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1. Introduction 
 

With the rapidly developing industrial technology, the 

demand for structural and mechanical elements formed 

from new kind of materials is increasing rapidly. Therefore, 

the studies on the mechanical behaviors of structural and 

mechanical elements with different solution techniques such 

as analytical, numerical and experimental methods have 

been the focus of interest of scientists (Avcar 2015 and 

2016, Akbas 2016, Kolahchi et al. 2016, Abdelaziz et al. 

2017, Kolahchi 2017, Zarei et al. 2017, Amnieh et al. 2018, 

Hajmohammad et al. 2018, Tigdemir et al. 2018, Achouri et 

al. 2019, Avcar 2019, Jassas et al. 2019). Most of these 

structural and mechanical components are in contact with 

each other which is the one of the methods of load 

transferring. The characteristics of the contact, the types of 

conduction of the stresses of bodies to the each other, 

strains occurred in contacting bodies, contact lengths and 

the distribution of the contact stress field plays vital role on 

the general behavior of the structure. Hence, the contact 

problem is the one of the most important problems 

encountered in engineering fields; metal forming processes, 

drilling problems, bearings, crash analysis of vehicles, tires, 

cooling of electronic devices, brakes, clutches, internal 

combustion engines, bush and ball bearings, hinges, gaskets 

are the some of the engineering applications. Besides, the 

contact problem has importance for biomechanics where 

human joints, implants or teeth are of consideration. 

Therefore, the large number of researches and efforts 

devoted for examining the contact problems for long years 

due to the technical importance (Wriggers 2003). The first 
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investigation on the contact problem is performed by Hertz 

(1881) in which an analytical solution for the contact 

problem of two elastic bodies with curved surfaces is 

presented. In recent years contact problem still keeps its 

importance especially in engineering field and with the 

development of computer technologies, the numerical 

methods to solve contact problems have been developed 

with the aid of software. One of these methods is FEM 

which offers efficient results for contact problems 

considering a real geometry of interacting bodies, complex 

physical and mechanical properties of materials, mixed 

boundary conditions. Because of FEM is simple, easily 

adaptable to computations, applicable to large classes of 

geometries, materials and loading conditions, and presents 

quite accurate results, several studies on the contact 

problems have been examined using FEM. Chan and Tuba 

(1971a, b) presented a modified FEM for the problems of 

contacting elastic bodies and examined the effects of 

clearance, friction and load on the stresses in turbine blade 

fastenings. Fredricksson (1976) suggested a FEM of 

structural mechanics problems with surface nonlinearities 

arising from contact problems. Okamoto and Nakazawa 

(1979) dealed with the development of a theoretical method 

which gives a solution for nonlinear contact problems with 

irreversibility resulting from stick slip phenomenon. Oden 

and Pires (1984) presented the numerical analysis of contact 

problems with non-classical friction laws. Bathe and 

Chaudhary (1985) gave a solution procedure for the 

analysis of planar and axisymmetric contact‐problems 

involving sticking, frictional sliding and separation under 

large deformations. Peric and Owen (1992) proposed a 

model based on the penalty method for 3D contact 

problems with friction. Klarbring and Björkman (1992) 

concerned with the formulation and numerical realization of 

large displacement contact problems with friction. Simo and 
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Laursen (1992) described the augmented Lagrangian 

technique to frictional problems which is well-suited to 

finite element implementation. Yan and Fischer (2000) 

compared the contact pressure solution obtained using the 

FEM with that of the Hertz theory for the case of a standard 

rail, a crane rail and a switch. Hildi and Laborde (2002) 

concerned with the frictionless unilateral contact problem 

between two elastic bodies in a bidimensional 

context. Mohamed et al. (2006) developed a finite element 

model to simulate the frictional contact of elastic bodies. 

Ozsahin (2007) investigated the contact problem for an 

elastic layer resting on an elastic half plane according to the 

theory of elasticity with integral transformation technique. 

Wiest et al. (2008) studied the contact pressure distribution 

between a wheel and a rail crossing nose using the FEM. 

Liu et al. (2010) treated two-dimensional elastic contact 

problems, including normal, tangential, and rolling contacts 

using the FEM. Roncevic and Siminiati (2010) gave a 

description of the receding contact problem using NX 

Nastran software. Birinci (2011) examined the plane crack-

contact problem for an infinite elastic layer with two 

symmetric rectangular rigid stamps on its upper and lower 

surfaces. Ayatollahi et al. (2014) simulated a four-layer road 

structure consisting of an edge transverse crack using three-

dimensional FEM in order to capture the influence of a 

single-axle wheel load on the crack propagation through the 

asphalt concrete layer. Gandhi et al. (2014) considered the 

elastic-plastic frictionless spherical indentation analysis via 

the finite element analysis and experimentally. Stress 

intensity factors are numerically examined for interfacial 

edge crack between two dissimilar composite plates jointed 

with single side composite patch by Cetisli and Kaman 

(2014). Gandhi et al. (2015) investigated the impact of 

material dependency in elastic-plastic contact models by 

contact analysis of sphere and flat contact model and wheel 

rail contact model by considering the material properties 

without friction. Salem et al. (2015) investigated J integral 

for repaired cracks in plates with bonded composite patch 

and stiffeners with three-dimensional FEM. A numerical 

modeling of crack propagation in the cement mantle of the 

reconstructed acetabulum is examined by Benouis et al. 

(2015). Effects of temperature dependent material 

properties on mixed mode fracture parameters of 

functionally graded materials subjected to thermal loading 

are studied by Rajabi et al (2016). Turan et al. (2016) 

analyzed the functionally graded elastic layer resting on 

homogeneous elastic substrate under axisymmetric static 

loading. Belaasilia et al. (2017) studied on the application 

of the asymptotic numerical method for solving problems in 

solid mechanics. Deng et al. (2017) examined the FEM to 

investigate the accuracy and applicability of half-space-

based methods. Karabulut et al. (2017) considered a 

receding contact problem for an elastic layer resting on a 

half plane in which the layer is pressed by two rectangular 

stamps placed symmetrically. Static frictional contact 

problems of double cantilever beam are analyzed by 

mathematical programming in the framework of scaled 

boundary FEM, in which the contact conditions can be 

expressed as the B-differential equations by Chaolei et al. 

(2018). Çömez et al. (2018) examined the plane receding 

contact problem for a functionally graded layer resting 

on two quarter-planes using the theory of linear elasticity. 

An enriched FEM technique is investigated for thermo-

mechanical contact problem based on the extended FEM by 

Khoei and Bahmani (2018). Liu et al. (2018) considered the 

smooth receding contact problem between a homogeneous 

half-plane and a composite laminate composed of an 

inhomogeneously coated elastic layer. Rončević et al. 

(2018) presented a numerical analysis for a frictionless 

receding contact problem of a perfect-fit pin and bushing in 

a uniaxially loaded plate. Çömez (2019) considered the 

frictional contact problem of an orthotropic layer indented 

by a rigid moving cylindrical punch.  
As distinct from above mentioned studies, this paper 

deals with the numerical analysis of the symmetric contact 
problem of two bonded layers resting on an elastic half 
plane compressed with a rigid punch using FEM based 
ANSYS and ABAQUS software. For this aim, the plane 
symmetric double receding contact problem of a rigid stamp 
and two infinite elastic layers with different elastic 
constants and heights is investigated. The external load is 
applied to the upper elastic layer by means of a rigid stamp. 
It is assumed that the contact surfaces are frictionless, the 
effect of gravity force is neglected. The obtained results are 
verified by comparing them with analytical results in 
literature. The numerical results for normal stresses and 
shear stresses are obtained for various quantities and 
tabulated and illustrated.  

 

 

2. Numerical model and solution of problem 
 

The plane symmetric double receding contact problem 

of a rigid punch and two infinite elastic layers with different 

elastic constants and heights is shown in Fig 1. Here, the 

stamp and upper layer are in contact in the interval (– 𝑎, 𝑎) 

while the lower layer and half plane are in contact in the 

interval (– 𝑏, 𝑏), and the layers are fully bonded to each 

other. The contact between the layer and the half-plane is 

assumed to be frictionless. The thickness of the upper layer 

and lower layer are ℎ1  and ℎ2 , respectively and  

𝜇𝑖  and 𝜈𝑖 (𝑖 = 1,2,3) are elastic constants of the layers and 

half plane. The subscript 𝑖(𝑖 = 1,2,3) refers to the layers 

and half planes, respectively. The loading is provided by a 

rigid punch with radius R subjected to concentrated normal 

force 2P. Thickness in z-direction is taken to be unit. 

The problem is assumed as a two-dimensional contact 

problem. The material properties of the layers of the model 

are taken to be elastic and isotropic. The system is 

physically symmetrical in terms of geometrical, material 

properties and loading. Therefore, half of the problem 

geometry is modeled. In the analyses, geometric properties 

are taken as 𝐿 = 50𝑚 (length of the layer in x direction), 

ℎ1 = 1𝑚 (thickness of the lower layer in y direction), the 

load 𝑃 = 120000𝑁 and material properties are taken as 

𝐸1 = 3 ∙ 104𝑀𝑃𝑎 , 𝜈2 = 𝜈1 = 0.25 . Other parameters are 

chosen such that (G1/P/h1)), (R/h1), m=(G2/G1) and 

n=(G3/G2) ratios are coherent with dimensionless values 

obtained from analytical solution, where G is shear 

modulus, R is punch radius. The geometry of model and the 

application of the load are shown schematically in Fig. 2. 

776



 

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane 

 

 

Fig. 1 Geometry of the contact problem 

 

 

Fig. 2 The geometry for the analysis 

 

 

Contact problems include two boundaries. One of these 

is defined as the contact surface and the other as the target 

surface. Surface-surface contact for those problems is very 

convenient. The steps of the contact analysis can be 

summarized as: (1) Modelling of 2D geometry model; (2) 

Identification of material properties; (3) Meshing; (4) 

Identification of contact pairs, identification of target 

surface and contact surface; (5) Application of boundary 

conditions and load steps; (6) Identification of solution 

options; (7) solution of contact problem; (8) obtaining and 

interpreting of results. 

In the analysis, PLANE 183 is chosen as the element 

type for the creation of models for ANSYS software. The 

PLANE 183 element has 8 nodes and 2 degrees of freedom. 

The interaction between contact surfaces is modeled with 

surface to surface. CONTA172 and TARGE169 elements is 

used for contact modeling. Stiffness of punch has been 

created by defining a very large modulus of elasticity.  

In analysis, element type RAX2 rigid element, which is 

2-node linear axisymmetric rigid link is chosen for 

 

Fig. 3 The finite element mesh in ANSYS 

 

 

Fig. 4 The finite element mesh in ABAQUS 

 

 

Fig. 5 Deformed shape of model in ANSYS 
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Fig. 6 Deformed shape of model in ABAQUS 

 

 

punch modeling for ABAQUS software. Element type 

CAX4R, which is 4-node bilinear axisymmetric 

quadrilateral, reduced integration, hourglass control, is 

selected for all other elements. Surface to surface contact 

type is used for contact and interaction modeling. The 

interaction between the rigid punch and the layer is 

modeled by defining the master surface and slave surface. 

The interaction between the elastic half-plane and the layer 

is similarly modeled. Tie is used as the constrain type 

between layers. Surface to surface is used as discretization 

method. 

The finite element models of prior to analysis of the 

problem created in the ANSYS and ABAQUS software are 

shown in Fig. 3 and Fig. 4. The deformed shapes that occur 

after analysis of these models are shown in Fig.5 and Fig.6. 

 

 

3. Results and discussion 
 

In this section, normal and shear stresses are calculated 

for various dimensionless quantities, such as shear modulus 

factor-1, (𝑚 = 𝐺2 𝐺1⁄ ) , shear modulus factor-2, 

(𝑛 = 𝐺3 𝐺2⁄ ) , radius factor (𝑅 ℎ1⁄ ) , load factor 
(𝐺1 (𝑃 ℎ1⁄ )⁄ )and height factor (ℎ2 ℎ1⁄ ). Normal stresses 

(𝜎𝑥 , 𝜎𝑦) along the axis of symmetry y (x=0) and shear 

stress (𝜏𝑥𝑦) near this axis (x=0.05). Material constants in 

numerical applications are taken to be (𝜅1 = 𝜅2 = 𝜅3 = 2) 

Example 1: In the first example the present numerical 

results are compared with the analytical results of Adıbelli 

et al. (2013) to verify the accuracy of the present model. 

Here the following dimensionless quantities are used: 
(𝜇1 𝜇2 = 1 , 𝜇3 𝜇2 = 1⁄ , 𝑅 ℎ2 = 250⁄ , 𝜇2 (𝑃 ℎ2⁄ ) = 250⁄⁄ )
As seen from Table 1, the present results are in good 

agreement with the previously published ones which shows 

the adopted solution appears to be a good approximation 

method to solve actual contact problems. 

Example 2: In the second example, the variations of 

dimensionless the normal stress (x-component), 𝜎𝑥/(𝑃/ℎ1),  

along the axis of the symmetry for load factor, 𝐺1 (𝑃 ℎ1⁄ )⁄ ,  

Table 1 Comparison of the contact widths for various values 

of the ratio (ℎ1 ℎ2⁄ ) 

(ℎ1 ℎ2⁄ ) Source (𝑎 ℎ1⁄ ) (𝑏 ℎ1⁄ ) 

 Adıbelli et al. (2013) 0.699 4.0612 

2 Present(ANSYS) 0.69 4.00 

 Present(ABAQUS) 0.68 4.00 

 Adıbelli et al. (2013) 0.7083 2.7457 

1 Present(ANSYS) 0.71 2.70 

 Present(ABAQUS) 0.70 2.75 

 Adıbelli et al. (2013) 0.7195 2.1071 

0.5 Present(ANSYS) 0.73 2.00 

 Present(ABAQUS) 0.71 2.10 

 Adıbelli et al. (2013) 0.7365 1.6203 

0.1 Present(ANSYS) 0.75 1.60 

 Present(ABAQUS) 0.73 1.65 

 

 

and shear modulus factor-2, n, are obtained and illustrated 

in Figs. 7 and 8, respectively. Here the following 

dimensionless quantities are used: 

(ℎ2 ℎ1 = 2, 𝑚 = 𝑛 = 2, 𝑅 ℎ1 = 500)⁄⁄ for Fig. 7 and 

(ℎ2 ℎ1 = 2, 𝑚 = 2, 𝑅 ℎ1 = 500, 𝐺1 (𝑃 ℎ1) = 100⁄ )⁄⁄⁄  for 

Fig. 8. 

As seen from Fig. 7, the compressive stresses occur on 

the whole of the first layer while the compressive stresses 

occur in a small area of the upper part of the second layer. 

The value of dimensionless normal stress decreases and 

finally becomes zero at a point and then it changes sign and 

acts tensile stress to half a plane. Besides, only compressive 

stresses act on the half-plane due to the variation of the load. 

Furthermore, as the load increases, the value of the load 

factor decreases and so the value of dimensionless normal 

stress increases. 

It is clear from Fig. 8 that the values of dimensionless 

normal stress are so close to the each other in the lower 

regions. Compressive stresses occur in the first layer and 

half-plane as well as the second layer includes tensile and 

compressive stress zones and two curves intersect at a value 

of tensile stress zone. Furthermore, it is found that the 

values of dimensionless normal stress increase with the 

increasing shear modulus factor-2. 

Example 3: In the third example, the variations of the 

dimensionless normal stress(y-component),𝜎𝑦 , along axis of 

symmetry are shown in Figs. 9-12.  

Fig. 9 presents the variation of dimensionless normal 

stress along the axis of symmetry versus various values of 

load factor, 𝐺1 (𝑃 ℎ1⁄ )⁄ . Here the following dimensionless 

quantities are used: (ℎ2 ℎ1 = 2, 𝑚 = 𝑛 = 2, 𝑅 ℎ1 = 500)⁄⁄ . 

It is found that dimensionless normal stress increases with 

the increasing load factor. 

Fig. 10 illustrates the variation of the dimensionless 

normal stress along the axis of symmetry versus various 

values of the radius factor, R/h1. Here the following 

dimensionless quantities are employed: 

(ℎ2 ℎ1 = 2, 𝑚 = 𝑛 = 2, 𝐺 (𝑃 ℎ1 = 100⁄ ))⁄⁄ It is observed 

that the values of dimensionless stress decreases with the 

increasing radius factor. 
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Fig. 7 The variation of the dimensionless normal stress (x-

component) along the axis of symmetry versus load factor 

 

 
Fig. 8 The variation of the dimensionless normal stress (x-

component), along the axis of symmetry versus shear 

modulus factor-2 

 

 

Fig. 11 plots the variation of dimensionless normal 

stress along the axis of symmetry for various values of 

shear modulus factor-1, m. Here the following 

dimensionless quantities are adopted:  

(ℎ2 ℎ1 = 2, 𝑛 = 2, 𝑅 ℎ1 = 500, 𝐺 (𝑃 ℎ1 = 100⁄ )⁄ )⁄⁄ . It is 

seen that the values of normal stress increase with the 

increasing shear modulus factor-1.  

Fig. 12 shows the variation of the dimensionless normal 

stress along the axis of symmetry for various values of  

 
Fig. 9 The variation of dimensionless normal stress(y-

component), along the axis of symmetry versus load 

factor 

 

 
Fig. 10 The variation of the dimensionless normal stress 

(y-component), along the axis of symmetry versus radius 

factor 

 

 

shear modulus factor-2, n. Here the following 

dimensionless quantities are taken into account: 

(ℎ2 ℎ1 = 2, 𝑚 = 2, 𝑅 ℎ1 = 500, 𝐺 (𝑃 ℎ1 = 100⁄ )⁄ )⁄ .⁄  It is 

concluded that the values of normal stress decrease with the 

increasing shear modulus factor-2. 

Example 4: Due the shear stress, (𝜏𝑥𝑦), along the 

symmetry plane (x=0) equals to zero, the variations of the 

dimensionless shear stress, 𝜏𝑥𝑦(0.5, 𝑦)/(𝑃 ℎ1⁄ ) , are 

investigated for the value of x=0.5 in Figs. 13-16. 
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Fig. 11 The variation of the dimensionless normal stress 

(y-component) along the axis of symmetry versus shear 

modulus factor-1 

 

 
Fig. 12 The variation of the dimensionless normal stress 

(y-component) along the axis of symmetry versus shear 

modulus factor-2 

 

 

Fig. 13 presents the variation of the dimensionless shear 

stress for various values of load factor, 𝐺1/(𝑃 ℎ1⁄ ). Here 

the following dimensionless quantities are employed: 

(ℎ2 ℎ1 = 2, 𝑚 = 𝑛 = 2, 𝑅 ℎ1 = 500)⁄⁄ . It is found that the 

values of dimensionless shear stress decrease with the 

decreasing load factor.  

Fig. 14 shows the variation of the dimensionless shear 

stress for various value of radius factor, R/h1. Here the  

 
Fig. 13 The variation of the dimensionless shear stress 

versus load factor 

 

 
Fig. 14 The variation of the dimensionless shear stress 

versus radius factor 
 

 

following dimensionless quantities are used: 

(ℎ2 ℎ1 = 2, 𝑚 = 𝑛 = 2, 𝐺 (𝑃 ℎ1 = 100⁄ ))⁄⁄ . It is seen that 

the values of dimensionless shear stress decrease with the 

increasing radius factor. 

Figs. 15 and 16 illustrate the variation of the 

dimensionless shear stress for various values of shear 

modulus factor 1 and  2. Here the following dimensionless 

quantities are used: 

(ℎ2 ℎ1 = 2, 𝑛 = 2, 𝑅 ℎ1 = 500, 𝐺 (𝑃 ℎ1 = 100⁄ )⁄ )⁄⁄ .It is 

observed that dimensionless shear stress increases with the 

increasing shear modulus factors.  
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Fig. 15 The variation of the dimensionless shear stress 

versus shear modulus factor-1 
 

 
Fig. 16 The variation of the dimensionless shear stress 

versus shear modulus factor-2 

 

 

4. Conclusion 
 

A numerical analysis method for the symmetric contact 

problem of two bonded layers resting on an elastic half 

plane compressed with a rigid punch using FEM based 

ANSYS and ABAQUS software have been given in the 

present paper. For this aim, the plane symmetric double 

receding contact problem of a rigid stamp and two infinite 

elastic layers with different elastic constants and heights is 

investigated, in detail.  

Briefly, the following results are obtained: 

•  Dimensionless normal stress (x-component), 

decreases with the increasing load factor while it increases 

with the increasing shear modulus factor-1.  

•  Dimensionless normal stress (y-component)  

increases with the increasing load factor while it decreases 

with the increasing radius factor. 

•  Dimensionless normal stress (y-component)  

increases with the increasing shear modulus factor-1 while 

it decreases with the increasing shear modulus factor-1.  

•  Dimensionless shear stress decrease with the 

decreasing load and increasing radius factors. 

•  Dimensionless shear stress increases with the 

increasing shear modulus factors. 

Finally, it is concluded that the considered 

dimensionless quantities have significant influence on the 

normal and shear stress distributions.   
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