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1. Introduction 
 

For several decades, many research efforts have been 
devoted to developing an efficient and accurate finite 
element and have made astounding successes in many areas 
of structural engineering and sciences. Nevertheless, the 
performance of the displacement-based linear element is not 
satisfactory because it cannot properly represent pure 
bending displacement fields. Thus, in pure bending, the 
linear finite element exhibits spurious shear energy (Hughes 
2012, Cook 2007, Bathe 2016), also called “parasitic” 
energy since it should not appear in bending situations. In 
an effort to improve the linear finite element, a promising 
approach called the partition of unity method (PUM) 
(Melenk and Babuška 1996, Babuška and Melenk 1997) has 
been proposed in recent years and successfully applied in 
many fields. This approach is based on the partition of unity 
(PU) approximation and developed into different types of 
PU methods, such as the numerical manifold method (Shi 
1991, Zheng and Xu 2014), hp-clouds (Oden et al. 1998), 
the PU-based finite element method (Tian et al. 2006, 
Rajendran and Zhang 2007, Zhang and Rajendran 2008, Cai 
et al. 2010, Xu and Rajendran 2013, Yang et al. 2017), the 
generalized finite element method (GFEM) (Duarte et al. 
2000, Strouboulis et al. 2000, Duarte et al. 2001, 
Strouboulis et al. 2001), and the extended finite element 
method (XFEM) (Moës and Belytschko 2002, Belytschko et 
al. 2009, Shojaee et al. 2013). The PU-based methods  
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feature mainly that the high-order global approximation of 

any degree can be constructed without adding extra nodes. 

The PU-based methods provide good accuracy for both 

displacement and stresses in pure bending, and they present 

low sensitivity to element distortion. 

Recently, shell finite elements were successfully 

enriched with the PU approximation to obtain quadratic 

displacement interpolations without any mesh refinement 

(Jeon et al. 2014, Jun et al. 2018a), alleviating the 

transverse shear locking effect using the Mixed 

Interpolation of Tensorial Components (MITC) method 

(Bathe and Dvorkin 1986, Lee and Bathe 2004, Lee et al. 

2008, Jeon et al. 2014, Lee et al. 2015, Jeon et al. 2015, Jun 

et al. 2018a, Katili et al. 2019). The high numerical 

performance of the enrichment scheme with the PU 

approximation was validated, showing optimal convergence 

and accuracy in several shell problems. The effectiveness of 

using the enrichment scheme only locally was also 

illustrated in critical areas of an analysis shell domain. 

Despite substantial advancements in the solution accuracy 

and efficient use in critical areas of an analysis domain, it 

remains challenging to decrease the total degrees of 

freedom (DOFs) for the PU-based shell element with 15 

DOFs, including nine DOFs for displacements and six 

DOFs for rotations per node. 

The aim of this study is to present an efficient PU-based 

shell finite element, without loss of solution accuracy, that 

is comparable to a higher-order six-node shell element. 

Here, new PU-based triangular shell elements are 

introduced by applying the PU approximation with both 

membrane displacements and rotations and only with 

rotations of the shell. The former shell element has 13 
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DOFs, including seven DOFs for displacements and six 

DOFs for rotations, whereas the latter shell element 

includes nine DOFs, including three DOFs for 

displacements and six DOFs for rotations. The MITC 

method is adopted to eliminate transverse shear locking, 

treating the assumed covariant transverse share strain fields 

separately for the standard linear and the additional 

quadratic displacement interpolations in the same way as in 

the previously published PU-based shell element (Jeon et 

al. 2014). Two proposed shell finite elements also pass three 

basic tests: the isotropy, the patch, and the zero-energy 

mode test. 

In the following sections, the formulations of the new 

PU-based shell finite elements are presented. The 

convergence studies are conducted with a fully clamped 

square plate problem, cylindrical shell problems, and 

hyperboloid shell problems, comparing the standard three- 

and six-node shell elements as well as the previously 

developed PU-based shell element. Then, the key numerical 

aspects of our scheme regarding the computational 

expenses are discussed. For a further examination, three 

illustrative benchmark tests, a hyperboloid paraboloid shell 

problem, a hemisphere shell problem, and a roof shell 

problem, are computed to evaluate the performance of the 

proposed shell elements using three different mesh patterns, 

including distorted meshes. 
 

 

2. The formulations of the new PU-based shell finite 
elements 

 

The displacement interpolations of the proposed shell 

finite elements based on the PU approximation are 

introduced in this section. The present shell finite elements 

use the MITC technique to construct appropriate assumed 

strain interpolations. 
 

 
Fig. 1 The geometry of the three-node shell element and 

the description of the subdomain: (a) Geometry and 

definition of the rotational degrees of freedom αk and βk. 

(b) The patch Pi constructed by all the elements connected 

to node i 

2.1 Standard three-node shell finite element 
 

The geometry of the continuum mechanics based three-

node triangular shell finite element, as shown in Fig. 1(a), is 

given by (Lee and Bathe 2004, Bathe 2016, Jeon et al. 

2014) 

3 3

1 1

( , , ) ( , ) ( , )
2

i

i i i i n

i i

t
r s t h r s a h r s

= =

= + x x V  

with 1h r= , 2h s= , 3 1h r s= − − , 

(1) 

where r, s, and t are natural coordinates, ( , )ih r s  is the 2D 

interpolation function corresponding to node i, ix  is the 

position vector of node i in the global Cartesian coordinate 

system, and ia  and i

nV  denote the shell thickness and the 

director vector at node i, respectively. 

The displacement interpolation of the three-node shell 

element is given by 

( )
3 3

2 1
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r s t h r s a h r s  
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in which 
T[ ]i i i iu v w=u  is the nodal displacement 

vector in the global Cartesian coordinate system, 1

i
V =

T

1 1 1[ ]i i i

x y zV V V  and 2

i
V = T

2 2 2[ ]i i i

x y zV V V  are unit vectors 

orthogonal to 
i

nV  and to each other, and i  and i  are 

the rotations of the director vector 
i

nV  about 1

i
V  and 2

i
V  

at node i. 

 

2.2 Partition of unity approximation 
 

The enrichment of the three-node triangular shell 

element with the PU approximation proceeds as described 

previously (Jeon et al. 2014, Jun et al. 2018a). The patch 

iP  is composed of elements surrounding node i, as shown 

in Fig. 1(b), and the local approximation functions are 

defined on the patch. The partition of unity subordinate to 

each patch is a set of functions such that for every point in 

the domain under consideration it sums to one. Since the 

finite element shape function forms a partition of unity, 

local approximations are defined by linear piecewise 

polynomials. Thus, the displacement interpolations for the 

PU-based shell element are obtained as 

( )

3

1

3

2 1
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( , , ) ( , ) ( )

( , ) α ( ) β ( )
2

l

i i

i

i l i l

i i i i

i

r s t h r s

t
a h r s

=

=

=

+ − +





u u x

V x V x

, (3) 

where ( )l

iu x  is the local approximation function for the 

displacement, and α ( )l

i x  and ( )l

i x  are the local 

functions for the director vectors. 

Unlike in the previously published PU-based shell 

element (Jeon et al. 2014), the local approximations 

constructed with linear polynomials are applied only to 

membrane displacements and rotations of the shell element. 
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With the enrichment of membrane displacements and 

rotations, the shell element can properly represent the pure 

bending due to additional higher-order displacement and 

rotation fields. 

It is noteworthy that the linear polynomials x and y in 

the local functions are projected to the membrane surface of 

the shell by the director vectors, which is not considered in 

the PU-based shell element published previously (Jeon et 

al. 2014). The local functions are defined as follows: 

( ) ( )

( ) ( )

0 1 1 2 2 1

0 1 1 2 2 2

( )l u i u i u i

i i i i

v i v i v i

i i i

a a a

a a a

 = +  + 
 

 + +  + 
 

u x x V x V V

x V x V V
, (4) 

( ) ( )0 1 1 2 2α ( )l i i

i i i ia a a   = +  + 
 

x x V x V , and (5) 

( ) ( )0 1 1 2 2( )l i i

i i i ia a a    = +  + 
 

x x V x V , (6) 

in which 0

u

ia  to 2

u

ia , 0

v

ia  to 2

v

ia , 0ia
 to 2ia

, and 

0ia
 to 

2ia
 are the corresponding unknown coefficients to 

be determined. The local approximation functions can be 

rewritten by enforcing ( )l

iu x , α ( )l

i x , and ( )l

i x to be 

equal to the nodal value at node i and subtracting them from 

Eqs. (4)-(6): 
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ˆ
i

 =
2ia . 

In Eqs. (7)-(9), to improve the conditioning of the 

stiffness matrix, it is effective to scale the values i  and 

i  by the diameter of the largest finite element sharing the 

node i, 
ih  (Tian et al. 2006, Jeon et al. 2014, Jun et al. 

2018a): 

( ) 1 /i

i i ih = − x x V  and ( ) 2 /i

i i ih = − x x V . (10) 

Substituting Eqs. (7)-(10) into Eq. (3) yields the 

displacement interpolation for the new PU-based shell 

element (hereafter denoted as S3PU8), which has eight 

additional DOFs compared to the standard three-node shell 

element: 

S3PU8 mem rot
ˆ ˆ( , , ) ( , , ) ( , ) ( , , )r s t r s t r s r s t= + +u u u u  (11) 
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(13) 

By applying the PU approximation with the rotations of 

the shell, we obtain the new shell element (hereafter 

denoted as S3PU4) with four additional DOFs. The 

displacement interpolation for the S3PU4 shell element is 

obtained by 

S3PU4 rot
ˆ( , , ) ( , , ) ( , , )r s t r s t r s t= +u u u . (14) 

The previously developed PU-based shell element (Jeon 

et al. 2014) (hereafter denoted as enriched MITC3 and En 

MITC3 in the legends of the figures) contains the enriched 

displacement fields for the displacements w, as follows: 

EnrichedMITC3 disp rot
ˆ ˆ( , , ) ( , , ) ( , ) ( , , )r s t r s t r s r s t= + +u u u u  (15) 

with 

3
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1
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r s h r s
=

= u  with 
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(16) 

in which ˆ
iw

 and ˆ
iw

 are the additional unknown 

coefficients corresponding to the enriched displacement 

field for the displacement w. 

In the use of the above mentioned displacement 

interpolations, the linear dependence problem is suppressed 

by simply enforcing zero displacements on the boundary, 

not only iu = 0 but also ˆ
iu

= ˆ
iu

= iv
= îv = ˆ

iw
= ˆ

iw
= ˆ

i

 =

ˆ
i

 = ˆ
i

 = ˆ
i

 = 0; see References (Tian et al. 2006, Jeon et 

al. 2014, Jun et al. 2018a). 

 

2.3 Assumed covariant transverse shear strain fields 
 

The linear part of the Green-Lagrange strain tensor is 

used, and its covariant strain components are directly 

obtained by 

( ), ,

1

2
ij i j i je =  + u g g u , (17) 

where i

ir


=


x
g , 

( )
, , ,

ˆ
ˆ
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i ir r

 +
= = = +
 

u uu
u u u  

with 1r r= , 2r s=  and 3r t= . 

(18) 

Then, the covariant strain components are separated into 

linear and additional quadratic terms, as follows: 

ˆ
ij ij ije e e= +  (19) 

with 

( ), ,

1

2
ij i j i je =  + u g g u  and (20) 
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Fig. 2 Tying points for the assumed transverse shear 

strains of the proposed shell finite elements: for the 

standard linear (a) and additional quadratic (b) 

interpolations for the displacement interpolation 
 

 

( ), ,

1
ˆ ˆ ˆ

2
ij i j i je =  + u g g u . (21) 

To reduce the transverse shear locking, we use the 

MITC method for the covariant transverse shear strains. 

Two different assumed transverse shear strain fields for the 

standard three- and six-node shell elements (Lee and Bathe 

2004) are employed for the standard and additional 

quadratic strains ije  and îje , respectively, in exactly the 

same manner as for the enriched MITC3 shell element 

(Jeon et al. 2014). The treatment for the membrane locking 

is not necessary and not used for the proposed shell element 

because of its flat geometry. 

The assumed strain field used for the standard 

displacement interpolation is 

AS (A)

rt rte e cs= +  and 
AS (B)

st ste e cr= − , (22) 

where 
(B) (A) (C) (C)

st rt st rtc e e e e= − − +  and, at the tying points, 

(N)

rte  and 
(N)

ste  are calculated from Eq. (20). The tying 

points (A3), (B3), and (C3) are presented in Fig. 2(a). 

The assumed covariant transverse shear strain field for 

the additional quadratic displacement interpolation is 

AS

1 1 1r̂te a b r c s= + + , (23) 

AS

2 2 2
ˆ

ste a b r c s= + + , (24) 

and the coefficients are given by 

(D) (D)

1 rt rta m l= − , 
(D)

1 2 rtb l= , (25) 

(E) (E)

2 st sta m l= − , 
(E)

2 2 stc l= , (26) 

(F) (F) (F) (F)

1 2 2 1( ) ( )st st rt rtc a c a m l m l= + − − + − − , (27) 

(F) (F) (F) (F)

2 1 1 2( ) ( )st st rt rtb a b a m l m l= + − + − − +  (28) 

with ( )1 2( ) ( )( ) 1
ˆ ˆ

2

i ii

jt jt jtm e e= + , ( )2 1( ) ( )( ) 3
ˆ ˆ

2

i ii

jt jt jtl e e= −  

with j = r, s for i = D, E, F, 

(29) 

where (N)ˆ k

rte  and (N)ˆ k

ste , with N = D, E, F, are calculated 

from Eq. (21). The tying positions (D)k, (E)k, (F)k, with k = 

1, 2, are shown in Fig. 2(b). 

The assumed covariant transverse shear strain fields for 

the proposed shell elements are obtained by 

AS AS ASˆ
jt jt jte e e= +  with j = r, s. (30) 

Then, the element stiffness is constructed in the same 

manner as for the standard displacement-based shell 

element using the appropriate stress-strain matrix for shells. 

Since the order of the displacement interpolations is 

quadratic, the stiffness matrix is evaluated by the seven-

point Gauss integration. 
 
 

3. Convergence studies 
 

In this section, convergence studies for the new shell 

elements (S3PU8 and S3PU4), as well as the enriched 

MITC3 with the updated formulation, are performed on the 

well-established plate and shell problems: a fully clamped 

plate problem, cylindrical shell problems, and hyperboloid 

shell problems. Since the finite element solutions are 

sensitive to element mesh patterns and distortions, two 

triangulated mesh patterns with uniform and distorted 

meshes as shown in Fig. 3 are considered in the tests below. 

The s-norm (Hiller and Bathe 2003) is used to measure 

the convergence of the finite element solutions and is 

defined as follows: 

ref

2

ref ref

T

h s
d


− =   u u ε τ  

with ref h = −ε ε ε  and ref h = −τ τ τ  

(31) 

 

 
Fig. 3 Mesh Patterns I and II (a) and the corresponding 

distorted (b) meshes used (N = 4). For the N × N distorted 

mesh, each edge of the domain is divided by the ratio L1 : 

L2 : L3 : …… LN = 1:2:3:…:N 
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Fig. 4 Fully clamped square plate under uniform pressure 

(L = 1, E = 1.7472 × 107, q = 1, and v = 0.3) 

 

 

in which refu  is a reference finite element solution, hu  is 

the solution obtained using the finite element discretization, 

and ε  and τ  are the strain and stress vectors, 

respectively. The practical convergence can be estimated to 

be 

2 k

h s
ch− u u , (32) 

in which c is a constant and h denotes the element size. For 

the uniformly optimal shell element, the constant c is 

independent of the shell thickness, and k represents the 

optimal order of convergence, with k = 2 for the linear finite 

element and k = 4 for the second-order finite element. 

 

 

The relative error for measuring the convergence of the 

finite elements in the problems below is given by 

2

ref

2

ref

h s

h

s

E
−

=
u u

u
. (33) 

In the use of Eq. (33), the reference solutions are 

calculated with fine meshes of the MITC9 shell finite 

element, which produces accurate and reliable solutions 

(Bathe et al. 2003). 

 

3.1 Fully clamped square plate problem 
 

The plate shown in Fig. 4 is subjected to a uniform 

pressure load (Lee and Bathe 2004, Jeon et al. 2014, Lee et 

al. 2014). Because the plate is symmetric, only one-quarter 

of the plate (the shaded regions) is considered, using the 

appropriate symmetric boundary conditions xu =
y = 0 

along BC, yu = x = 0 along DC, and xu = yu = zu = x =

y = 0 along AB and AD. Two mesh patterns (I and II) and 

the corresponding distorted meshes shown in Fig. 3 are 

considered. 

The numerical reference solution is calculated with a 96 

× 96 element mesh of MITC9 shell finite elements. The 

solutions are obtained with N × N element meshes; N = 4, 8, 

16, 32, and 64 for the MITC3, enriched MITC3, S3PU8, 

 

 

 
Fig. 5 Convergence curves for the fully clamped square plate problem when uniform meshes (Fig. 3) with Mesh Patterns I 

(a) and II (b) are used. The bold gray line in each graph represents the optimal convergence rate, which is 2.0 for linear 

elements and 4.0 for quadratic elements 
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and S3PU4 shell elements, and N = 4, 8, 16, and 32 for the 

MITC6 shell element. All convergence studies are tested 

with four different plate thicknesses (a/L = 1/10, 1/100, 

1/1,000, and 1/10,000), and the “element size” used is h = 

L/N. To compare the convergence behaviors for the 

different shell elements, we use the equivalent element sizes 

2.0h, 1.0h, 1.32h, 1.46h, and 1.73h for the MITC3, MITC6, 

enriched MITC3, and present (S3PU8, and S3PU4) shell 

elements, respectively. 

Fig. 5 and Fig. 6 show the convergence curves for the 

fully clamped square plate problems using uniform and 

distorted meshes with two triangulated mesh patterns. The 

MITC3 shell element locks, and good accuracy 

characteristics are seen for a/L up to about 1/100. The 

solutions for the MITC3 and MITC6 shell elements are 

highly sensitive to the element mesh pattern and distortion. 

The convergence performances of the present (S3PU8 and 

S3PU4) and enriched MITC3 shell elements are almost 

optimal, even when distorted meshes are used (Fig. 6). 
 

3.2 Cylindrical shell problems 
 

The second example is a cylindrical shell with uniform 

thickness a, length 2L, and radius R, as shown in Fig. 7(a) 

(Lee and Bathe 2004, Jeon et al. 2014, Lee et al. 2014). The 

shell is subjected to a smoothly varying periodic pressure 

( )p   normal to the shell surface: 

0( ) cos(2 )p p =  with 0 1p = . (34) 

 

 
Fig. 7 Cylindrical shell problem (L = R = 1, E = 2 × 105, 

and v = 1/3) 

 

 

By applying different boundary conditions at both ends, 

we obtain two different asymptotic behaviors of the shell: 

the bending-dominated behavior under free boundary 

conditions and the membrane-dominated behavior under 

clamped boundary conditions. Utilizing the symmetry of the 

problem, we model only the shaded region ABCD in Fig. 7 

with appropriate symmetric boundary conditions. For the 

membrane-dominated case, the clamped boundary condition 

is imposed: xu =  = 0 along BC, yu = = 0 along DC, 

zu = = 0 along AB, and xu = yu = zu = =  = 0 along 

AD. For the bending-dominated case, the free boundary 

condition is imposed: xu =  = 0 along BC, yu = = 0 

along DC, and zu = = 0 along AB. 

The numerical reference solution is calculated using a 

96 × 96 element mesh of MITC9 shell finite elements for  

 

 
Fig. 6 Convergence curves for the fully clamped square plate problem when distorted meshes (Fig. 3) with Mesh Patterns I 

(a) and II (b) are used. The bold gray line in each graph represents the optimal convergence rate, which is 2.0 for linear 

elements and 4.0 for quadratic elements 
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both the membrane-dominated and the bending-dominated 

case. The solutions for the MITC3, MITC6, enriched 

MITC3, and present (S3PU8 and S3PU4) shell elements are 

obtained with N × N meshes (N = 4, 8, 16, 32, and 64 for 

the MITC3, enriched MITC3, S3PU8 and S3PU4 shell 

elements, and N = 4, 8, 16, and 32 for the MITC6 shell 

element). The distorted meshes with the two triangulated 

mesh patterns shown in Fig. 3 are also used in both cases. 

 The convergence curves for the clamped cylindrical 

shell problems with uniform and distorted meshes are 

shown in Fig. 8 and Fig. 9, respectively. The performances  

 

 

for the shell elements considered here show nearly optimal 

convergence behaviors regardless of the thickness of the 

shell. 

Fig. 10 and Fig. 11 present the convergence curves for 

the free cylindrical shell problems with uniform and 

distorted meshes, respectively. When distorted meshes are 

used, the solutions of the MITC3 and MITC6 shell elements 

deteriorate as the shell thickness decreases, as a result of 

some locking. However, the PU-based shell elements 

exhibit good convergence behavior even when the distorted 

meshes are used. 

 
Fig. 8 Convergence curves for the clamped cylindrical shell problem with uniform Mesh Pattern I (Fig. 3). The bold gray 

line in each graph represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements 

 
Fig. 9 Convergence curves for the clamped cylindrical shell problem when distorted meshes (Fig. 3) with Mesh Patterns I 

(a) and II (b) are used. The bold gray line in each graph represents the optimal convergence rate, which is 2.0 for linear 

elements and 4.0 for quadratic elements 
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With the uniform mesh, the solutions for the clamped 

and free cylinder shell problems do not depend on element 

mesh patterns; thus, the convergence curves are considered 

only when Mesh Pattern I is used. 
 

3.3 Hyperboloid shell problems 
 

The third example is the hyperboloid shell shown in fig. 

12(a) (Lee and Bathe 2004, Jeon et al. 2014, Lee et al. 

2014). The mid-surface of the shell structure is modeled by 

2 2 21x y y+ = + ;   [ 1, 1]y − . (34) 

 

 
 

A smoothly varying periodic pressure (Eq. (34) is applied 

normal to the surface, as in Fig. 7. When both ends are 

clamped, a membrane-dominated problem is obtained, and 

when the ends are free, a bending-dominated problem is 

obtained. It is well known that the bending-dominated 

hyperboloid shell problem is difficult to solve (Lee and 

Bathe 2004, Jeon et al. 2014) when the thickness is small. 

Because the shell element is symmetric, the analyses are 

carried out using one-eighth of the structure, corresponding 

to the shaded region ABCD in Fig. 12(a). For the 

membrane-dominated case, the boundary condition is 

imposed: zu =  = 0 along BC, xu =  = 0 along AD,  

 
Fig. 10 Convergence curves for the free cylindrical shell problem with uniform Mesh Pattern I (Fig. 3). The bold gray line 

in each graph represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements 

 
Fig. 11 Convergence curves for the free cylindrical shell problem when distorted meshes (Fig. 3) with Mesh Patterns I (a) 

and II (b) are used. The bold gray line in each graph represents the optimal convergence rate, which is 2.0 for linear 

elements and 4.0 for quadratic elements 
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Fig. 12 Hyperboloid shell problem: (a) Problem 

description (E = 2 × 1011, v = 1/3). (b) Graded mesh for 

the clamped 
 

 

yu = = 0 along DC, and xu = yu = zu = =  = 0 along 

AB. For the bending-dominated case, the free boundary 

condition is imposed: zu =  = 0 along BC, xu =  = 0 

along AD, and yu = = 0 along DC. 

The reference solutions are also calculated with a 96 × 

96 mesh of MITC9 shell elements, and the solutions for the 

MITC3, MITC6, enriched MITC3, and present (S3PU8 and 

S3PU4) shell elements are obtained with N × N meshes (N 

= 4, 8, 16, 32, and 64 for the MITC3, enriched MITC3, 

S3PU8, and S3PU4 shell elements, and N = 4, 8, 16, and 32 

for the MITC6 shell element). Only for the clamped 

hyperboloid shell problem do we use a boundary layer of 

width 6 t  for half of the mesh (see Fig. 12 (b)). 

The convergence curves for both uniform and distorted 

meshes in the membrane-dominated case are shown in Fig. 

13 and Fig. 14, in which the solution accuracy is 

independent of the mesh patterns and all the shell elements 

show good performance when both uniform and distorted 

meshes are used. 

 The convergence curves for the bending-dominated 

case are shown in Fig. 15 and Fig. 16. The convergences for 

 

the MITC3 and MITC6 elements severely deteriorate when 

the thickness of the shell is small. The PU-based shell finite 

elements, such as the S3PU8, S3PU4, and enriched MITC3, 

show almost optimal convergence even when distorted 

meshes are used. 

With the uniform mesh, the solutions for the clamped 

and free hyperboloid shell problems do not depend on 

element mesh patterns; thus, the convergence curves are 

considered only when Mesh Pattern I is used. 
 

 

4. Convergence studies 
 

In this section, the important aspect of the computational 

cost of the present elements (S3PU8 and S3PU4) is 

evaluated, comparing these elements’ computational cost to 

that of the MITC6 and enriched MITC3 shell elements. 

First, the size and sparseness for the stiffness matrices are 

analyzed for the clamped cylindrical shell (shown in Fig. 7) 

discretized by the 6 6 element mesh. The patterns of the 

global stiffness matrices without imposing boundary 

conditions are shown in Fig. 17 (a), with colored squares 

presenting the non-zero entries and the size of the matrices 

corresponding to the total number of DOFs. The number of 

non-zero entries and the half-bandwidth are indicated at the 

bottom of each stiffness matrix. 

In Reference (Jeon et al. 2014), it was reported that the 

enriched MITC3 shell element gives fewer equations and a 

smaller bandwidth than the MITC6 shell element; thus, the 

factorization time for the enriched MITC3 element is much 

smaller than for the MITC6 element using direct Gauss 

elimination. However, the number of non-zeros in the 

global stiffness matrix for the enriched MITC3 element is 

significantly larger than that in the corresponding matrix for 

the MITC6 element, leading to a different computational 

efficiency when the direct sparse solver (Schenk and 

Gärtner 2004), which provides the best overall performance 

in the vast majority of models, is used. 

The total number of non-zeros for the S3PU8 shell 

element is much smaller than that for the enriched MITC 

shell element, but it still larger than that for the MITC6 

shell element. The S3PU4 shell element, with 11,925 non-

zeros and a half-bandwidth of 45, is much more effective 

and about 53% smaller than the MITC6 shell element. It is  

 

 
Fig. 13 Convergence curves for the clamped hyperboloid shell problem with uniform Mesh Pattern I (Fig. 3). The bold gray 

line in each graph represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements 
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valuable to compare the solution times required for the five 

shell finite elements considered here, using two different 

linear equation solvers: the skyline (Bathe 2014) and sparse 

(PARDISO, (Schenk and Gärtner 2004)) solvers. In all the 

cases, of course, symmetric stiffness matrices are generated.  

The computational times for all the solution cases are 

tested on an Intel(R) Core i7 processor with 24 GB RAM 

on a Windows platform. As expected, the factorization time 

for the S3PU8 shell element is much smaller than that for 

the enriched MITC3 and MITC6 shell elements. Fig. 17(b) 

demonstrates the effectiveness of the S3PU8 shell element  

 

 

when the skyline solver is used. When the sparse solver is 

used, the solution time for the S3PU3 shell element is still 

higher than that for MITC6 shell element, but it has 

significantly decreased compared to the enriched MITC3 

shell element (Fig. 17(c)). 

 

 

5. Benchmark problems 
 

In this section, three well-known benchmark problems 

are studied to test the efficacy of the proposed shell  

 
Fig. 14 Convergence curves for the clamped hyperboloid shell problem when distorted meshes (Fig. 3) with Mesh Patterns I 

(a) and II (b) are used. The bold gray line in each graph represents the optimal convergence rate, which is 2.0 for linear 

elements and 4.0 for quadratic elements 

 

 
Fig. 15 Convergence curves for the free hyperboloid shell problem with uniform Mesh Pattern I (Fig. 3). The bold gray line 

in each graph represents the optimal convergence rate, which is 2.0 for linear elements and 4.0 for quadratic elements 
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Fig. 16 Convergence curves for the free hyperboloid shell problem when distorted meshes (Fig. 3) with Mesh Patterns I (a) 

and II (b) are used. The bold gray line in each graph represents the optimal convergence rate, which is 2.0 for linear 

elements and 4.0 for quadratic elements 

 

 

 
Fig. 17 Computational efficiency. (a) Stiffness matrix structures for MITC3, MITC6, enriched MITC3, S3PU8, and S3PU4 

shell elements. The solution times for solving linear equations with skyline (b) and sparse (c) solvers 
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elements. The first two are bending-dominated shell 

problems, and the last is a membrane-dominated shell 

problem. Three triangulated mesh patterns (constant and 

mixed directional meshes) with uniform and distorted 

meshes are considered in the following benchmark tests. 
 

5.1 Hyperbolic paraboloid shell problem 
 

Fig. 18(a) shows a hyperbolic paraboloid shell of which 

the mid-surface is given by (Bathe et al. 2000) 

2 2z y x= − ;   , [ 1/ 2, 1/ 2]x y − . (36) 

It is difficult to solve this problem owing to a doubly 

curved shell with negative Gaussian curvature. The shell is  

 

clamped at one edge and subjected to its own weight. 
Because of the symmetry problem, only one-half of the 
structure corresponding to the meshed region is considered. 

The reference displacement at point A is established 

using a 144 × 72 mesh of MITC9 shell elements (wref = 

2.878 × 10-4). The solutions are calculated using 2N × N 

element meshes with N = 4, 8, 12, 16, and 20. The uniform 

and distorted mesh patterns in Fig. 18(b) and (c) are used. 

The convergence of the normalized displacement 
(wA/wref) at point A is shown in Fig. 19. When the uniform 
mesh is used, the present (S3PU8 and S3PU4), enriched 
MITC3, and MITC6 shell elements show excellent 
performance, indicating that the PU-based shell elements 
are substantially better than the MITC6 shell element.  

 

 
Fig. 18 Hyperbolic paraboloid shell problem. (a) Problem description (L = 1.0, thickness a = 0.001, density  = 360, 

acceleration of gravity g = 1.0, E = 2.0 × 1011, and v = 0.3). Mesh Patterns I, II, and III (b) and the corresponding distorted 

mesh (c) patterns used (N=4) 

 

 
Fig. 19 Convergence of the normalized displacement at point A for the hyperbolic paraboloid shell with uniform (a) and 

distorted (b) meshes shown in Fig. 18 
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However, the PU-based shell elements show even worse 
convergence behavior than the MITC6 shell element when 
the Mesh Pattern III is distorted. 

 

5.2 Full-hemisphere shell problem 
 

 The shell problem with a full hemisphere is shown in 

Fig. 20(a) (Jun et al. 2018a, Jun et al. 2018b). The  

 

 

 

hemisphere has radius R = 10, thickness a = 0.04, Young’s 

modulus E = 6.825 × 107, and Poisson’s ratio v = 0.3. The 

hemisphere is subjected to two pairs of radial forces, P = 2. 

Using symmetry, we model one-quarter of the structure 

corresponding to the shaded region and consider three 

triangular mesh patterns (I, II, and III; Fig. 20(b)) as well as 

the corresponding distorted meshes (Fig. 20(c)). 

 
Fig. 20 Full-hemisphere shell problem. (a) Problem description (R =1 0, thickness a = 0.04, P = 2, E = 6.825 × 107 and v = 

0.3). Mesh Patterns I, II, and III (b) and the corresponding distorted mesh (c) patterns used (N = 2) 

 

 

 
Fig. 21 Convergence of the normalized displacement at point E for the full-hemisphere shell with uniform (a) and distorted 

(b) meshes shown in Fig. 20 
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 The solutions are obtained using the quadrant shell 

(shaded region) divided into three regions, 3 × (N × N) 

element meshes (N = 4, 8, 12, 16, and 20). The uniform and 

distorted mesh patterns in Fig. 20(b) and (c) are considered. 

The results are normalized by the reference solution of wref 

= 0.0924, given in Reference (Belytschko and Leviathan 

1994). 

 The convergence of the normalized displacement 

(wE/wref) at point E is presented in Fig. 21(a) for uniform 

meshes and in Fig. 21(b) for distorted meshes. The shell 

elements with the PU approximation converge well,  

 

 

whereas the performance of the other shell elements 

severely deteriorates when the distorted mesh is used. 

 

5.3 Scordelis-Lo roof 
 

The Scordelis-Lo roof is shown in Fig. 22(a). It is a 

classical benchmark problem for assessing the performance 

of shell elements (Jun et al. 2018a, Jun et al. 2018b). An 

asymptotically mixed bending-membrane behavior is 

observed. The roof structure is supported by rigid 

diaphragms at both ends. The radius of the curvature is R = 

 
Fig. 22 Scordelis-Lo roof problem. (a) Problem description (L =5 0, R = 25, thickness a = 0.25, density  = 360, 

acceleration of gravity g = 1, E = 4.32 × 108 and v = 0). Mesh Patterns I, II, and III (b) and the corresponding distorted mesh 

(c) patterns used (N = 4) 
 

 

 
Fig. 23 Convergence of the normalized displacement at point C for the Scordelis-Lo roof with uniform (a) and distorted (b) 

meshes shown in Fig. 22 
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25, and the length and thickness of the roof are L = 50 and t 

= 0.25, respectively. The material has Young’s modulus E = 

4.32 × 108 and Poisson’s ratio v = 0. The roof is subjected to 

its own weight. Because of symmetry, only one-quarter of 

the shell corresponding to the shaded region ABCD in Fig. 

22(a) is modelled, and the three mesh patterns (I, II, and III; 

Fig. 22(b)) and their corresponding distorted meshes (Fig. 

22(c)) are considered. 

The widely adopted reference solution for the vertical 

deflection at the center of the free edge (point C) is wref = 

−0.3024 (Belytschko and Leviathan 1994). The solutions 

are obtained using N × N element meshes (N = 4, 8, 12, 16, 

and 20). The convergence of the normalized displacement 

(wC/wref) at point C is presented in Fig. 23(a) for uniform 

meshes and in Fig. 23(b) for distorted meshes. The MITC6, 

enriched MITC3, and S3PU8 shell elements exhibit better 

results, even though the distorted meshes are used. 

It is well known that the solution and convergence 

behaviors of the triangular shell elements depend on the 

element mesh patterns (To and Liu 1994), showing better 

results for the element mesh with the triangulated mixed 

direction. However, the solutions of the shell elements 

considered here are significantly deteriorated when the 

mesh is distorted. 
 

 

6. Conclusions 
 

In this paper, two new PU-based shell finite elements, 

named S3PU8 and S3PU4, were proposed to decrease the 

total number of DOFs per node in the existing PU-based 

shell finite element (enriched MITC3) (Jeon et al. 2014), 

thereby maintaining the optimal convergence behavior and 

solution accuracy. The S3PU8 shell element, with 13 DOFs 

per node, is formulated by applying the PU approximation 

to both membrane displacements and rotations of the shell, 

giving excellent performances similar to those of the 

enriched MITC3 shell element in both membrane- and 

bending-dominated shell problems. The S3PU4 shell finite 

element is modeled by constructing a PU approximation 

with only rotations of the shell. This shell element is more 

effective than other PU-based shell finite elements and 

shows excellent convergence behavior in bending-

dominated shell problems. Here, it is reported that the 

formulation for the enriched MITC3 shell element is 

updated by projecting linear polynomials to the membrane 

surface of the shell. Numerical tests show optimal 

convergence characteristics and excellent performances for 

the proposed shell elements, as compared to other MITC 

shell elements. In summary, although much remains to be 

investigated, the potential of the new shell elements is very 

attractive. Future work might pursue developing a method 

for nonlinear analysis and solving domains involving 

multiple corners and cracks. 
 
 

References 
 

Babuška, I. and Melenk, J.M. (1997), “The partition of unity 

method”, Int. J. Numer. Methods Eng. ,  40,  727-758. 

https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4% 

3C727::AID-NME86%3E3.0.CO;2-N. 

Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, Higher 

Education Press, China. 

Bathe, K.J. and Dvorkin, E.N. (1986), “A formulation of general 

shell elements-the use of mixed interpolation of tensorial 

components”, Int. J. Numer. Methods Eng., 22, 697-722. 

https://doi.org/10.1002/nme.1620220312. 

Bathe, K.J., Iosilevich, A. and Chapelle, D. (2000), “An inf-sup 

test for shell finite elements”, Comput. Struct., 75, 439-456. 

https://doi.org/10.1016/S0045-7949(99)00213-8. 

Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), “Towards improving 

the MITC9 shell element”, Comput. Struct., 81, 477-489. 

https://doi.org/10.1016/S0045-7949(02)00483-2. 

Belytschko, T. and Leviathan, I. (1994), “Physical stabilization of 

the 4-node shell element with one point quadrature”, Comput. 

Methods Appl. Mech. Eng., 113, 321-350. 

https://doi.org/10.1016/0045-7825(94)90052-3. 

Belytschko, T., Gracie, R. and Ventura, G. (2009), “A review of 

extended/generalized finite element methods for material 

modeling”, Model. Simul. Mater. Sci. Eng., 17. 

https://doi.org/10.1088/0965-0393/17/4/043001. 

Cai, Y., Zhuang, X. and Augarde, C. (2010), “A new partition of 

unity finite element free from the linear dependence problem and 

possessing the delta property”, Comput. Methods Appl. Mech. 

Eng., 199, 1036-1043. 

https://doi.org/10.1016/j.cma.2009.11.019. 

Cook, R.D. (2007), Concepts and Applications of Finite Element 

Analysis, John Wiley & Sons, New Jersey, USA. 

Duarte, C.A., Babuška, I. and Oden, J.T. (2000), “Generalized 

finite element methods for three-dimensional structural 

mechanics problems”, Comput. Struct., 77, 215-232. 

https://doi.org/10.1016/S0045-7949(99)00211-4. 

Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. 

(2001), “A generalized finite element method for the simulation 

of three-dimensional dynamic crack propagation”, Comput. 

Methods Appl. Mech. Eng., 190, 2227-2262. 

https://doi.org/10.1016/S0045-7825(00)00233-4. 

Hiller, J.F. and Bathe, K.J. (2003), “Measuring convergence of 

mixed finite element discretizations: an application to shell 

structures”, Comput. Struct., 81, 639-654. 

https://doi.org/10.1016/S0045-7949(03)00010-5. 

Hughes, T.J.R. (2012), The Finite Element Method: Linear Static 

and Dynamic Finite Element Analysis, Courier Corporation, MA, 

USA. 

Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), “The MITC3 shell 

finite element enriched by interpolation covers”, Comput. Struct., 

134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003. 

Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), “The 

MITC3+ shell element in geometric nonlinear analysis”, 

Comput. Struct., 146, 91-104. 

https://doi.org/10.1016/j.compstruc.2014.09.004. 

Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), “The MITC3+ 

shell element enriched in membrane displacements by 

interpolation covers”, Comput. Methods Appl. Mech. Eng., 337, 

458-480. https://doi.org/10.1016/j.cma.2018.04.007. 

Jun, H., Mukai, P. and Kim, S. (2018), “Benchmark tests of MITC 

triangular shell elements”, Struct. Eng. Mech., 68, 17-38. 

https://doi.org/10.12989/sem.2018.68.1.017. 

Katili, A.M., Maknun, I.J. and Katili, I. (2019), “Theoretical 

equivalence and numerical performance of T3ys and MITC3 

plate finite elements”, Struct. Eng. Mech., 69, 527-536. 

https://doi.org/10.12989/sem.2019.69.5.527. 

Lee, P.S. and Bathe, K.J. (2004), “Development of MITC isotropic 

triangular shell finite elements”, Comput. Struct., 82, 945-962. 

https://doi.org/10.1016/j.compstruc.2004.02.004. 

Lee, P.S., Noh, H.C. and Choi, C.K. (2008), “Geometry-dependent 

MITC method for a 2-node iso-beam element”, Struct. Eng. 

Mech., 29, 203-221.  https://doi.org/10.12989/sem.2008.29.2.203. 

15



 

Hyungmin Jun 

Lee, Y., Lee, P.S. and Bathe, K.J. (2014), “The MITC3+ shell 

element and its performance”, Comput. Struct., 138, 12-23. 

https://doi.org/10.1016/j.compstruc.2014.02.005. 

Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), “The modal 

behavior of the MITC3+ triangular shell element”, Comput. Struct., 

153, 148-164. https://doi.org/10.1016/j.compstruc.2015.02.033. 

Melenk, J.M. and Babuška, I. (1996), “The partition of unity finite 

element method: Basic theory and applications”, Comput. 

Methods Appl. Mech. Eng., 139, 289-314. 

https://doi.org/10.1016/S0045-7825(96)01087-0. 

Moës, N. and Belytschko, T. (2002), “Extended finite element 

method for cohesive crack growth”, Eng. Fract. Mech., 69, 813-

833. https://doi.org/10.1016/S0013-7944(01)00128-X. 

Oden, J.T., Duarte, C.A.M. and Zienkiewicz, O.C. (1998), “A new 

cloud-based hp finite element method”, Comput. Methods Appl. 

Mech. Eng., 153, 117-126. https://doi.org/10.1016/S0045-

7825(97)00039-X. 

Rajendran, S. and Zhang, B.R. (2007), “A “FE-meshfree” QUAD4 

element based on partition of unity”, Comput. Methods Appl. 

Mech. Eng., 197, 128-147. 

https://doi.org/10.1016/j.cma.2007.07.010. 

Schenk, O. and Gärtner, K. (2004), “Solving unsymmetric sparse 

systems of linear equations with PARDISO”, Future Gener. 

Comput. Syst., 20, 475-487. 

https://doi.org/10.1016/j.future.2003.07.011. 

Shi, G.H. (1991), “Manifold method of material analysis”, 

Transactions of the 9th army conference on applied mathematics 

and computing, Report No. 92-1, US Army Research Office, 

USA. 

Shojaee, S., Ghelichi, M. and Izadpanah, E. (2013), “Combination 

of isogeometric analysis and extended finite element in linear 

crack analysis”, Struct. Eng. Mech., 48, 125-150. 

https://doi.org/10.12989/sem.2013.48.1.125. 

Strouboulis, T., Babuška, I. and Copps, K. (2000), “The design and 

analysis of the Generalized Finite Element Method”, Comput. 

Methods Appl. Mech. Eng., 181, 43–69. 

https://doi.org/10.1016/S0045-7825(99)00072-9. 

Strouboulis, T., Copps, K. and Babuška, I. (2001), “The 

generalized finite element method”, Comput. Methods Appl. 

Mech. Eng., 190, 4081-4193. https://doi.org/10.1016/S0045-

7825(99)00072-9. 

Tian, R., Yagawa, G. and Terasaka, H. (2006), “Linear dependence 

problems of partition of unity-based generalized FEMs”, 

Comput. Methods Appl. Mech. Eng., 195, 4768-4782. 

https://doi.org/10.1016/j.cma.2005.06.030. 

To, C.W.S. and Liu, M.L. (1994), “Hybrid strain based three-node 

flat triangular shell elements”, Finite Elem. Anal. Des., 17, 169-

203. https://doi.org/10.1016/0168-874X(94)90080-9. 

Xu, J.P. and Rajendran, S. (2013), “A ‘FE-Meshfree’ TRIA3 

element based on partition of unity for linear and geometry 

nonlinear analyses”, Comput. Mech., 51, 843-864. 

https://doi.org/10.1007/s00466-012-0762-2. 

Yang, Y., Chen, L., Tang, X., Zheng, H. and Liu, Q. (2017), “A 

partition-of-unity based ‘FE-Meshfree’ hexahedral element with 

continuous nodal stress”, Comput. Struct., 178, 17-28. 

https://doi.org/10.1016/j.compstruc.2016.10.012. 

Zhang, B.R. and Rajendran, S. (2008), “‘FE-Meshfree’ QUAD4 

element for free-vibration analysis”, Comput. Methods Appl. 

Mech. Eng., 197, 3595-3604. 

https://doi.org/10.1016/j.cma.2008.02.012. 

Zheng, H. and Xu, D. (2014), “New strategies for some issues of 

numerical manifold method in simulation of crack propagation”, 

Int. J. Numer. Methods Eng., 97, 986-1010. 

https://doi.org/10.1002/nme.4620. 
 

 

PL 

 

 

16




