
-Structural Engineering and Mechanics, Vol. 73, No. 1 (2020) 17-25 

DOI: https://doi.org/10.12989/sem.2020.73.1.017                                                                 17 

Copyright © 2020 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 

1. Introduction 
 

Nowadays, as the global population has been increasing 

considerably, the demands for high-rise buildings become 

more and more urgent. This suggests a great potential for 

using high-strength concrete (HSC) to achieve light-weight 

concrete elements by reducing the cross-section dimension 

(Jumaa and Yousif 2019). Moreover, a reduced cross section 

also suggests a less demand for concrete material, an easier 

construction because of the light-weight merit, and a 

reduced consumption of embodied energy achieving one 

step forward towards low impact buildings. On the other 

hand, however, a reduced cross section further deteriorates 

the impact of slenderness on HSC columns, i.e. P-delta 

effects (Diniz and Frangopol 2003, Hung and Hu 2018). 

These effects have been demonstrated to be crucial to both 

the instantaneous and time-dependent response of a slender 

column (Lou et al. 2015a).  

Despite the brittleness of HSC, HSC members with 

appropriate reinforcement were shown to exhibit favorable 

ductile behavior (Bouzid and Kassoul 2016, 2018, Lee 

2013, Lou et al. 2015b, 2017, Ma et al. 2016, Teixeira and 

Bernardo 2018). Over past years, many works have been 

reported on the analysis and design of HSC short columns 

(Bai and Au 2013, Campione et al. 2012, Diniz and 

Frangopol 1998, Ho et al. 2010, Saatcioglu and Razvi 

1998). In these columns, the P-delta effects were negligible 

and the inelastic behavior was identified by means of the  
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material nonlinear analysis of a single cross-section. Some 

research has been conducted to simulate the behavior of 

slender HSC columns, mostly under the uniaxial loading 

condition, by performing geometric and material nonlinear 

analysis. Diniz and Frangopol (1997) outlined a simplified 

analytical approach to analyze the strength as well as 

interaction diagram of axial force and bending moment of 

uniaxially loaded slender HSC columns. Kim and Yang 

(1995) proposed a finite element (FE) method to predict the 

buckling behavior of slender HSC columns subjected to 

axial compression and uniaxial bending. Claeson and 

Gylltoft (1998) conducted a parametric study using the 

software ABAQUS on the performance of uniaxially loaded 

slender HSC square columns, focusing on the effects of 

concrete strength, slenderness and load eccentricity. 

Nevertheless, few efforts have so far been made to analyze 

the performance of HSC slender columns under biaxial 

eccentric loads. Pallarés et al. (2009) performed a numerical 

investigation, using a nonlinear model validated against 

their own tests (2008), on the behavior of slender HSC 

columns under axial compression and biaxial bending. The 

emphasis of their study was placed on the effect of the weak 

axis on the member performance. Bouchaboub and Samai 

(2013) described a nonlinear model for biaxially loaded 

HSC slender columns. Their model was developed based on 

the moment-curvature-thrust relationships and by applying 

the finite difference method. However, the overall 

performance of slender HSC columns was not numerically 

investigated in their work. 

The FE method offers a powerful technique to simulate 

the real structural performance of different types of concrete 

members. Although commercial FE software is capable of 
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analyzing the inelastic behavior of HSC columns (Teng et 

al. 2015), there are still demands for self-developed FE 

models to further aid the design of column preventing a vast 

investment on the software license. However, the studies 

with an emphasis on developing such FE models 

considering both axial and biaxial impacts are currently few 

in number. This paper presents the development of a FE 

model for slender reinforced HSC columns subjected to 

axial compression and biaxial bending. The method is 

formulated based on the spatial Euler-Bernoulli theory, 

taking into account geometric and material nonlinearities. 

The model predictions are compared with the experimental 

results available in the literature. A numerical investigation 

is performed by using the proposed model to increase the 

depth of understanding of the inelastic response of slender 

HSC columns under eccentric end axial loads causing 

biaxial bending. 
 
 

2. Material models 
 

The stress-strain relationship for unconfined concrete in 

compression recommended in Eurocode 2 (CEN 2004) has 

been proved to be suitable for nonlinear analysis of both 

NSC and HSC members. The stress-strain equation is 

expressed by 

2

1 ( 2)
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cm

k

f k

  



−
=

+ −
 (1) 

where 0/c c  = ; c  and c  are the concrete stress 

and strain, respectively; cmf  is the mean compressive 

strength (in MPa), and 8cm ckf f= + ; ckf  is the 

characteristic cylinder compressive strength (in MPa); 

01.05 /c c cmk E f= ; 
0.31

0( ) 0.7 2.8c cmf = ‰ ; cE  

is the modulus of elasticity of concrete (in GPa), and 
0.322( /10)c cmE f= . Eq. (1) is valid for c u  , where 

u  is the ultimate compressive strain. ( ) 3.5u =‰  for 

NSC; and 
4( ) 2.8 27[(98 ) /100]u cmf = + −‰  for 

HSC. 

An elastic and linear tension-stiffening law is adopted 

for concrete in tension. The tensile strength tf  is 

determined by 

2/30.3t ckf f=  for NSC (2a) 

2.12ln(1 /10)t cmf f= +  for HSC (2b) 

The reinforcing steel is assumed to be elastic and 

perfectly plastic, i.e. 

At elastic range, s s sE =  (3a) 

After yielding, 
s yf =  (3b) 

where s  and s  are the steel stress and strain, 

respectively; sE  and 
yf  are the steel modulus of 

elasticity and yield strength, respectively. 
 
 

3. FE method 
 

Consider a two-node space beam element in the local 

coordinate system (x, y, z), as shown in Fig. 1(a). Each node 

has five degrees of freedom, namely, x-displacement u, y-

displacement v, z-displacement w, rotations about y-axis θy 

and z-axis θz. The element nodal displacements may be 

written as 

re = {u1, v1, w1, θy1, θz1, u2, v2, w2, θy2, θz2}
T
 (4) 

Assuming that u is a linear function whereas v and w are 

both a cubic polynomial of x, these displacements are then 

related to the element nodal displacements by 

1 1 6 2

e eu N u N u= +
 

(5a) 
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(5b) 
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(5c) 

in which 1 1N = − ; 
2 3

2 1 3 2N  = − + ; 3 2N N= ; 

2 3

4 ( 2 )N l   = − + ; 5 4N N= ; 6N = ; 

2 3

7 3 2N  = − ; 8 7N N= ; 
2 3

9 ( )N l  = − + ; 

10 9N N= ; /x l =  where l is the element length. 

At any point on an element, the axial strain εO can be 

expressed by 

' ' 2 ' 2( ) / 2 ( ) / 2O u v w = + +  (6) 

in which a superimposed prime represents differentiation 

with respect to x. The second and third terms of the right-

hand side of the preceding equation represent the large 

displacement effects. On the other hand, by assuming 

negligible shear deformation, the curvatures about y axis 

y  and z axis z  can be expressed as 

"

y w = − ; "

z v = −  (7) 

Combining Eqs. (4) through (7), the axial strain and 

biaxial curvatures are related to the element nodal 

displacements, in a matrix form, by 

( )/ 2 e

l n= +E B B r  (8) 

where 
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  ( )1 1 2 21 0 0
T eT T T

n = +B r J J J J  (10b) 

' ' ' '

1 2 5 7 100 0 0 0 0 0N N N N =  J  (11a) 

' ' ' '

2 3 4 8 90 0 0 0 0 0N N N N =  J  (11b) 

It is noted that lB  is a linear matrix whereas nB  is a 

nonlinear matrix. Hence the variational form of Eq. (8) can 

be written as 
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(12) 

To take into account varied material properties across a 

cross section that is subjected to axial force and biaxial 

bending, the cross section is divided into concrete and 

reinforcing steel fibers as shown in Fig. 1(b). The strain in each 

fiber is assumed to be uniformly distributed. The equilibrium 

of axial force and biaxial bending moments can then be 

expressed as follows: 

ci ci sj sj

i j

P A A = +   
(13a) 

y ci ci ci sj sj sj

i j

M A z A z = +   
(13b) 

z ci ci ci sj sj sj

i j

M A y A y = +   
(13c) 

where P is the axial force; My is the bending moment about 

the y-axis and Mz is the bending moment about the z-axis; 

The symbol A represents the area and σ represents the 

stress; The subscripts ci and sj represent the ith concrete 

fiber and jth steel fiber, respectively. The tangential force-

strain equations are 

 
 

tci ci ci tsj sj sj

i j

dP E A d E A d = +   
(14a) 

y tci ci ci ci tsj sj sj sj

i j

dM E A z d E A z d = +   
(14b) 

z tci ci ci ci tsj sj sj sj

i j

dM E A y d E A y d = +   
(14c) 

in which Et represents the tangential modulus of materials 

and ε represents the strain. 

Based on the plane section assumption, the axial strain ε 

at any fiber of a cross section is given by 

O y zz y   = + +  (15) 

Differentiating the preceding equation with respect to 

εO, 
y  and z  gives 

O y zd d zd yd   = + +  (16) 

Substituting Eq. (16) into Eq. (14) yields section 

tangential stiffness equations: 

d d=S Q E  (17) 

 
T

y zP M M=S  (18) 
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21 22 23
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q q q
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Q  (19) 

11 tci ci tsj sj

i j

q E A E A= +   
(20a) 

12 21 tci ci ci tsj sj sj

i j

q q E A z E A z= = +   
(20b) 

13 31 tci ci ci tsj sj sj

i j

q q E A y E A y= = +   
(20c) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

(a) Space beam element (b) Cross section divided into fibers 

Fig. 1 Computational model 
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2 2

22 tci ci ci tsj sj sj

i j

q E A z E A z= +   
(20d) 

23 32 tci ci ci ci tsj sj sj sj

i j

q q E A y z E A y z= = +   
(20e) 

2 2

33 tci ci ci tsj sj sj

i j

q E A y E A y= +   
(20f) 

Based on the principle of virtual work, the equilibrium 

equations for a beam element are expressed by: 
eT e T

l
dx = r R E S , where 

e
R  is the element 

equivalent nodal loads. Substituting Eq. (12) into the 

preceding virtual work equations yields 

( )e T T

l n
l

dx= +R B B S  (21) 

The differential form of Eq. (21) with respect to 
e

r  
can be written as follows: 

( )e T T T

l n n
l l

d d dx d dx= + + R B B S B S  (22) 

Substituting Eqs. (17) and (12) sequentially into Eq. 

(22), and rearranging the resulting equation, the element 

tangential stiffness equations can be obtained: 

1 2 3( )e e e e ed d= + +R K K K r  (23) 

1

e T

l l
l

dx= K B QB  (24a) 

2

e T T T

l n n l n n
l l l

dx dx dx= + +  K B QB B QB B QB  (24b) 

 

 

3 1 1 2 2( )e T T

l
P dx= +K J J J J  (24c) 

where 
1

e
K  is the small displacement stiffness matrix; 

2

e
K  is the coupling stiffness matrix; and 

3

e
K  is the 

geometric stiffness matrix. 

After assembling the structure equilibrium equations in 

the global coordinate system, a load or displacement control 

incremental method combined with the Newton-Raphson 

iterative algorithm is applied for the numerical solution. 

The iterative procedure for each increment is summarized 

as follows: 

• Form or update element tangential stiffness 

matrices, and assemble them into the structure tangential 

stiffness matrix. 

• Solve equilibrium equations for displacement 

increments. 

• Add displacement increments to the previous total 

to obtain the current nodal displacements. 

• In the local coordinate system, compute the axial 

strain εO and biaxial curvatures 
y , z  using Eq. (8). 

• Calculate the strain ε in each concrete or steel 

fiber using Eq. (15), and substitute it into the stress-strain 

relationship to get the material stress σ. Compute the axial 

force P and biaxial moments My, Mz using Eq. (13). 

• Compute the element end forces using the right-

hand side of Eq. (21) and then assemble them into the 

internal resisting forces. 

• Compute the out-of-balance loads by subtracting 

the internal resisting forces from the current nodal loads. 

• Repeat the above steps until the out-of-balance 

loads are within the permissible tolerance. 

A computer program implementing the present 

numerical procedure has been developed. The program  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Column details                     (b) FE model 

Fig. 2 Test columns and FE model 
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Fig. 3 Comparison of predicted load-deflection curves 

with experimental results for the test columns 
 

Table 1 Comparison with experimental data for the test 

columns 

Column 

Concrete 

strength 

(MPa) 

Maximum load 
Deflection at maximum 

load 

Test 

(kN) 

Analysis 

(kN) 

Error 

(%) 

Test 

(mm) 

Analysis 

(mm) 

Error 

(%) 

60L2-1 
25.5 

63.7 67.2 5.49 14.88 16.84 13.17 

60L2-2 65.7 67.2 2.28 16.20 16.84 3.95 

60M2-1 
63.5 

102.8 105.6 2.72 20.32 14.92 -26.57 

60M2-2 113.5 105.6 -6.96 18.08 14.92 -17.48 

60H2-1 
86.2 

122.1 119.2 -2.38 15.40 14.55 -5.52 

60H2-2 123.7 119.2 -3.64 16.72 14.55 -12.98 

 

 

needs the input of material properties, column length, cross-

sectional dimensions, boundary conditions and load pattern. 

At any particular load level, the output includes nodal 

displacement and rotation, moment and curvature, stress 

and strain in concrete and reinforcing steel. The program is 

able to simulate the behavior of slender HSC columns under 

biaxial eccentric loads throughout the elastic, inelastic and 

ultimate limit states. In the following sections, the proposed 

analysis is used to reproduce the experimental results of 

slender column specimens available in the technical 

literature and to perform a numerical investigation into the 

inelastic behavior of HSC slender columns under biaxial 

bending.  

 
 
4. Comparisons with experimental data 

 
Kim and Yang (1995) tested a series of NSC and HSC 

slender square columns up to failure. The test variables 

included the span length, concrete strength and longitudinal 

steel ratio. The structure details and cross section of the test 

columns selected for the present analysis are shown in Fig. 

2(a). These columns had a span length of 1440 mm, 

reinforcing steel ratio of 1.98% and three different levels of 

concrete strength fcm, namely, 25.5 (Columns 60L2-1 and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Cross section of columns used for numerical 

investigation 
 

 

60L2-2), 63.5 (Columns 60M2-1 and 60M2-2) and 86.2 

MPa (Columns 60H2-1 and 60H2-2). The yield strength 

and elastic modulus of reinforcing steel were 387 MPa and 

200 GPa, respectively. The load eccentricity was 24 mm. 
The column is divided into 18 beam elements, and the 

cross section is divided into 10 × 10 concrete fibers and 4 

steel fibers, as shown in Fig. 2(b). The predicted load versus 

midspan lateral deflection curves are compared with the 

experimentally obtained data in Fig. 3. It is generally 

observed that the proposed analysis reproduces the entire 

load-deflection response characteristics for the test columns 

with good accuracy. A comparison of the test and calculated 

values of the maximum load and corresponding deflection 

is given in Table 1. The correlation coefficient between the 

values of the maximum load is 0.992, and the average 

discrepancy is -0.41%, with a standard deviation of 4.67%. 

The correlation coefficient between the values of the lateral 

deflection at the maximum load is -0.429, and the average 

discrepancy is -7.57%, with a standard deviation of 14.53%. 

The proposed model appears to overestimate the maximum 

load for the NSC columns while underestimate the 

maximum load for the HSC columns. This may be 

attributed to the difference in the actual and reported 

concrete strengths for the column specimens. 
 

 

5. Numerical application 
 

The HSC column (i.e., Column 60H2-1 or 60H2-2) 

tested by Kim and Yang (1995) is selected herein as a 

reference column for the investigation. A numerical study is 

carried out to evaluate the inelastic behavior of biaxially 

loaded slender HSC columns with investigation variables 

including the load eccentricity e and eccentricity angle α 

(see Fig. 4). Two eccentricity levels are used, namely, e = 

24 and 48 mm; and three different eccentricity angles are 

considered, namely, α = 0°, 30° and 45°. The four steel bars 

are designated as s1-s4, and the concrete fibers at four 

vertices of the cross section are represented by c1-c4, as 

shown in Fig. 4. 
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5.1 Moment-curvature behavior 
 
Fig. 5 shows the moment-curvature curves at midspan 

for the HSC columns with different load eccentricities and 

eccentricity angles. Both the biaxial moment-curvature 

diagrams with respect to y and z-axes (i.e. 
yM -

y  and 

zM - z ) as well as section moment-curvature diagrams 

with respect to the neutral axis (i.e. M - ) are illustrated, 

where 
2 2

y zM M M= + , and 
2 2

y z  = + . 

It is seen that for the columns under uniaxial eccentric 

loading (α = 0°), the moment-curvature curve consists of 

three distinct stages with two turning points corresponding 

to concrete cracking and steel yielding. When the tensile 

steel yields, the moment reaches a plateau, which is much 

longer for e = 48 mm than for e = 24 mm. For the columns 

under biaxial eccentric loading (α = 30° and 45°), on the 

other hand, there is no distinct yielding plateau because 

either the tensile steel does not yield or only one steel bar 

has yielded at failure as stated previously. From Fig. 5(b), it 

is seen that, at a given curvature level, the values of section 

moment for different eccentricity angles appear to be rather 

close. For e = 24 mm, the moment capacity developed by 

uniaxial eccentric loads is much higher than that by biaxial 

eccentric loads. This is attributed to the fact that at failure, 

all the reinforcing steels in the columns under biaxial 

eccentric loading are still in their elastic range and develop 

stress levels far below their yield strength. On the other 

hand, for e = 48 mm, uniaxial eccentric loading leads to a 

little lower moment capacity than biaxial eccentric loading, 

partly attributed to heavier P-delta effects. It is also seen 

that a larger load eccentricity causes a much lower ultimate 

moment capacity and a significantly higher ultimate 

curvature. 
 

5.2 Load-deflection behavior 
 
Fig. 6 shows the load versus midspan lateral deflection 

curves for the HSC columns with different load 

eccentricities and eccentricity angles. The development of  

 

 

biaxial deflections (
y  and z ) is demonstrated in Fig. 

6(a) while total lateral deflection (
2 2

y z =  + ) in Fig. 

6(b). It is seen that a column under uniaxial eccentric 

loading exhibits structural softening behavior (i.e., the load 

decreases with increasing deflection) after yielding of 

tensile steel. This softening characteristic is particularly 

notable for a higher load eccentricity of 48 mm. However, 

for a column under biaxial eccentric loading, yielding of 

tensile steel does not result in structural softening. This can 

be explained by the fact that, unlike the column under 

uniaxial loading where all the tensile steels yield 

simultaneously, on yielding of the tensile steel (Bar s2) in a 

biaxially loaded column, all the other reinforcing steels are 

still in the elastic range and contribute significantly to the 

structural stiffness. In addition, due to smaller deflection at 

yielding, the P-delta effect for a column under biaxial 

loading is less pronounced than that for a column under 

uniaxial loading. It is also seen that the eccentricity angle 

appears to have no noticeable influence on the maximum 

load attained and that a higher eccentricity leads to a much 

lower ultimate load but a significantly higher ultimate 

deflection. 
 

5.3 Development of concrete strains 
 

The development of concrete strains in typical concrete 

fibers (c1, c2, c3 and c4) at midspan for the HSC columns 

with different load eccentricities and eccentricity angles is 

shown in Fig. 7. For the columns under uniaxial eccentric 

loading, c1 and c2 are the extreme tensile fibers while c3 

and c4 are the extreme compressive fibers. For the columns 

under biaxial eccentric loading, c2 and c3 are the extreme 

tensile and compressive fibers, respectively. Failure of all 

the analyzed columns takes places when concrete in the 

extreme compressive fiber reaches its ultimate compressive 

strain, which is 0.0028 for HSC with a compressive strength 

of 86.2 MPa according to Eurocode 2 (CEN 2004). At 

failure, uniaxial eccentric loading mobilizes significantly 

higher concrete strain in the extreme tensile fiber than 

biaxial eccentric loading; and the higher the load 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Moment-curvature about y and z-axes (b) Moment-curvature about neutral axis 

Fig. 5 Moment-curvature behavior 
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eccentricity, the larger the value of the tensile strain in the 

extreme concrete fiber. This observation indicates that 

uniaxial eccentric loading or a higher load eccentricity leads 

to a larger cracking width at failure compared to biaxial 

eccentric loading or a lower load eccentricity. 

 
5.4 Development of reinforcing steel stresses 
 
Fig. 8 displays the evolution of stresses in steel bars (s1, 

s2, s3 and s4) at midspan for the HSC columns with 

different load eccentricities and eccentricity angles. For 

uniaxial loading, the stress in tensile steel (Bars s1 and s2) 

increases very slowly with increasing load up to cracking. 

After that, the tensile steel stress develops rapidly and soon 

reaches its yield strength of 387 MPa. Meanwhile, the stress 

in compressive steel (Bars s3 and s4) develops in nearly a 

linear manner with the applied load. After yielding of 

tensile steel (structural softening stage), the stress in 

compressive steel for e = 240 mm continues to increase but, 

for e = 480 mm, it turns to quickly decrease. 

For biaxial loading, Bar s2 is subjected to tension while 

Bar s3 is under compression throughout the loading 

process. Bars s1 and s4 are under compression at first but 

may transit towards tension during loading, depending on  

 

 

the location of the neutral axis. For e = 240 mm, all the steel 

bars in the columns under biaxial loading have never 

yielded. For e = 480 mm, the tensile steel bar s2 has yielded 

under biaxial loading; the steel bar s4 in the column with an 

eccentricity angle of 30° reaches a tensile stress very close 

to its yield strength at failure. 

 

5.5 Variation of neutral axis depth 
 
Fig. 9 shows the variation of neutral axis depth at 

midspan with the applied load for the HSC columns with 

different load eccentricities and eccentricity angles. The 

neutral axis depth c is calculated from: 

2 2

cc cc

y z

c
 

  
= =

+
 (25) 

where εcc is the concrete strain at the extreme compressive 

fiber and ϕ is the section curvature. 

It is commonly known that in a reinforced concrete 

member under pure bending, the neutral axis initially 

locates at the centroidal axis of the transformed section and 

remains unchanged before cracking (Lou et al. 2014, 

2015c). For a reinforced concrete column under eccentric 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Development of biaxial deflection (b) Development of total lateral deflection 

Fig. 6 Load-deflection behavior 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Development of concrete strains 
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Fig. 9 Variation of neutral axis depth 

 
 

compression, however, the location of the initial neutral 

axis is dependent on both the eccentricity and eccentricity 

angle of the applied loads, as can be observed in Fig. 9. The 

shift of neutral axis during loading is influenced by some 

typical phases such as cracking and yielding. The decrease 

in neutral axis depth is slight in the elastic range but 

becomes crucial after concrete cracking and steel yielding 

(if any). At the ultimate limit state, uniaxial eccentric 

loading mobilizes significantly lower neutral axis depth 

than biaxial eccentric loading. For biaxial eccentric loading, 

the neutral axis depth by an eccentricity angle of 45° is a bit 

higher than that by an eccentricity angle of 30°. In addition, 

a smaller value of e results in a much higher value of c. 
 
 

6. Conclusions 
 

A nonlinear FE method for reinforced HSC slender 

columns subjected to biaxial eccentric loading has been 

developed by applying spatial Euler-Bernoulli theory. The 

material nonlinearity is taken into consideration by 

introducing the nonlinear constitutive laws of materials and 

by integrating the discretized concrete and reinforcing steel 

fibers. The geometric nonlinearity or P-delta effect is taken 

into account by introducing the interaction between axial  

 

 

and bending fields in the FE formulation. The derived 

stiffness matrix is composed of three components, i.e., the 

small displacement stiffness matrix which represents the 

material nonlinearity, the coupling stiffness matrix which 

represents the coupling between geometric and material 

nonlinearities and the geometric stiffness matrix 

representing the large displacement (P-delta) effects. The 

proposed model is able to predict the inelastic response of 

slender HSC columns throughout all ranges of loading until 

failure. 

The accuracy of the proposed nonlinear analysis is 

validated through comparisons between numerical 

predictions and experimental results for slender HSC test 

columns available in the literature. A numerical 

investigation is carried out by using the proposed model to 

illustrate the inelastic behavior of biaxially loaded slender 

HSC square columns, focusing on the effect of load 

eccentricity and eccentricity angle. Results of some 

important aspects of behavior are presented, including the 

moment-curvature and load-deflection responses, the 

development of concrete strains and steel stresses, and the 

variation of neutral axis depth. The results demonstrate that 

both the load eccentricity and eccentricity angle influence 

remarkably the structural performance of reinforced HSC 

slender columns. 
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