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1. Introduction 
 

Recently, the use of laminated composites in 

engineering applications has been widely attracted the 

attentions especially in sandwich structures where there are 

very large differences between the material properties 

between faces and core. These materials are utilized in 

several weight sensitive engineering applications like 

aerospace, civil, aeronautical industries, automotive design 

and marine (Salami and Dariushi, 2018, Vinson, 2001). The 

reasons of such extensive applications of laminated 

composites are their incredible design flexibility and 

managing their thermo-mechanical behavior which are 

provided by changing their arrangement sequence and fiber 

orientation in each layer (Vinson, 2001). Moreover, the use 

of laminated composites in sandwich structures usually 

improves the overall thermo-mechanical responses of 

laminated composites. In sandwich structures, the main role 

of core layer is providing adequate distance between the 

outer face sheets (Kamarian et al. 2017, Mohammadimehr 

et al. 2017, Moradi-Dastjerdi et al. 2017). Therefore, the 

use of foams or porous materials as a core layer could offer 

lighter sandwich structures with higher strength-to-weight 

ratio, absorption of energy, damping of vibration and more 

manageable thermo-mechanical properties (Rashidi et al.  
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2018). Due to the increased applications of these sandwich 

structures and in order to increase their effectiveness, a deep 

knowledge of their mechanical responses especially in 

terms of deflections and stress distributions are required. 

As mentioned earlier, static response of engineering 

structures can play a main role in the design of most of such 

structures (Foroutan et al. 2012, Moradi-Dastjerdi et al. 

2018, Moradi-Dastjerdi and Behdinan, 2019, Zargar et al. 

2017). In this regard, finite element methods have been 

established their remarkable contributions (Ghanati and 

Safaei, 2019, Safaei et al. 2018, Shokri-Oojghaz et al. 

2019). During the last few years, mechanical analyses of 

sandwich structures have been presented by many 

researchers. Mantari et al. (2011) suggested a new HSDT 

with  parabolic transvers shear strain distribution to 

analyze the bending responses of laminated composite 

plates. Rezaiee-Pajand et al. (2012) presented the static 

behavior of laminated composites sandwich plates in a 

framework of FEM with 13-noded elements. Thai et al. 

(2013) presented static, natural frequency and buckling 

responses of laminated composite plates using an 

isogeometric finite element method (FEM) formulation 

based on layerwise theory with the first order shear 

deformation theory (FSDT) in each layer. Ferreira et al. 

(2013) developed a method with the combination of GDQ 

technique and layer-wise method for the static and free 

vibration analyses of laminated composite plates. Xiang et 

al. (2015) proposed a n-order theory for the plates and 

compared the static responses of laminated composite 

sandwich plates under sinusoidal loads with other works. 

Belarbia et al. (2016) proposed a finite element solution 

with 4-noded elements and 52 degree of freedom to study 
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the bending response of composite sandwich plates. They 

adopted the first and third order shear deformation theories 

for faces and core layers, respectively. Tian et al. (2016) 

proposed a new HSDT and presented the static bending and 

natural frequencies of sandwich plates with laminated 

composite faces and a soft core. Tornabene et al. (2017a) 

studied progressive damage effect in laminated composite 

sandwich shells by a generalized differential quadrature 

(GDQ) method. They also employed GDQ method to 

present the static analysis of laminated composite sandwich 

plates and shells (Tornabene et al. 2017b). Lin et al. (2018) 

developed a very accurate scaled boundary FEM solution 

based on 3D theory of elasticity for the mechanical analysis 

of laminated composite plates. Xiaohui et al. (2018) 

conducted static analysis of laminated composite plates by 

an analytical method based on Navier’s method and a 

refined sinusoidal theory with zig-zag functions. Fantuzzi et 

al. (2018) provided a strong FEM to study the mechanical 

analysis of laminated composite plates and compared their 

results with the weak form results obtained from 

commercial FE packages. Zarei and Khosravifard (2019) 

developed a meshless method based on different orders of 

plate theories to study static responses of composite 

laminated plates.  

Among the sandwich structures, different types of 

materials were suggested for the arrangement of layers in 

which the faces were usually stiffer than core. Thanks to the 

smooth variation of the volume fraction of components, 

functionally graded materials (FGMs) have become very 

popular and vastly utilized in the engineering structures 

(Jalali et al. 2018a, 2018b). The bending behavior of 

sandwich plates with FGM and homogenous layers have 

been presented using refined (Abdelaziz et al. 2011, 

Nguyen et al. 2015), five-unknown (Benbakhti et al. 2016) 

and four unknown (Driz et al. 2018) HSDTs. For the static 

study of the same plates, Neves et al. (2012) employed 

Murakami’s Zig-Zag theory and a collocation method with 

radial basis functions. Furthermore, carbon nanotube 

(CNT)-reinforced nanocomposite materials are the other 

materials which were proposed for the face layers of 

sandwich structures (Pourasghar and Chen, 2019a, Qin et 

al. 2019, Safaei et al. 2019c). It should be mentioned that 

due to the astonishing properties of CNTs, a wide range of 

research on the mechanical behavior of CNT-reinforced 

structures (Pourasghar and Chen 2019b, 2019c, 2019d, 

2016) have been carried out. Wang and Shen (2012) 

proposed this kind of sandwich plates with CNT-reinforced 

faces and studied the nonlinear deflections and natural 

frequencies of the proposed sandwich plates rested on 

elastic foundation. Jalali and Heshmati (2016) considered 

sandwich plates with multi-walled CNT-reinforced faces in 

circular tapered shapes and studied their buckling 

responses. Ebrahimi and Farazmandnia (2018) employed a 

semi-analytical method of differential transform to study 

the vibrational behavior of sandwich Timoshenko beams 

with CNT-reinforced faces in thermal environment. Mehar 

and Panda (2018) developed HSDT based FEM and 

presented the nonlinear stress distributions of sandwich 

shallow shells with temperature-dependent CNT-reinforced 

faces. The effects of defects and agglomeration of CNTs on 

the static bending and stress distributions of sandwich plates 

with CNT-reinforced faces were studied in (Mirzaalian et 

al. 2019, Moradi-Dastjerdi and Aghadavoudi 2018). 

Porous materials are usually utilized in engineering 

structures to improve their thermo-mechanical responses. In 

the manufacturing process, voids can be created inside 

materials because of some technical issues such as low 

process pressure. Voids can also be intentionally formed to 

improve the performance of manufactured foams (Rashidi 

et al. 2018). As mentioned before, the use of porous 

material can considerably reduce the structural weights. As 

a pioneer work, the effect of embedding porosity on the 

static behavior of axisymmetric plates were studied in 

(Magnucka-Blandzi, 2008). Using 3D theory of elasticity in 

combination with DQM, Rad et al. (2017) investigated the 

static behavior of circular porous plates with variable 

thickness rested on Horvath-Colasanti type foundations. 

Nguyen et al. (2018) employed HSDT based FEM with 

polygonal elements to investigate the deflections of porous 

FGM plates under static and dynamic loads. The effect of 

embedding porosity on the buckling responses of CNT-

reinforced (Guessas et al. 2018) and on the static responses 

of graphene-reinforced (Polit et al. 2019) plates were also 

investigated using the first and higher order theories of 

plates, respectively. Moreover, the buckling behavior of 

sandwich plates consisting metallic faces and porous core 

was presented in (Chen et al. 2019). Safaei et al. (2019a) 

considered a uniform distribution for porosities along the 

whole thickness of sandwich plates with CNT-reinforced 

faces and studied thermal and mechanical buckling 

behaviors. Setoodeh et al. (2019) employed GDQ method 

and conducted the vibrational behavior of sandwich plates 

consisting a two piezoceramics layers, two CNT-reinforced 

layers and one porous core. Safaei et al. (2019b) also 

proposed sandwich plates with a porous core and CNT-

reinforced faces and presented their thermoelastic static 

deflections and stress distributions.  

This paper suggests embedding a porous layer between 

the layers of laminated composite plates to enhance the 

mechanical responses of traditional laminated composite 

plates. Three different profiles for porosity distribution in 

the porous layer have been considered. Specifically, the 

deflection and stress distributions of the resulted sandwich 

plates called LCPPLs rested on a two-parameter foundation 

are presented. In this regard, the static governing equations 

are obtained based on FSDT. Then, the obtained equations 

are solved by a developed finite element method. Using the 

developed solution method, the effects of laminated 

composite and porosity characteristics as well as geometry 

dimension, edges’ boundary conditions and foundation 

coefficients on the static responses of the suggested 

LCPPLs have been presented.  
 

 

2. Modeling of porous sandwich plate 
 

The schematic figure of the suggested LCPPL rested on 

a two-parameter foundation with normal k1 and shear k2 

effects is shown in Fig. 1. The plate is assumed to be 

subjected to uniform pressure f0. The laminated composite 

layers are assumed to be made of Graphite/Epoxy (Gr/Ep)  
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Fig. 1 The schematic figure of the suggested laminated 

composite plates with a porous layer 

 

 

and the porous layer is made of pure epoxy. As depicted in 

Fig. 1, lx, ly and H are the length, width and total thickness 

of LCPPL, respectively. The fiber orientations of laminated 

composite layers are assumed to be symmetric and changed 

from α1 to αnl from the inner faces to outer faces which 

shown as [α1, α2, …, αnl]. nl is the number lamina in the 

laminated composite layers. In addition, uniform, symmetric 

(Sym.) and non-symmetric (Non-Sym.) porosity distributions 

are assumed for the porous core. 

The elastic modulus pE  and Poisson’s ratio 
p  of 

porous core can be estimated by closed-cell Gaussian random 

field models as follows (Zhao et al. 2019):  

( ) ( )1 , 1p p p pE V E V = − = −  (1) 

where E and   are the maximum values of elastic modulus 

and Poisson’s ratio which are related to a core without 

porosity. By the definition of p0 which indicates the porosity 

parameter of the core layer, the volume of porosities Vp for the 

three prescribed porosity distributions can be defined as (Zhao 

et al. 2019):   

Uniform: 0pV p=  , 
2

0

0

1 2 2
1 1 1p

p  

  
 = − − − +  

   

 (2) 

Sym.: ( )0 cosp pV p z h=  (3) 

Non-Sym.: 
0 cos

4 4
p

p

z
V p

h

  
= + 

 
 

 (4) 

The distributions of Vp along the thickness of porous 

core are illustrated in Fig. 2.  

 

 

3. Governing equations  
 

3.1 Basic equations  
 

In this paper, a five-unknown first order shear 

deformation theory is employed for the estimation of 

displacement field in the suggested laminated composite 

 

Fig. 2 The distributions of the volume of porosities along 

the thickness of porous core 
 
 

plates with a porous layer because of its acceptable accuracy 

for thin to moderately thick plates and computational cost 

issues. According to the employed FSDT, the displacement 

components of u, v and w can be expressed with three mid-

plane unknowns of u0, v0 and w0, and two mid-plane normal 

rotational unknowns of 
x  and y . This FSDT is 

determined as follows (Mohammadsalehi et al. 2017, 

Reddy 2004):  

0

0

0

( , ) ( , )

( , ) ( , )

( , )

x

y

u u x y z x y

v v x y z x y

w w x y





= +

= +

=

 (5) 

Considering the linear parts, the strain components of 

the suggested plates can be described as follows (Reddy, 

2004): 

, ,

,

xx yy xy

xz yz

u v u v

x y y x

u w v w

z x z y

  

 

   
= = = +
   

   
= + = +
   

 (6) 

The strain vector of plates can be divided to in-plane 
bε  

and out-of-plane γ  strain vectors. Considering Eqs. (5) 

and (6), these vectors are given below:  

0

0

0 0

x

b y

x y

u x x

v y z y

u y v x y x





 
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  

=   +     
     +     +     

ε , 

0

0

x

y

w x

w y





+    
=  

+    
γ  

(7) 

They can also be written as: 

   1 ,
T T

b xx yy xy xz yzz    = = + =
0

ε ε ε γ  (8) 

Furthermore, the constitutive equations for laminated 

composite and porous layers can relate in-plane σ  and 
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out-of-plane τ  stress vectors to corresponding strain 

vectors as follows (Reddy 2004): 

11 12 16

12 22 26

26 26 66

x x

y y

xy xy

D D D

D D D

D D D

 

 

 

    
    

=    
        

 

55 45

45 44

5

6

xz xz

yz yz

D D

D D

 

 

       
=    

       
 

(9) 

where 5/6 is appeared because of the utilized FSDT for the 

suggested plate as shear correction factor. Eq. (9) can be 

rewritten in vector terms as follows: 

05
, ,

06
b s

s

 
= = =  

 

b

b

D
σ D ε τ D γ D

D
 (10) 

The components of elastic constant matrix D  for 

isotropic porous core and laminated composite layers are 

determined in Appendix. 

The total energy of the plate is a summation of strain 

energy, work done by external uniform pressure, and the 

energy of the two-parameter foundation. This energy 

function for the suggested LCPPL can be determined as 

follows (Moradi-Dastjerdi and Momeni-Khabisi, 2016) 

( ) ( )

0

2 22

1 2

1

2

1

2

T T

b

V

A

U dV f wdV

k w k w x w y dA



 = + + 

  +   +  
   

 



ε σ γ τ

 (11) 

where   and V are the toper or downer face area and the 

total volume of LCPPL.  

 

3.2 FEM formulations 
 

According to the concept of FEM, the displacement 

field can be estimated by some point called nodes which are 

determined by meshing the domain. For the suggested 

LCPPL, the exact displacement field d is approximated in n 

predefined nodes di using the values of finite element shape 

functions 
i  as follows: 

1

n

i i

i

d
=

=d  (12) 

where four-node rectangular elements with bilinear shape 

functions 
i  are employed. Considering the employed 

FSDT in Eq. (5) with its five unknowns, the nodal 

approximated values of displacement at ith node can be 

determined as follows (Safaei et al. 2019d):  

0 0 0, , , ,
T

i i i i xi yid u v w   =    (13) 

Substituting Eq. (12) into Eq. (8) with respect to Eq. (7) 

regenerates strain vectors in FEM formulations as follows 

 0 1 ,b sz= + =ε H H U γ H U  (14) 

where: 
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     
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1
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i

i

i i

x

y

y x





 

  
 

=  
 
     

H  

(15) 

Introducing Eqs. (10), (12) and (13) into the total energy 

function (Eq. 15) results in: 

 

0 0 0 0 1 1 1 1 0

1 2 1

1 2 2 2

1

2

1

2

T T T

T

T T T

s s s

T T T T T

n n n s s

U d

f d k k d



 

 + + 
=  

+ +  

+  + + 



 

H D H H D H H D H
d d

H D H H D H

d H d H H H H d

 (16) 

where 

/2 /2

2

0 1 2

/2 /2

5
( , , ) (1, , ) ,

6

h h

b s s

h h

z z dz dz
− −

= = D D D D D D  (17) 

 

2

0 0 0 0 ,

0 0 0 0

0 0 0 0

n i

i

s

i

x

y







=

  
=  

  

H

H
 (18) 

Noted that the coupling stiffness matrix is zero 
1 0=D

for symmetric LCPPLs. The minimizing of total energy 

function Eq. (16) leads to the following system of static 

governing equations for the suggested LCPPL: 

=Kd F  (19) 

where the global stiffness matrix K  and force vector F  

are determined as follows: 

 

0 0 0 0 1 1 1 1 0

1 2 1

1 2 2 2

T T T

T T T
s s s

T T
n n s s

d

k k d





 + + 
=  

+ +  

+ + 





H D H H D H H D H
K

H D H H D H

H H H H

 (20) 

T
n f d



= F H  (21) 

 

 

4. Results and discussions 
 

In the following simulations of the suggested LCPPL, 

fully clamped (CCCC) square plates subjected to a uniform 

pressure of f0=10 kPa with lx/hp = 10, lx/hl = 100, K1=0 and 

K2=0 are considered unless otherwise stated. It is assumed 

that the laminated composite layers are made of 

Graphite/Epoxy (Gr/Ep) and core is made of pure epoxy.  
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Table 1 The normalized central deflections of square simply 

supported isotropic plates  

lx/H Method  

10 FEM (Reddy, 1993) 4.770 

 Finite Point (Ferreira et al. 2003) 4.7866 

 Collocation (Ferreira et al. 2009) 4.7912 

 Meshless (Moradi-Dastjerdi et al. 2016) 4.7864 

 Exact (Akhras et al. 1994) 4.791 

 Present 4.7901 

   

20 FEM (Reddy, 1993) 4.570 

 Finite Point (Ferreira et al. 2003) 4.6132 

 Collocation (Ferreira et al. 2009) 4.6254 

 Meshless (Moradi-Dastjerdi et al. 2016) 4.6274 

 Exact (Akhras et al. 1994) 4.625 

 Present 4.6242 

   

100 FEM (Reddy, 1993) 4.482 

 Finite Point (Ferreira et al. 2003) 4.5737 

 Collocation (Ferreira et al. 2009) 4.5716 

 Meshless (Moradi-Dastjerdi et al. 2016) 4.5765 

 Exact (Akhras et al. 1994) 4.572 

 Present 4.5710 
 

 

The utilized material properties are as follows (Akhras and 

Li 2010): 

Gr/Ep: E11=181 GPa, E12= E13=10.3 GPa, G12= G13=7.179 

GPa, G23=2.87e9 GPa, υ12= υ13=0.28, υ23=0.33 

Epoxy: E=4.5 GPa, υ=0.4 

Moreover, the following normalized parameters for 

foundation coefficients K1, K2 and deflections ŵ  are 

utilized in our reported results:  
4

1 1 /xK k l D= , 
4

2 2 /xK k l D=  and 

3 4

0 0
ˆ 100 / ( )xw E H w f l=  

(22) 

where 

3 2/12(1 )D Eh = −  and 0 0.1H m=  (23) 

 

4.1 Validation of models 
 

Due to the lack of results on the static analysis of the 

suggested LCPPL, the accuracy of the developed FEM 

could be examined by comparing the static results of 

isotropic plates with those existed in literatures. Therefore, 

square simply supported isotropic plates subjected to 

uniform load with υ=0.25 and different thicknesses have 

been considered. Our results have been compared with the 

exact results reported in (Akhras et al. 1994) as well as the 

results of other numerical methods (Ferreira et al. 2003, 

Ferreira et al. 2009, Moradi-Dastjerdi et al. 2016, Reddy, 

1993) in Table 1. The results show that the developed FEM 

has a very good accuracy because of its agreement with the 

reported results of normalized central deflections 
3 4

0100 / ( )xw E H w f l= .  

 
Fig. 3 ŵ  of LCPPL as a function of element numbers in 

each direction 

 

 
Fig. 4 ŵ  as a function of fibre orientation in the 

laminated faces of LCPPL 

 

 

Due to the lack of available results for the same LCPPL, 

this section is enhanced by the examination of convergence 

of the developed FEM in Fig. 3. This figure illustrates the 

normalized central deflections ŵ  of LCPPLs with four-

layer laminated faces of α=±45 versus element numbers in 

each direction N. It is observed that by adopting the element 

arrangement of 21×21, the value of deflection is almost 

equal to the values of deflection determined using higher 

number of elements which means the results are converged. 

Hence, this element arrangement is adopted for the 

following simulations. 

 

4.2 Deflection of the suggested LCPPL 
 

First, the effects of laminated composite parameters 

including the number of layers and the orientation of fibres 

in each layer are investigated on the deflection of the 

suggested LCPPL. Fig. 4 illustrates the normalized central 

deflections of LCPPLs with four-layer laminated composite 

faces [α, -α, α, -α] as a function of α from 0 to 90 degrees 

for plates with a symmetric porous core p0=0.5 and a core 

without porosity p0=0. The figure shows that the use of  

ŵ
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Fig. 5 ŵ  as a function of the numbers of layers in the 

laminated faces of LCPPL 

 

 

porous core results in higher values of deflections. 

Moreover, the use of laminated composite faces with α=±45 

offers LCPPLs with the minimum deflections. However, 

laminate composite faces with α=0 or 90 provide LCPPL 

with less structural stiffness and the highest deflections. 

Fig. 5 also shows the central deflections of LCPPLs as a 

function of the number of layers in laminated faces with 

α=±45. It can be seen that the use of laminated faces with 

only a single layer results in the biggest deflections. 

However, the increase of nl from one leads to a dramatically 

reduction in the deflections. The reason is that the capability 

of plates for loading transfer in two directions was 

improved. The same condition was observed in Fig. 4 for 

α=0 or 90. Moreover, laminated faces with odd numbers of 

layers (nl=1, 3, 5, …) have higher deflections than those 

with even numbers (nl=2, 4, 6, …). It also observed that the 

addition of layers after nl=4 (especially for even numbers) 

has no considerable effect on the reduction of LCPPL 

deflections.  

The effects of porosity characteristics including porosity 

parameters (volume) p0 and porosity distribution are shown 

in Fig. 6. It can be seen that at the same values of p0, the 

suggested LCPPLs with symmetric and uniform porous  

 
Fig. 7 ŵ  as a function of lx/hp for LCPPLs with lx/hl = 

100 

 

 
Fig. 8 ŵ  as a function of lx/hl for LCPPLs with lx/hp= 10 

 

Table 2 ŵ  for the suggested LCPPLs with symmetric 

porous core and [45, -45, 45, -45] laminated faces  

  ly/lx =1  ly/lx =2 

B.C. K1,K2 p0=0 p0=0.5  p0=0 p0=0.5 

CCCC (0,0) 0.2822 0.3143  0.5127 0.56465 

 (50,0) 0.2795 0.3109  0.5033 0.55325 

 (0,5) 0.2769 0.3077  0.5010 0.55066 

CSCS (0,0) 0.3504 0.3858  1.0197 1.0873 

 (50,0) 0.3462 0.3808  0.9853 1.0481 

 (0,5) 0.3424 0.3761  0.9780 1.0399 

SSSS (0,0) 0.4413 0.4745  1.0910 1.1535 

 (50,0) 0.4348 0.4669  1.0515 1.1092 

 (0,5) 0.4289 0.4601  1.0435 1.1004 

 

 

cores have the lowest and highest values of deflections, 

respectively. Moreover, the use of porous cores leads to 

LCPPL with higher deflections. The increase of porosity 

parameter from p0=0 to p0=0.6 leads to slight increases in 

the deflections of LCPPLs with all the three profiles of 

porosity distributions; however, for p0>0.6, there is a 

 
Fig. 6 ŵ  as a function of porosity parameter in LCPPL 

with uniform, symmetric and non-symmetric porous core 
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significant difference in the deflections of the plates with 

uniform porous core and those with both symmetric and 

non-symmetric porous cores. 

For the suggested LCPPL, the effects of core thickness 

and laminated faces thickness on deflections are shown in 

Figs. 7 and 8, respectively. For the plates with lx/hl = 100, 

Fig. 7 shows that the increase of lx/hp which means the 

reduction of core thickness, leads to increase in the central 

deflections of the suggested plates with both porous core 

p0=0.5 and a core without porosity p0=0. Moreover, for the  

 

 

plates with lx/hp = 10, Fig. 8 shows that the increase of lx/hl 

which means the use of thinner laminated faces leads to 

dramatically increases of deflections. The effect of porosity 

on the deflections is increased by the decrease of the 

thickness of laminated faces. However, both figures show 

that the effect of porosity parameter on the deflections of 

the suggested LCPPLs is much lower than the thicknesses 

of LCPPL’s layers. This observation discloses that the 

weight of LCPPL can be easily reduced without a 

considerable increase in their static deflections. It also can  

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

  
Fig. 9 Stress distributions of through the thicknesses of LCPPLs with different fibre orientation arrangements 
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be concluded that the use of core (with or without porosity) 

between the layers of laminated composites leads to a sharp 

reduction in the static deflections of the resulted LCPPLs.  

The effects of the length, the boundary conditions (here 

S, C and F are respected the edges with simply supported, 

clamped and free constrain, respectively) and foundation 

coefficients on the deflection of the suggested LCPPL 

areshown in Table 2. The results show that rectangular 

plates have much higher deflection than corresponding 

square ones especially in plates with CSCS boundary 

conditions. Moreover, among the considered boundary  

 

 

conditions, the highest and the lowest deflections are 

observed in fully simply supported and clamped LCPPLs. 

In terms of foundation coefficients, the shear effect K2 of 

foundation has bigger influence than the normal one K1 on 

decreasing the deflections.  
 

4.3 Stress distribution in the suggested LCPPL 
 

For the stress distributions of the suggested LCPPL, 

clamped square plates subjected to a uniform pressure of 

f0=10 kPa with lx/hp = 20, lx/hl = 40, K1=0 and K2=0 are 

considered.  

(a) 

  

(a) 

 
(b) 

  

(b) 

  
(c) 

  

(c) 

  
Fig. 10 Stress distributions of through the thicknesses of 

LCPPLs with the different profiles of porosity 

Fig. 11 Stress distributions of through the thicknesses of 

LCPPLs with the different values of porosity parameter 
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The effect of fibre orientations on the static results of 

LCPPLs with four-layer laminated composites of [0 90 0 

90], [0 30 60 90] and [45 -45 45 -45] are shown in Fig. 9. It 

can be seen that the core and laminated composite layers 

have the lowest and highest values of stresses, respectively. 

It is observed that normal stresses are smoothly changed 

between [45 -45 45 -45] laminated layers; however, their 

sharp changes are observed between the [0 90 0 90] 

laminated layers. A comparison between Figs. 9a and 9b 

discloses that the layers with the same fibre orientations 

have almost the same normal stress values. Among the 

considered LCPPLs, the plates with [0 30 60 90] and [45 -

45 45 -45] laminated layers have the lowest and highest 

values of out-of-plane shear stresses, respectively. But, the 

lowest values of in-plane shear stress are observed for the 

plate with [45 -45 45 -45] laminated layers. Furthermore, in 

[45 -45 45 -45] LCPPL, the equal values of normal stresses 

(σxx = σyy) and out-of-plane shear stresses (τxz = τyz) are 

observed due to the symmetric arrangement of fibre 

orientation in both x and y directions.  Figs. 10 and 11 also 

show the effect of porosity distribution and parameter on 

the static responses of [45 -45 45 -45] LCPPLs, 

respectively. The figures show that both porosity 

characteristics have an insignificant effect on the in-plane 

stresses of the considered plates which reveals that the use 

of porous core offers stable conditions in terms of in-plane 

normal and shear stresses. The reason is that the values of 

in-plane stresses are directly related to the stiffness of each 

layer. As mentioned in Section 4, the Young’s modulus of 

(perfect or porous) core is much less than Young’s modulus 

of laminated composites. Furthermore, these two 

parameters of porous core have a significant effect on the 

out-of-plane shear stress distributions. The distribution of τxz 

(and τyz) are completely similar to the profile and volume of 

porosities in core layer.  

 

 

5. Conclusions 
 

This paper suggested embedding a porous layer in the 

middle of laminated composite layers to enhance the static 

behavior of traditional laminated composite plates. The 

static governing equations of the suggested LCPPL rested 

on two-parameter foundation were derived and investigated 

in a framework of FSDT and FEM to present their 

deflection and stress distributions. The following results 

were observed in our investigations:  

• Embedding core (with or without porosity) 

between the layers of laminated composites leads to a sharp 

reduction in the static deflections of the resulted LCPPLs.  

• In compare with perfect cores, the use of porous 

cores between the layers of laminated composite plates can 

offer a considerable reduction in structural weight without a 

significant difference in their static responses. 

• The minimum and maximum deflections were 

observed for LCPPLs with fibre orientations of only α=±45 

and α=0 (or 90), respectively. 

• The increase of porosity parameter from p0=0 to 

p0=0.6 leads to slight increases in the deflections of 

LCPPLs. 

• The addition of layers after nl=4 has no 

considerable effect on the reduction of LCPPL deflections. 

• A smooth variation of normal stresses between 

the layers of laminated faces are observed in [45 -45 45 -45] 

LCPPLs. 
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Appendix 
 

The components of elastic constant matrix D  for isotropic 

porous layer can be determined as:  

11 22 12 112

44 55 66 16 26 45

, ,
1

, 0

p

p

p

p

E
D D D D

D D D G D D D




= = =
−

= = = = = =

 (A1) 

where 
pG  is shear modulus of porous layer.  

Due to the elimination of 
z  in shear deformation 

plate theories and presenting high accurate results, the 

reduced elastic constant matrix for the laminated composite 

layers should be considered. The components of such 

reduced matrix 
ijD  can be determined as below: 

( )3 33/ , 1,2,6

, 4,5

ij i ij

ij

ij

Q Q Q Q i j
D

Q i j

 −  =
= 

=

 (A2) 

where  

23 32 13 31

11 1 22 2

21 31 32 13 12 23

12 1 13 3

23 13 21 12 21

23 3 33 3

44 23 55 13 66 12

32 23 21 12 13 31 32 21 13

1 2 3

1 1
,

,

1
,

, ,

1 2

Q E Q E

Q E Q E

Q E Q E

Q G Q G Q G

E E E

   

     

    

        

− −
= =

 

+ +
= =

 

+ −
= =

 

= = =

− − − −
 =

 
(A3) 

The other important parameter on the elastic constants 

of laminated composites is the angle of fibers   in each 

layer. The components of elastic matrix for these composite 

layers ijQ  can be determined as (Reddy 2004): 

( )4 2 2 4
11 11 12 66 222 2Q m Q m n Q Q n Q= + + + , 

( )4 2 2 4
22 11 12 66 222 2Q n Q m n Q Q m Q= + + + , 

2 2
44 44 55Q m Q n Q= + , 2 2

55 55 44Q m Q n Q= +  , 

( ) ( )2 2 4 4
66 11 22 12 662Q m n Q Q Q m n Q= − + − + − , 

( ) ( )2 2 4 4
12 11 22 66 124Q m n Q Q Q m n Q= + + + , 

2 2
13 13 23Q m Q n Q= +  , 2 2

23 13 23Q n Q m Q= + , 

( )36 32 31Q Q Q mn= −  , ( )45 45 55Q Q Q mn= − , 

( )( )2 2 2 2
16 11 22 12 662Q mn n Q m Q m n Q Q = − − − − +

 
 

( )( )2 2 2 2
26 11 22 12 662Q mn m Q n Q m n Q Q = − − − − +

 
 

(A4) 

where cosm =  and sinn = . 
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