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1. Introduction 
 

Numerical methods are important tools for solution of 

complex problems in various branches of science and 

engineering. In structural dynamics problems, numerical 

methods are employed in order to obtain stresses, strains or 

displacements of a system subject to an arbitrary load or 

initial condition. In this context, the finite element method 

may be used for the spatial discretization, whereas the 

dynamic response may be obtained through two main 

approaches. The first approach applies the mode 

superposition method, and the final response is obtained as 

a sum of respective vibration modes. In the second 

approach, referred as direct integration, no transformation 

of the equations into a different form is applied (Bathe 1996) 

and therefore the response is directly computed through 

time-marching or step-by-step methods. The literature 

reports many classical implicit (Houbolt 1950, Newmark 

1959, Park 1975, Hilber et al. 1977, Wood et al. 1980, 

Mohammadzadeh et al. 2017) and explicit (Tamma and 

Namburu 1990, Chung and Lee 1994, Hulbert and Chung 

1996, Shojaee et al. 2011, Noh and Bathe 2013, Wen et al. 

2014, Soares 2016) methods for structural dynamics 

analysis. For a comprehensive review, see Dokainish and 

Subbaraj (1989), Subbaraj and Dokainish (1989), Tamma et 

al. (2000) and Fung (2003). 

For structural dynamics problems, numerical damping 

may become an important feature of time-marching  
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techniques, since the spatial discretization introduces 

spurious high frequencies modes into the analysis. Thus, 

controllable dissipation should suppress the participation of 

high frequencies modes without interfere in the low 

frequencies modes, which properly generate the solution 

response. In this context, several methods have been 

proposed (Bathe and Baig 2005, Yin 2013, Chang 2014, 

Chang et al. 2015, Shojaee et al. 2015, Soares 2011,2017, 

Rezaiee-Pajand and Karimi-Rad 2018) in order to introduce 

numerical dissipation of spurious high frequencies. The 

classical Newmark method is widely used and accepted 

both in the practical engineering and scientific community, 

however, it is only first order accurate when numerical 

damping is activated. 

Following the framework presented by Soares (2015, 

2017), a novel implicit time integration procedure is 

proposed here. In this new method, the user is able to select 

which elements are going to receive numerical dissipation 

and which are not. In order to do so, the user provides an 

extra property (as the physical properties of the model are 

provided) for each element of the spatial discretization (the 

so-called numerical dissipation parameter, which will be 

referred here as 𝑎𝑒), enabling controllable, locally-defined, 

numerical dissipation to be considered into the analyses. 

Considering globally (Soares 2016, Soares and 

Großeholz 2018) and locally (Soares 2017, 2019a, 2019b, 

2019c) defined adaptive time-marching procedures is not 

new, regarding structural dynamics and wave propagation 

analysis, as well as other transient applications (Soares and 

Wrobel 2019). However, in this work, a novel methodology 

is proposed, in which the user locally defines the properties 

of the time-solution procedure as he/she defines the 

standard properties of the elements that are spatially 

discretizing the model. Thus, here, the user is able to select 
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in which elements of the model numerical damping is to be 

considered (as well as its intensity) and the technique is 

then adaptively developed according to this definition.  

 
 
2. Governing equations and the new time marching 
procedure 
 

The governing system of equations that describes a 

dynamic model is given by (Clough and Penzien 1995): 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝑼(𝑡) = 𝑭(𝑡), (1) 

where 𝑭(𝑡)  stands for the load vector; 𝑴 , 𝑪  and 𝑲 

stand for mass, damping and stiffness matrices, 

respectively, and 𝑼(𝑡), �̇�(𝑡) and �̈�(𝑡) are displacement, 

velocity and acceleration vectors, respectively. The initial 

conditions of the model are given by: 

𝑼0 = 𝑼(0), (2a) 

 �̇�0 = �̇�(0), (2b) 

where 𝑼0 and �̇�0 stand for initial displacement and initial 

velocity vectors, respectively. 

Considering a constant time-step Δ𝑡 and the integration 

of Eq. (1) with respect to time, at the element level 

(represented with subscript 𝑒) one may write: 

𝑴𝑒 ∫ �̈�𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 + 𝑪𝑒 ∫ �̇�𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 +

𝑲𝑒 ∫ 𝑼𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 = ∫ 𝑭𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡.  

(3) 

The integrals in the left-hand side of Eq. (3) may be 

calculated as (Soares 2015): 

∫ �̈�𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 = �̇�𝑒
𝑛+1 − �̇�𝑒

𝑛,  (4a) 

∫ �̇�𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 = 𝑼𝑒
𝑛+1 − 𝑼𝑒

𝑛 , (4b) 

∫ 𝑼𝑒(𝑡)
𝜏+

𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 = 𝛥𝑡𝑼𝑒
𝑛 +

1

2
𝛼𝑒

𝑛𝛥𝑡2�̇�𝑒
𝑛 +

1

2
𝛾𝑒

𝑛𝛥𝑡2�̇�𝑒
𝑛+1, (4c) 

where 𝛼𝑒
𝑛 and 𝛾𝑒

𝑛 are the parameters of the new method, 

computed for each element at each time step, and the 

superscripts 𝑛 and 𝑛 + 1 represent the time step of the 

variables. The displacement 𝑼𝑛+1 can be defined as: 

𝑼𝑛+1 = 𝑼𝑛 +
1

2
𝛥𝑡(�̇�𝑛 + �̇�𝑛+1). (5) 

Considering Eqs. (4)-(5), Eq. (3) may be rewritten as the 

simple following recursive relation: 

(𝑴𝑒 +
1

2
𝛥𝑡𝑪𝑒 +

1

2
𝛾𝑒

𝑛𝛥𝑡2𝑲𝑒) �̇�𝑒
𝑛+1 = ∫ 𝑭𝑒(𝑡)

𝜏+
𝛥𝑡

2

𝜏−
𝛥𝑡

2

𝑑𝑡 +

𝑴𝑒�̇�𝑒
𝑛 −

1

2
𝛥𝑡𝑪𝑒�̇�𝑒

𝑛 − 𝑲𝑒 (𝛥𝑡𝑼𝑒
𝑛 +

1

2
𝛼𝑒

𝑛𝛥𝑡2�̇�𝑒
𝑛).  

(6) 

Thus, after assemblage is carried out, it is possible to 

compute velocities following Eq. (6) and then 

displacements may be evaluated following Eq. (5). The first 

important feature of the proposed technique is that Eqs. (5)-

(6) are based only on displacements and velocities relations 

and therefore no computation of accelerations is required. 

Hence, the new method is truly self-starting, eliminating 

any need of initial procedures, such as computation of 

initial accelerations or the computation of multistep initial 

values. 

The integration parameters 𝛼𝑒
𝑛  and 𝛾𝑒

𝑛  are locally 

defined and computed based on the properties of the 

element, the time-step Δ𝑡 and the value of the numerical 

dissipative property 𝑎𝑒. Since only linear analysis are going 

to be considered in this paper, these parameters remain the 

same along time (i.e.,  𝛼𝑒
𝑛 = 𝛼𝑒 and 𝛾𝑒

𝑛 = 𝛾𝑒). The value 

of the numerical dissipative property defines the amount of 

numerical damping that will be introduced in each element. 

The strategy of the present method is to let the user select 

the structural element in which numerical dissipation is to 

be activated. In order to achieve this, the user will provide 

the numerical dissipation property 𝑎𝑒  to each element. 

Wherever numerical dissipation is to be considered, 𝑎𝑒 > 0 

will be adopted, otherwise 𝑎𝑒 = 0 will be provided. Then, 

if 𝑎𝑒 = 0, the following definition for the time integration 

parameters are considered: 

𝛾𝑒 =
1

2
tanh (

1

4
𝜔𝑒

𝑚𝑎𝑥𝛥𝑡), (7a) 

𝛼𝑒 = 1 − 𝛾𝑒 . (7b) 

Otherwise, if  𝑎𝑒 > 0, 𝛾𝑒 and 𝛼𝑒 are given by: 

𝛾𝑒 =
1

2
+

3

2
tanh(𝑎𝑒𝜔𝑒

𝑚𝑎𝑥𝛥𝑡), (8a) 

𝛼𝑒 = 2(2𝛾𝑒)
1

2 − 𝛾𝑒 − 1, (8b) 

where 𝜔𝑒
𝑚𝑎𝑥 stands for the maximum natural frequency of 

the element, computed as the square root of the highest 

eigenvalue of the element, considering the generalized 

eigenvalue problem of the local matrices 𝑴𝑒 and 𝑲𝑒: 

𝑲𝑒𝜙𝑒 = 𝜔𝑒
2𝑴𝑒𝜙𝑒. (9) 

Eq. (7) is proposed in order to obtain reduced period 

elongation errors (for further details, see Soares (2017)). It 

is important to highlight that Eq. (8) converges to 𝛾𝑒 = 2 

and 𝛼𝑒 = 1 for large 𝑎𝑒  values. In this case, maximum 

numerical dissipation is introduced in the element. In the 

next section, the properties of the proposed technique are 

presented and further discussed. 

 

 

3. Properties of the method 
 

In order to discuss the properties of the proposed 

technique, the equation of motion of a single degree of 

freedom model is considered: 

�̈� + 2𝜉𝜔�̇� + 𝜔2𝑢 = 0, (10) 

where 𝜔  and 𝜉  stand for the natural frequency of the 

model and the damping ratio, respectively. Then, taking into 
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account Eq. (10) and the proposed method, the following 

recursive relation can be written: 

[𝑢𝑛+1

�̇�𝑛+1] = [
𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑢𝑛

𝑢�̇�
] = 𝑨 [

𝑢𝑛

𝑢�̇�
], (11) 

where 𝑨 stands for the amplification matrix, whose terms 

can be described as: 

𝐴11 =
1+𝜉𝜔Δ𝑡+

1

2
(𝛾−1)𝜔2Δ𝑡2

1+𝜉𝜔Δ𝑡+
1

2
𝛾𝜔2Δ𝑡2

, (12a) 

𝐴12 =
[1+

1

4
(𝛾−𝛼)𝜔2Δ𝑡2]Δ𝑡

1+𝜉𝜔Δ𝑡+
1

2
𝛾𝜔2Δ𝑡2

, 
(12b) 

𝐴21 =
[−𝜔2Δ𝑡2](

1

Δ𝑡
)

1+𝜉𝜔Δ𝑡+
1

2
𝛾𝜔2Δ𝑡2

, 
(12c) 

𝐴22 =
1−𝜉𝜔Δ𝑡−

1

2
𝛼𝜔2Δ𝑡2

1+𝜉𝜔Δ𝑡+
1

2
𝛾𝜔2Δ𝑡2

. 
(12d) 

 
3.1 Convergence 
 
The expansion in Taylor series of the analytical 

amplification matrix is given by: 

𝐴11
𝑎 = 1 −

1

2
𝜔2Δ𝑡2 +

1

3
𝜉𝜔3Δ𝑡3 + 𝑂(Δ𝑡4), (13a) 

𝐴12
𝑎 = Δ𝑡 − 𝜉𝜔Δ𝑡2 −

1

6
(1 − 4𝜉2)𝜔2Δ𝑡3 +

𝑂(Δ𝑡4), 

(13b) 

𝐴21
𝑎 = −𝜔2Δ𝑡 + 𝜉𝜔3Δ𝑡2 +

1

6
(1 −

4𝜉2)𝜔4Δ𝑡3 + 𝑂(Δ𝑡4), 

(13c) 

𝐴22
𝑎 = 1 − 2𝜉𝜔Δ𝑡 − (

1

2
− 2𝜉2)𝜔2Δ𝑡2 +

2

3
(𝜉 −

2𝜉3)𝜔3Δ𝑡3 + 𝑂(Δ𝑡4). 

(13d) 

On the other hand, the expansion in Taylor series of the 

amplification matrix of the proposed method is given by: 

𝐴11 = 1 −
1

2
𝜔2Δ𝑡2 +

1

2
𝜉𝜔3Δ𝑡3 + 𝑂(Δ𝑡4), (14a) 

𝐴12 = Δ𝑡 − 𝜉𝜔Δ𝑡2 − (
1

4
(𝛾 + 𝛼) − 𝜉2)𝜔2Δ𝑡3 +

𝑂(Δ𝑡4), 

(14b) 

𝐴21 = −𝜔2Δ𝑡 + 𝜉𝜔3Δ𝑡2 + (
1

2
𝛾 − 𝜉2)𝜔4Δ𝑡3 +

𝑂(Δ𝑡4), 

(14c) 

𝐴22 = 1 − 2𝜉𝜔Δ𝑡 − (
1

2
(𝛾 + 𝛼) − 2𝜉2)𝜔2Δ𝑡2 +

(
1

2
(3𝛾 + 𝛼)𝜉 − 2𝜉3)𝜔3Δ𝑡3 + 𝑂(Δ𝑡4). 

(14d) 

By comparing the analytical amplification matrix 

expansion in Taylor series (Eq. (13)) with the amplification 

matrix expansion in Taylor series of the proposed method 

(Eq. (14)), one may observe that the new procedure is 

second order accurate when 𝛾 + 𝛼 = 1, which is always 

the case when 𝑎𝑒 = 0, as Eq. (7(b)) indicates. 

The expansion in Taylor series of the amplification 

matrix of the proposed method when the numerical 

damping is activated (𝑎𝑒 > 0) – i.e., considering Eqs. (8) 

– is given by: 

𝐴11 = 1 −
1

2
𝜔2Δ𝑡2 +

1

2
𝜉𝜔3Δ𝑡3 + 𝑂(Δ𝑡4), (15a) 

𝐴12 = Δ𝑡 − 𝜉𝜔Δ𝑡2 − (
1

4
− 𝜉2)𝜔2Δ𝑡3 + 𝑂(Δ𝑡4), (15b) 

𝐴21 = −𝜔2Δ𝑡 + 𝜉𝜔3Δ𝑡2 + (
1

4
− 𝜉2)𝜔4Δ𝑡3 +

𝑂(Δ𝑡4), 

(15c) 

𝐴22 = 1 − 2𝜉𝜔Δ𝑡 − (
1

2
− 2𝜉2)𝜔2Δ𝑡2 +

(−
3

2
𝑎𝑒𝜔𝑒

𝑚𝑎𝑥𝜔2 + (𝜉 − 2𝜉3)𝜔3)Δ𝑡3 + 𝑂(Δ𝑡4), 

(15d) 

which, by comparing with the analytical amplification 

matrix expansion in Taylor series, indicates that the method 

is also second order accurate when numerical dissipation is 

inserted.  

It is important to highlight that the numerical dissipation 

is locally defined considering the proposed technique. As 

so, the user may select in which elements numerical 

damping is to be activated. Thus, in opposite to standard 

methods, here, numerical damping may be locally defined, 

allowing parts of the global model to be analyzed 

considering different intensities of numerical damping. As a 

consequence, numerical dissipation can be introduced just 

at some parts of the system, enabling more accurate 

computations. 

 

3.2 Stability 
 

A method is considered stable when matrix 𝑨 does not 

amplify errors as time-stepping advances in time. The 

conditions required in order to assure stability are (Hughes 

1987): (i) the spectral radius of matrix 𝑨 is less or equal to 

one (𝜌(𝑨) ≤ 1) ; (ii) eigenvalues of 𝑨  of multiplicity 

greater than one are strictly less than one in modulus. 

The spectral radius of 𝑨 is defined as the maximum 

absolute eigenvalue of 𝑨 . The eigenvalues of the 

amplification matrix of the proposed method are given by: 

𝜆1,2(𝐀) = 𝐴1 ± (𝐴1
2 − 𝐴2)

1

2, (16) 

where  𝐴1 is the half trace of the matrix 𝑨: 

𝐴1 =
1+

1

4
(−𝛾−𝛼−1)Ω2

1+𝜉Ω+
1

2
𝛾Ω2

, (17) 

and  𝐴2 is the determinant of matrix 𝑨: 

𝐴2 =
1−𝜉Ω+

1

2
(1−𝛼)Ω2

1+𝜉Ω+
1

2
𝛾Ω2

, (18) 

where Ω is the sample frequency, defined as: 

Ω = 𝜔Δ𝑡. (19) 

The spectral radius behavior of matrix 𝑨 demonstrates 

that the method may be unconditionally stable, 

conditionally stable or unconditionally unstable, according 

to the values computed for the time integration parameters 

𝛾𝑒 and 𝛼𝑒. Those regions of stability are depicted in Fig. 1.  
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Fig. 1 Spectral radius behavior and regions of stability for 

the 𝛼 − 𝛾 plane 
 

 

As one may observe, when 𝑎𝑒 = 0  is adopted, the 

method is located in the line AB, which is a conditionally 

stable region, on the border of the unconditionally unstable 

domain. Point A basically replicates the Central Difference 

Method (𝛾𝑒 = 0 and 𝛼𝑒 = 1), and point B corresponds to 

the Trapezoidal Rule ( 𝛾𝑒 = 0.5  and 𝛼𝑒 = 0.5 ). It is 

important to highlight an important feature of the new 

method: once the Central Difference Method (CDM) 

presents negative period elongation and the Trapezoidal 

Rule (TR) presents positive period elongation, the new 

method presents lower period elongation errors, since it is 

located between the CDM and the TR when numerical 

dissipation is not introduced in the analysis. Thus, the new 

technique is always more accurate than the Trapezoidal 

Rule, when 𝑎𝑒 = 0 is considered.  

As it is above described, the method is conditionally 

stable when numerical dissipation is not activated. In this 

case, the critical sampling frequency is given by: 

Ω𝑐 = 2(𝛼 − 𝛾)
−1

2 , (20) 

which means that the method is stable when Ω𝑐 ≥ Ω, and 

unstable otherwise. The integration parameters 𝛾𝑒 and 𝑎𝑒 

are computed (Eqs. (7)) based on the maximum sampling 

frequency of the element Ω𝑚𝑎𝑥. Since Ω𝑐 > Ω𝑚𝑎𝑥  for any 

Ω𝑒
𝑚𝑎𝑥, when Eqs. (7) are considered, stability is assured 

when numerical damping is not included. 
  

On the other hand, when numerical damping is activated 

(𝑎𝑒 > 0), the method is described by the curve BC of Fig. 1 

(see Eqs. (8)) and, thus, the method stands as an 

unconditionally stable technique. 

The spectral radii for the proposed technique are 

depicted in Fig. 2 as function of Ω𝑒 (Ω𝑒 = 𝜔𝑒
𝑚𝑎𝑥Δ𝑡). As 

one may observe, the spectral radius behavior demonstrates 

that the method is conditionally stable and that stability is 

always ensured, because Ω𝑐 > Ω𝑒 , when numerical 

damping is neglected (Fig 2(a)); and that the method is 

unconditionally stable, when numerical damping is 

activated (Fig. 2(b)). 

 
Fig. 2 Spectral radius: Ω𝑒 = 0.5; 1.0; 1.5; 2.0; 2.5  and 

3.0. (a) 𝑎𝑒 = 0; (b) 𝑎𝑒 = 0.1 

 

 
Fig. 3 Period elongation considering 𝜔𝑒

𝑚𝑎𝑥/𝜔𝑒 = 0.25; 
0.5; 0.75; 1.0; 1.25; 1.5.  (a) 𝑎𝑒 = 0 ; (b) 𝑎𝑒 = 0.1 . 

Dotted lines correspond to the TR and dashed lines 

correspond to CDM 

 

 
Fig. 4 Amplitude decay considering 𝜔𝑒

𝑚𝑎𝑥/𝜔𝑒 = 0.25; 
0.5; 0.75; 1.0; 1.25; 1.5. (a) 𝑎𝑒 = 0; (b) 𝑎𝑒 = 0.1 

 
 
3.3 Accuracy 

 

In order to illustrate the accuracy of the proposed 

technique, period elongation, amplitude decay and 

amplitude factor errors are depicted in Figs. 3-5, 

respectively. 

68



 

An effective locally-defined time marching procedure for structural dynamics 

 

 
Fig. 5 Amplitude factor considering 𝜔𝑒

𝑚𝑎𝑥/𝜔𝑒 = 0.25; 
0.5; 0.75; 1.0; 1.25; 1.5. (a) 𝑎𝑒 = 0; (b) 𝑎𝑒 = 0.1 

 

 

Fig. 6 Three degrees-of-freedom spring model 

 

 

As one may observe, the period elongation for the 

Central Difference Method (dotted line) and the 

Trapezoidal Rule (dashed line) are also presented in Fig. 3. 

As previously discussed, when numerical damping is 

neglected, the period elongation errors of the present 

method are located between those of the CDM and the TR, 

enabling a very accurate second order methodology. 

 

 

4. Numerical applications 
 

In this section, three numerical applications are 

presented in order to illustrate the good performance of the 

proposed method. First, a three degree-of-freedom spring 

system is considered, which simulates the stiff and flexible 

parts of a much more complex structural system. In the 

sequence, a clamped rod subjected to an initial velocity 

condition is analyzed. In this case, both homogeneous and 

heterogeneous media are considered. Finally, a multi 

degree-of-freedom plane frame is studied. Results are 

compared to those provided by the Bathe method and the 

Newmark method. Since the Bathe method is a two-step 

method (i.e., it requires two systems of equations to be dealt 

with within each time step), the adopted time step for the 

Bathe method was also selected twice larger than those of 

the other methods, in order to evenly compare the computed 

results in terms of computational costs. 

 

4.1 Spring system 
 

This first numerical application was extracted from 

Bathe and Noh (2012) (which is further explored in Noh 

and Bathe 2018, 2019) and consists of a simple three 

degrees-of-freedom spring model, as shown in Fig. 6. 

The governing equations that describes the solution of 

the three degrees-of-freedom system are: 

Table 1 Numerical damping property adopted for each 

element and correspondent time integration parameters 

Element 𝑎𝑒 𝛾𝑒 𝛼𝑒 

1𝑠𝑡 1 2 1 

2𝑛𝑑  0 0.0461 0.9539 

 

 

[

𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

] [

𝑢1̈

𝑢2̈

𝑢3̈

] + [

𝑘1 −𝑘1 0
−𝑘1 𝑘1 + 𝑘2 −𝑘2

0 −𝑘2 𝑘2

] [

𝑢1

𝑢2

𝑢3

] =

[
𝑅1

0
0

], 

(21) 

where 𝑘1 = 107 , 𝑘2 = 1 , 𝑚1 = 0  and 𝑚2 = 𝑚3 = 1 . 

Null initial conditions are considered at nodes 2 and 3, and 

the prescribed displacement at node 1 is defined as: 

𝑢1 = sin 𝜔𝑝𝑡, (22) 

where 𝜔𝑝𝑡 = 1.2. Since node 1 is subjected to a prescribed 

displacement, it is possible to rewrite Eq. (21) in terms of 

the unknown displacements 𝑢2 and 𝑢3: 

[
𝑚2 0
0 𝑚3

] [
�̈�2

�̈�3
] + [

𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] [

𝑢2

𝑢3
] = [

𝑘1𝑢1

0
]. (23) 

Then, the reaction 𝑅1 is given by: 

𝑅1 = 𝑚1�̈�1 + 𝑘1𝑢1 − 𝑘1𝑢2. (24) 

In order to compare the obtained results, the same 

analysis that is carried out by Bathe and Noh (2012) is 

reproduced here, adopting the time step Δ𝑡 = 0.2816𝑠 . 

However, to better illustrate the period elongation and 

amplitude decay errors of the computed results, a longer 

period of analysis is considered (𝑇 = 100𝑠). The strategy 

here is to adopt 𝑎𝑒 = 1 (large numerical damping) for the 

first element of the model and 𝑎𝑒 = 0  (no numerical 

damping) for the second element. Table 1 describes the 

adopted numerical damping properties and time integration 

parameters, automatically computed according to Eqs. (7)-

(8). 

In this simple model, the left spring may represent an 

almost rigid connection while the right spring represents the 

flexible parts of a much more complex system. Since the 

Bathe method is a two-step method, results are compared 

considering it employing the same time-step ( Δ𝑡 =
0.2816𝑠) that is considered by the other techniques, which 

is referred here as "Bathe (Δ𝑡)", and also considering a 

twice larger time-step (Δ𝑡 = 0.5632𝑠), which is referred 

here as "Bathe (2 × Δ𝑡)". Therefore, Bathe (2 × Δ𝑡 ) is 

considered in order to evenly compare the methods in terms 

of computational costs, while Bathe (Δ𝑡) can be considered 

approximately twice more computationally demanding than 

the proposed technique (Bathe and Baig 2005). A reference 

response, obtained by mode superposition and static 

correction (Bathe 1996, Bathe and Noh 2012) is also 

presented. Velocities at nodes 2 and 3 are depicted in Figs. 

7-8. 

As one may observe, the new method and the Bathe 

method present fast dissipation of artificial high frequencies 
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Fig. 7 Velocity at node 2: (a) from 0 to 100𝑠; (b) from 

0 to 8𝑠; (c) from 90 to 100𝑠 
 
 

 
Fig. 8 Velocity at node 3: (a) from 0 to 100𝑠; (b) 

from 0 to 10𝑠; (c) from 85 to 100𝑠 
 

Table 2 Relative errors for velocities at node 2 and 3 

 
Trapezoidal 

Rule 

Newmark 

𝛾𝑁 = 3
10⁄  

𝛽𝑁 = 11
20⁄  

New 

method 
Bathe (Δ𝑡) 

Bathe 

(2 × Δ𝑡) 

�̇�𝟐 92.78% 13.56% 8.00% 7.21% 10.64% 

�̇�𝟑 23.55% 30.52% 9.06% 12.04% 43.59% 

 

 

(Fig. 7(b)), and the TR provides inappropriate results, since 

this model presents spurious frequencies due to modelling 

and such method does not present numerical dissipation. In 

addition, the new method provides lower period elongation 

and amplitude decay errors (Fig. 8(c)). Relative errors, 

evaluated according to Eq. (25), are presented in Table 2. 

𝐸𝑟𝑟𝑜𝑟 = [
∑ (𝑢(𝑡𝑗)−𝑢𝑅(𝑡𝑗))

𝑁𝑡
𝑗=1

2

∑ (𝑢𝑅(𝑡𝑗))
𝑁𝑡
𝑗=1

2 ] × 100%. (25) 

As shown in Table 2, the new method performs very 

well and presents better results when equivalent 

computational efforts are considered. It is important to 

highlight that, for node 3, the performance of the new 

method is superior even when compared to the “Bathe 

(Δ𝑡) ”, allowing obtaining better accuracy taking into 

account considerably reduced computational efforts. 

 

Fig. 9 Sketch of the clamped rod 

 

 
Fig. 10 Time history for the homogeneous rod, at point B 

 

Table 3 Numerical damping property adopted for each 

element and correspondent time integration parameters 

 
1𝑠𝑡 element Other elements 

𝛾𝑒 𝛼𝑒 𝛾𝑒 𝛼𝑒 

𝑎𝑒 = 0.00 0.2311 0.7689 0.2311 0.7689 

𝑎𝑒 = 0.01 0.5299 0.5291 0.2311 0.7689 

𝑎𝑒 = 0.10 0.7960 0.7275 0.2311 0.7689 

𝑎𝑒 = 1.00 1.9460 0.9996 0.2311 0.7689 

 
 
4.2 Clamped rod 

 
In this second numerical application, a clamped rod is 

studied. First, a homogeneous rod is considered, and the 

geometrical and physical properties of the model are: 𝐿 =
1 [𝑚] (length), 𝐸 = 102 [𝑁 𝑚2⁄ ] (Young's modulus) and 

𝜌 = 1 [𝑘𝑔 𝑚3⁄ ] (mass density). 100 linear finite elements 

of equal length (𝑙 = 0.01 [𝑚]) are employed for the spatial 

discretization and Δ𝑡 = 10−3 [𝑠]  is adopted. For initial 

condition,  𝑣0 = 1 [𝑚 𝑠⁄ ]  (axial velocity) is considered 

acting over the entire domain. 

For this model, the analytical answer for the axial 

displacement is given by: 

𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑥, 𝑡) =

∑
8𝐿𝑣0

(2𝑛−1)2𝜋2𝑐
sin (

(2𝑛−1)𝜋𝑥

2𝐿
) sin (

(2𝑛−1)𝜋𝑐𝑡

2𝐿
)

∞

𝑛=1
, 

(26) 

where 𝑐  stands for the dilational wave propagation 

velocity of the medium and 𝑐 = 10 [𝑚 𝑠⁄ ] in this case. 

Taking into account the new approach, 𝑎𝑒 > 0  was 

adopted only for the first element of the model (located next 

to the support) and 𝑎𝑒 = 0 was considered for all other 

elements. The computed integration parameters are 

presented in Table 3. 
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Fig. 11 Relative errors results considering all the 100 

finite elements of the spatial discretization 

 

 
Fig. 12 Time history for the heterogeneous rod at point B 

(middle of the rod). (a) New method; (b) Bathe - Δ𝑡; (c) 

Bathe - 2 × Δ𝑡 

 

 

The time history results at the middle of the rod (point 

B), which corresponds to node 50  of the spatial 

discretization, is depicted in Fig. 10. In addition, errors 

results, computed according to Eq. (25), are depicted in Fig. 

11, considering several time-steps. In this case, relative 

errors are calculated considering all the 100 finite elements 

of the spatial discretization. 

As one may observe, even in a homogeneous model, the 

introduction of numerical damping results in a more 

accurate response. Considering the same computational 

costs, the new method demonstrated superior performance 

compared to the Bathe method (“Bathe - 2 × Δ𝑡”) and the 

Trapezoidal Rule (Fig. 11). For Δt = 10−3 [𝑠]  the new 

method provides better accuracy than “Bathe – Δ𝑡”, which 

means that a better response was obtained with almost half 

of its computational effort. 

In order to simulate a rigid connection, a heterogeneous 

model is studied. It is important to highlight that rigid parts 

are usually introduced in more complex models in order to 

simulate constraints. Thus, the Young modulus of half of the 

rod (point A to point B) is increased to 𝐸𝐴𝐵 = 106 [𝑁 𝑚2⁄ ] 
and kept the same 𝐸𝐵𝐶 = 102 [𝑁 𝑚2⁄ ] on the other half. In 

this case, the dilational wave propagation velocities are 

𝑐𝐴𝐵 = 103 [𝑚 𝑠⁄ ] and 𝑐𝐵𝐶 = 10 [𝑚 𝑠⁄ ]. 

 

Fig. 13 Plane frame subjected to vertical load 

 

 

The strategy here is to insert numerical damping into the 

rigid segment. In order to achieve this, it has been 

considered 𝑎𝑒 = 1 from point A to point B and 𝑎𝑒 = 0 

from point B to point C. Then, the time integration 

parameters are 𝛾𝑒
𝐴𝐵 = 2 ; 𝛼𝑒

𝐴𝐵 = 1 ; 𝛾𝑒
𝐵𝐶 = 0.2311  and 

𝛼𝑒
𝐵𝐶 = 0.7689 . The same time-step ( Δ𝑡 = 10−3 [𝑠] ) is 

adopted to analyze the model, considering the new method 

and the Bathe method. 

The displacement time history of node 50 (located at the 

middle of the rod) is depicted in Fig. 12. As one may 

observe, the new method presents fast dissipation of 

artificial high frequencies (Fig. 12(a)) while the Bathe 

method, considering both the same time-step (Fig. 12(b)) 

and twice larger time-step (Fig. 12 (c)) presents a poorer 

performance dissipating the spurious modes of the model. 

 

4.3 Plane frame 
 
The third numerical application is a plane frame 

subjected to a vertical load, as shown in Fig. 13. The 

physical and geometrical properties for the model are: 

𝐿𝐴𝐵 = 𝐿𝐵𝐶 = 𝐿𝐶𝐷 = 1 [𝑚]  (length of segment), 𝐼𝐴𝐵 =
𝐼𝐵𝐶 = 𝐼𝐶𝐷 = 102 [𝑚4] (moment of inertia), 𝜌𝐴𝐵 = 𝜌𝐵𝐶 =
𝜌𝐶𝐷 = 10 [𝑘𝑔 𝑚3⁄ ]  (mass density). The segment AB is 

considered with higher stiffness than the segments BC and 

CD. So, 𝐸𝐴𝐵 = 1012 [𝑁 𝑚2⁄ ]  and 𝐸𝐵𝐶 = 𝐸𝐶𝐷 =
107 [𝑁 𝑚2⁄ ] (Young modulus). 

For the spatial discretization, it has been adopted 151 

nodes with 3 degrees of freedom per node (horizontal 

displacement, vertical displacement and rotation) and hence 

150 frame elements with same length. Then, the points A, B, 

C and D correspond to the nodes 1, 51, 101 and 151, 

respectively. The time-step adopted in the analysis is Δ𝑡 =
2 × 10−5 [𝑠]  and a vertical unitary load 𝑃 = 1 [𝑁]  is 

applied at the middle node of the segment BC (node 76) and 

kept constant along time. Since there is no analytical 

response for this model, a reference solution obtained with 

mode superposition is considered. The modal solution is 

obtained considering 80 modes of vibration and the 

Trapezoidal Rule (Δ𝑡 = 2 × 10−5 [𝑠]) is adopted for the 

numerical integration of each mode of vibration. 

For this model, the stiffer segment AB tends to introduce 

spurious oscillations on the solution. Therefore, taking into 

account the new method, large numerical dissipation is 

introduced in the segment AB and no numerical dissipation  
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Fig. 14 Horizontal displacement at node 51 

 

 
Fig. 15 Vertical displacement at node 76 

 

 
Fig. 16 Horizontal displacement at node 101 

 

 

is introduced in the segments BC and CD. Then, 𝑎𝑒 = 1 is 

adopted for the segment AB, which leads to 𝛾𝑒 = 2 and 

𝛼𝑒 = 1 and 𝑎𝑒 = 0 is adopted for segments BC and CD, 

leading to 𝛾𝑒 = 0.5  and 𝛼𝑒 = 0.5 , which replicates the 

TR. 

In Figs. 14-16, the horizontal displacement at node 51 

(point B), vertical displacement at node 76 (middle point of 

segment BC) and horizontal displacement at node 101 

(point C) are depicted, respectively. 

As one may observe, the Trapezoidal Rule does not 

dissipate the participation of the artificial modes of 

vibration while the new method removes the participation 

of spurious high frequencies (Fig. 14) without deteriorating 

the response (Figs. 15-16). 

5. Conclusions 
 

A novel time marching procedure for structural 

dynamics analysis is presented in this work. Since the new 

method is based on displacement and velocities relations, 

no computation of acceleration is required. As so, the 

proposed technique is quite simple and efficient in terms of 

computational effort, once it presents fewer equations to be 

dealt with in each time step and is truly self-starting, 

eliminating any kind of initial procedure, such as the 

computation of initial accelerations or multistep initial 

values. Furthermore, the new method presents controllable 

numerical dissipation at element level. Thus, the user can 

select in which element and in which amount numerical 

dissipation is going to be introduced in the model. The 

numerical dissipation property 𝑎𝑒 may then be interpreted 

as a further physical property of the element, such as the 

moment of inertia, mass density or Young modulus. 

As it is discussed along the paper, the method has 

guaranteed stability and keeps its second order accuracy 

when numerical dissipation is introduced into the analysis, a 

characteristic that is not presented in some classical 

methods, such as the Newmark method. In Section 4 several 

results are presented, illustrating the good performance of 

the proposed method. In some cases, the new technique 

presented better results even when compared to the Bathe 

method, which is a twice more computationally demanding 

technique. 
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