fn(a)=0 and fn(b)=0. Using these conditions in Eq. (14) yield  

2
2

2

1

,

1

n n

b
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a
A C

b

a

+

−



  
−  

  
=

  
−   
    

2
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1

n n

b b
a b

a a
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b
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−    

    
=

  
−   
    

(15) 

Substituting Eq.(14) into Eq.(9) , we have  

( )2
0

0

( , ) sin( ),  n n n
n

r A r B r C r


 −

=

  = + + 
 

(16) 

Stresses τzθ and τzr can be written as 

( )
0

2 cos( )z n n n
n

A r B r C r
r


 −



=

  
 = − = −  + +     


 

(17) 

and 

( )2

0

1 1
s( )zr n n n

n

A r B r C r co
r r


 −

=

  
 = = + +     


 

(18) 

respectively. Using Eq.(16), twisting moment is obtained as  

( )2
      

0
0

2 2

2 sin( )

A A

z

R R

r b k

n n nr a
n

M dxdy rdrd

A r B r C r rdrd
 = = 

 −

= =
=

=  =  

= + +  

 

  
 

(19a) 

or  

( )

( ) ( )( )

+ +



= − −

 
− +  + = 

   − + − 
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z
n n n
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M
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b a b a

 

(19b) 

Considering the expressions for An, Bn, Cn and factoring 

α in Eq.(19b), the unit angle of twist α can be written as  

/
z z

z z

M M

M M
 = =


 

(20) 

Here, �̅�𝑧 is obtained by factoring α from Eq.(19b).  

The variation Mz/Gα with the ratio b/a have been plotted 

in Figs.3-8 for various values of k’s and a’s. The number of 

n in all series below was taken n = 40. This figure is enough 

for the series to converge. It is obvious that Mz/Gα 

increases with increasing values of the thickness and the 

inner radius a. As expected, Mz/Gα also increases for 

increasing values of k. In fact, the increase in k(0≤ k ≤ 2) or 

the ratio b/a corresponds to increase in the area of the cross-

section. Therefore, the increase in the ratio 0 Mz/Gα is 

expectable. 

 

 

 
Fig. 3 The variation of Mz/Gα with b/a for various values 

of a in the case of circular open cross section: k = 2  

 

 
Fig. 4 The variation of Mz/Gα with b/a for various values 

of a in the case of circular open cross section: k = 2  
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Fig. 5 The variation of Mz/Gα with b/a for various values 

of a in the case of circular open cross section: k = 4/3 

 

 
Fig. 6 The variation of Mz/Gα with b/a for various values 

of a in the case of circular open cross section: k = 1 

 

 
Fig. 7 The variation of Mz/Gα with b/a for various values 

of a in the case of circular open cross section: k = 4/3 
 
 

Figs. (9) and (10) show the variations of τzθ/Gα τzθ/Gα 

with the angle θ for various values of the inner radius a’s 

and k’s at the inner surface of the cylinder. τzθ/Gα obviously 

increases with decreasing values of k and a. It is clear that 

τzθ/Gα becomes zero at the angles θ=0 and θ=kπ. In 

Figs.(11) and (12), τzr/Gα versus θ is plotted for different 

values of a’s and the thickness t. τzr/Gα obviously increases 

with decreasing value of a while it increases with increasing 

value of the t. 

 

 
Fig. 8 The variation of Mz with b/a for various values of1 

a in the case of circular open cross section: k = 1 

 

 
  (rad) 

Fig. 9 The variation of τzθ/Gα with the angle θ for various 

values of a in the case of circular open cross section: r = 

a, k = 2 
 

 
  (rad) 

Fig. 10 The variation of τzθ/Gα with the angle θ for various 

values of a in the case of circular open cross section: r = 

a, k = 4/3 
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  (rad) 

Fig. 11 The variation of τzr/Gα with the angle θ for various 

values of a and the thickness t in the case of circular open 

cross section: r = a, k = 4/3 

 
  (rad) 

Fig. 12 The variation of τzr/Gα with the angle θ for various 

values of a and the thickness t in the case of circular open 

cross section: r = a, k = 2 
 
 

1.3 The case of corrugated boundary surface 
 

In this case, assuming small values for hε and lε, we can 

expand the stress function ϕ(r,θ) into a perturbation series as  

2
0 1 2( , ) ( , ) ( , ) ( , ) ...r r r r  =   +  +   +

 
(21) 

Substituting Eq. (21) into Eq.(8) yields a set of partial 

differential equations in the following forms:  

2
0 2 ,G  = 

 
(22a) 

2
1 0,  =

 
(22b) 

2
2 0,     ...  =

 
(22c) 

Here, ϕ0 is the stress function corresponding to the case 

of circular open cross-section whose analysis has been 

carried out in Section.1.1. 

Since the stress function is still zero on the corrugated 

boundaries, we can write  

0
r a h S= + 

 =
 and  

0
r b l S= + 

 =
 

(23) 

The stress function can be expanded into Taylor series 

around the points r1=a and r2=b, respectively:  

2 2 2 2

2
0 ...

2!r a h S r a

a a

h S
h S

r r= +  =

   
=  =  +  + +

 
 

(24) 

and  

2 3 2 2

2
0 ...

2!r b l S r b

b b

l S
l S

r r= +  =

   
=  =  +  + +

 
 

(25) 

Inserting Eq. (21) into Eqs. (24) and (25) and 

rearranging terms give  

=
 =  +    +   + 

 
+   +   +   + + 

 

1 0

2 2 2

2 1 0

0 ( , ) ( , ) ...

1
( , ) ( , ) ( , ) ... ...

2

rr a

r rr

a hS a

a hS a h S a
 (26) 

and  

=
 =  +    +   + 

 
+   +   +   + + 

 

1 0

2 2 2

2 1 0

0 ( , ) ( , ) ...

1
( , ) ( , ) ( , ) ... ...

2

rr b

r rr

b lS b

b lS b l S b
 (27) 

In order that Eqs. (26) and (27) become valid for 

arbitrary values of ε, we must have  

0
1( , ) ( , )a hS a

r


  = − 

 . 
(28a) 

2
2 2 01

2 2

1
( , ) ( , ) ( , )

2
a hS a h S a

r r

 
  = −  − 

  . 

(28b) 

and 

0
1( , ) ( , )b lS b

r


  = − 

  

(29a) 

2
2 2 01

2 2

1
( , ) ( , ) ( , )

2
b lS b l S b

r r

 
  = −  − 

   

(29b) 

Two sets given by Eqs. (28) and Eqs.(29) are the 

boundary conditions for ϕ1,ϕ2,ϕ3,… at the inner and outer 

boundaries, respectively.  

In order to determine ϕ1(r,θ), we must seek the solution 

of Eq.(22b) subjected to the conditions Eqs.(28a) and (29a). 

Substituting the expressions for ϕ0(a,θ) into Eq.(28a) and 

Eq.(29a), we obtain  

( )


− −−

=

  = −  − +  =   1 1

1 0
0

( , ) 2 sin( ) sin( ),  
n n n

n

a hS A a B a C a
 
(30) 

and  

( )1 1
1 0

0

( , ) 2 sin( ) sin( ),  n n n
n

b lS A b B b C b


− −−

=

  = −  − +  =  
 
(31) 
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where γ0 and 0  are defined by  

( )1 1
0

0

2  n n n
n

hS A a B a C a


− −−

=

 = −  − +
 

(32) 

( )1 1
0

0

2  n n n
n

lS A b B b C b


− −−

=

 = −  − +
 

(33) 

Taking the forms of boundary values into account, we 

seek the approximate analytical solution of Eq.(22b) in the 

form  

1
0

2 1
( , ) ( )sin( ),            n

n

n
r g r

k



=

+
  =   =

 

(34) 

Recall that Eq. (34) also satisfies the condition of 

ϕ1(r,0)=0 and ϕ1(r,kπ)=0. Inserting Eq.(34) into Eq.(22b) 

yields  

2 2

2 2

1
0n n

n

d g dg
g

dr r dr r


+ − =

 

(35) 

The form of Eq.(35) is the same as with the left side of 

Eq.(11). Hence, the solution has the form  

( ) ,   n n ng r A r B r −= +
 

(36) 

where nA , nB  are yet to be determined. Comparing 

Eq.(34) and the boundary conditions on ϕ1(r,θ) given by 

Eqs.(28a),(29a) , we conclude that the boundary conditions 

on gn(r) must be 

0( )ng a = 
 

(37) 

0( )ng b = 
 

(38) 

Using Eqs.(36), (37) and (38) ,  nA , nB  are obtained 

as  

( )0 02
0 2 2n

a b
A a a

a b

− −

− − 

−  − 

  − 
=  −  

 −
   

(39) 

( )
( )

0 0

2 2n

a b
B

a b

− −

−  − 

 − 
=

−
 

(40) 

Now, ϕ1(r,θ) is written as  

( )


 −

=

  = +     1
0

( , ) sin( ),    0 k
n n

n

r A r B r  (41) 

Inserting Eqs. (16) and (41) into Eq.(21) , we finally 

obtain  

( )


 −

=

  =  + 

= +  + +      

0 1

0

( , )

( ) ( ) sin( ),     0 k
n n n n

n

r

A A r B B r

 
(42) 

Here, only first order terms have been kept, and higher 

order terms have been omitted. Stresses τzθ and τzr in the 

present case can be written as   

( )

( )

−


 −−
=

 +  
  = − = − 
  − +  +
 


1

1
0

sin( )
2

n n

z
n n n n

A A r

r B B r C r

 
(43) 

and 

( )

( )




−
=

  + 
   = =  

   + +  +
  

 2
0

1 1
s( )

n n

zr
n n n n

A A r
co

r r B B r C r
 

(44) 

Utilizing Eq.(19) for the  resultant applied torque  

over the solid cross-section and Eq.(42) , we obtain  

( )

( ) ( )( )

+ +



= − −

 
−  + = 

   + − + − 
− 



2 2

0 2 2 4 4

14

1 4

     

s

z
n s n

A
b a

M
B C

b a b a

 

(45) 

Here, As and Bs are given by  

s n nA A A= +
, s n nB B B= +

 
(46) 

The variations of τzθ/Gα with the angle θ at the inner 

surface of the cross section are plotted in Figs. 13,14,15,16 

and (17) for various values of the parameters. The influence 

of the corrugation is depicted on each figure. The number of 

n was again taken n = 40 in calculating the series. Figs.(13) 

and (14) show the comparison of stresses τzθ/Gα between 

the corrugated and un-corrugated surfaces. These figures 

reveal that τzθ/Gα increases with decreasing value of a’s.  

We also observe that the peak values of the stress τzθ/Gα 

decreases with increasing values of k’s. τzθ/Gα is influenced 

little by the value of ε, as seen in Figs.(15) and (16). 

However, for larger values of ε, the corrugation can 

influence the stresses at an appreciable rate. Figs.(18), (19) 

depict the variation of τzr/Gα with the angle θ at the inner 

surface for various values of the variables. The stress values 

increase for increasing values of a’s. It is clear that the 

stresses decrease with corrugation. 

 

 
  (rad) 

Fig. 13 The variation of τzθ/Gα with the angle θ: a=0.25, t 

= 0.1a, hS = 0.05, lS = 0.05, k = 4/3, r = a 
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  (rad) 

Fig. 14 The variation of τzθ/Gα with the angle θ: a = 0.15, t 

= 0.1a, hS = 0.05, lS = 0.05 , k = 4/3, r = a 

 

 
  (rad) 

Fig. 15 The variation of τzθ/Gα with the angle θ: a = 0.15, t 

= 0.1a, hS = 0.05, lS = 0.05 , k = 4/3 , r = a 

 

 
  (rad) 

Fig. 16 The variation of τzθ/Gα with the angle θ: a=0.25, t 

= 0.1a, hS = 0.05, lS = 0.05, k=2, r=a 

 

 
  (rad) 

Fig. 17: The variation of τzθ/Gα with the angle θ: a = 0.15, 

t = 0.1a, hS = 0.05, lS = 0.05, k = 2, r = a 

 

 
  (rad) 

Fig. 18 The variation of τzr/Gα with the angle θ: a = 0.15, t 

= 0.1a, hS = 0.05, lS = 0.05, k = 4/3, r = a, 

 

 
  (rad) 

Fig. 19 The variation of τzr/Gα with the angle θ: a = 0.25, t 

= 0.1a, hS = 0.05, lS = 0.05, k = 4/3, r = a 
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2. Results and discussion 
 

We have analyzed the stress distribution for the problem 

of torsion of a bar with the cross section of corrugated 

boundaries. To do with, first, the problem of open circular 

cross section has been solved. Later, first order 

contributions have been added to the solution using 

perturbation method. However, without having any 

difficulty, second order contributions can also be added to 

the solution. It is estimated that these second contributions 

will be of small value. The method developed has been 

applied on a specific example, and the effect of corrugation 

at the inner surface of the cross section has been observed. 

It has been observed that the stress values in the case of 

corrugated surfaces can appreciably be influenced by the 

corrugation and the values of variables. Since the analytical 

expressions have been obtained in the present work, every 

kind of effect can be observed by using the results of the 

present study. By changing the values hS, l𝑆̅, ε, i, m and φ, 

different types of practically important shapes can be 

obtained. By choosing the thickness too small, analytical 

results for the thin walled open cross-section under twisting 

moments can be obtained and readily compared with those 

of numerical methods. Using, for example, Eqs.(17) and 

(18) and recalling the relation τ =Gαr for the case of 

circular solid section,  one can compare the present results 

with those of circular solid cross- section, and see the 

deviation of the results in the case of open cross-section. As 

a future work, it is estimated that the present analysis can 

possibly be applied to the axially loaded plates with a 

central hole of corrugated boundary.  
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