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1. Introduction 
 

Many passive energy-dissipation devices such as metal 

dampers, friction dampers and viscous dampers, have been 

developed and widely applied to building structures to 

suppress the excessive wind- or earthquake-induced 

vibration (Soong and Constantinou 1994, Liu et al. 2018). 

Tuned mass dampers (TMD) are also one of the most 

widely used control devices especially in high-rise 

buildings subjected to wind excitations. To address its high 

sensitivity to frequency mistuning or to variation of the 

primary structural parameters, multiple tuned mass dampers 

(MTMD) with distributed natural frequencies were 

proposed by Xu and Igusa (1992). It has been shown that 

the MTMD can be made more effective and robust than a 

conventional optimal single TMD (Abe and Fujino 1994, 

Kim and Lee 2018, Li 2002, Yamaguchi and Harnpornchai 

1993, Zuo et al. 2017). 

The conventional dampers are effective with respect to 

the relative displacement or relative velocity between two 

nodes. As an extension of this mechanical concept and by 
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using the force-current analogy between mechanical and 

electrical networks, Smith (2002) firstly introduced the 

inerter element, which had the property that the force 

generated at its two terminals was proportional to the 

relative acceleration between them. The constant of 

proportionality is termed “inertance” and is measured in 

mass units. Various physical realizations of the ideal inerter 

have been proposed, such as the rack-pinion type (Smith 

2002), the ball-screw type (Chen et al. 2009) and the 

hydraulic type (Wang et al. 2010). All these types of inerter 

transform the linear motion into the high-speed rotational 

motion and significantly amplifies the physical mass of the 

system. Initially, this device was employed in the 

suspension systems of Formula 1 racing car (Chen et al. 

2009) and then successfully applied to many mechanical 

systems such as motorcycles (Evangelou et al. 2007), trains 

(Wang et al. 2009), optical tables (Wang and Wu 2014) and 

aircraft landing gears (Xin et al. 2015). Later, Wang et al. 

(2007) introduced this device to control the vibration of 

civil engineering structures. Then, Takewaki et al. (2012) 

further investigated the fundamental mechanism of 

earthquake response reduction in building structures with 

inerters and Chen et al. (2014) studied the influence of 

inerter on natural frequencies of vibration systems. Due to 

its performances of mass amplification and frequency 

tuning, the inerter-based damper attracts more researchers’ 

attentions. 

Considering different combinations among mass, spring, 
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damper and inerter elements, various types of inerter-based 

damper are proposed. Hwang et al. (2007) developed a 

rotational inertia viscous damper (RIVD) for structural 

vibration control, in which a ball screw was utilized to 

transform the linear motion into high-speed rotational 

motion of an internal tube immersed in the viscous fluid 

that provided a significant damping force to the system. 

Based on the concept of RIVD, Ikago et al. (2012a) further 

proposed a tuned viscous mass damper (TVMD) to mitigate 

seismic induced vibrations of buildings, and they derived 

the closed-form solution of an optimum design for the 

TVMD incorporated into a SDOF structure using the fixed-

point method (Den 1985). Some researchers introduced 

inerter into the conventional TMD system to increase its 

inertial property without evidently increasing its physical 

mass. Marian and Giaralis (2014) proposed a tuned mass-

damper-inerter (TMDI) by utilizing the mass amplification 

effect of the inerter, and they analytically and numerically 

demonstrated that the TMDI was more effective than the 

TMD with the same amount of additional auxiliary mass in 

reducing the vibrations of stochastically support-excited 

structural systems. Giaralis and Taflanidis (2017) further 

showed the enhanced robustness of the TMDI to building 

uncertainties. A better performance was also found for 

suppressing the wind-induced vibrations of tall buildings by 

using TMDI (Giaralis and Petrini 2017). Lazar et al. (2014) 

developed a tuned inerter damper (TID), a special case of 

TMDI without the attached mass, to reduce the seismic-

induced vibrations of a single degree-of-freedom (SDOF) 

system. Numerical results showed that the TID could be an 

attractive alternative to the TMD and other damper systems 

due to its small mass and overall size. Similarly, following 

the traditional layout of the TMD, Hu and Chen (2015) 

proposed different configurations of inerter-based dynamic 

vibration absorbers (IDVAs) by replacing the damper in the 

TMD with some inerter-based mechanical networks, which 

were one-terminal devices different from the TMDI and 

TID and have been successfully applied to the passive 

vibration control of vehicle suspension systems (Shen et al. 

2016), beams (Jin et al. 2016) and cables (Lazar et al. 2016, 

Sun et al. 2017). It should be noted that all these 

aforementioned applications are focus on using one inerter-

based control device in SDOF or multiple degree-of-

freedom (MDOF) structures. 

In practical application, more than one inerter-based 

damper may be used to achieve a better improvement in the 

response reduction of the primary structure. At present, the 

effectiveness of multiple inerter-based devices for 

suppressing vibration of a building has not been 

systematically studied. Ikago et al. (2012b) placed TVMDs 

between every storey in a multi-storey building, but all the 

TVMDs had the same parameters, which in essence still 

correspond to a single TVMD with the mass being the sum 

of the TVMDs. Zhang et al. (2016) introduced two parallel 

TIDs into the bottom storey of an idealized five-storey 

building and the optimized TIDs showed the remarkable 

effectiveness when the total inertance was smaller than 

1500 kg. Wen et al. (2017) presented a comparable 

performance of distributed TVMDs and TIDs to control 

multiple modal vibrations relative to a singe TVMD and 

TID. However, there is less detailed discussion on the effect 

of parameters of TVMDs or TIDs, e.g., the frequency band 

and the total number of TVMD or TID included, on the 

vibration control of the primary structure to investigate the 

fundamental characteristics of multiple inerter-based 

dampers. 

According to the concept of MTMD, multiple tuned 

viscous mass damper (MTVMD) consisting of many 

TVMDs with distributed natural frequencies is proposed in 

the present paper. The control performance of the proposed 

system is investigated through analytical case studies in the 

frequency domain. The arrangement of this paper is as 

follows: Section 2 gives the governing equation of the 

MTVMD-structure system as well as the frequency 

response functions of the structure and individual TVMD. 

To easily obtain a physical understanding of the dynamic 

characteristics of the system, some assumptions, i.e., the 

stiffness and damping coefficient of each TVMD are same 

and the natural frequencies of the MTVMD are uniformly 

distributed, are introduced in Section 3. Based on the 

simplified MTVMD-structure system, the effect of the 

parameters of the MTVMD on the modal properties is 

investigated in Section 4. Resulting from this effect on the 

modal properties, some fundamental characteristics of the 

MTVMD are presented in Section 5. Sections 6 and 7 show 

the effectiveness and robustness of the MTVMD. At last, 

Section 8 summarizes the major findings of the present 

work. 

 
 
2. Frequency responses of the MTVMD-structure 
system 

 

In the present study, MTVMD consisting of n TVMDs 

is considered for the control of the specific vibration mode 

of a structure. The analytical model is shown in Fig. 1 and 

the notations used in this study are shown in Table 1. In 

addition, assumption that natural frequencies of the 

structure are well-separated is adopted such that the 

structure can be adequately represented by an equivalent 

SDOF system. The main system is characterized by the 

mode generalized stiffness ks, damping coefficient cs and 

mass ms, respectively. Each TVMD is also modelled as a 

SDOF system which is set to have different dynamic 

characteristics. Especially, the natural frequencies of the 

MTVMD are to be equally distributed around the natural 

frequency corresponding to the structural vibration mode to 

be mitigated. As a result, the total number of degree-of-

freedom of this MTVMD-structure system is n+1. The 

analysis that follows is based on this simplified system.  

The equations of motion for the analytical model 

subjected to a force f(t) applied directly on the structural 

mass can be expressed as 

1

( ) ( )

( ) 0  1,2,...,

n

s s s s s s j s j

j

j j j j j j s

m x c x k x k x x f t

m x c x k x x j n

=


+ + + − =


 + + − = =



 

(1) 
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Table 1 Notation 

0 : Mass of the primary system 

cs : Damping coefficient of the primary system 

ks : Stiffness of the primary system 

xs : Displacement of the primary system 

f(t) : 
Applied force on the mass of primary 

system 

𝑥̈𝑔(𝑡) : Base acceleration excitation 

n : Total number of TVMD included 

mj : Equivalent mass of each TVMD 

cj : Damping coefficient of each TVMD 

kj : Stiffness of each TVMD 

xj : 
Relative displacement of the two inerter 

terminals of each TVMD 

ω : Exciting frequency 

ωs : Natural frequency of the primary system 

ξs : Damping ratio of the primary system 

ωj : N atural frequency of each TVMD 

ξj : Damping ratio of each TVMD 

γj = ωj / ωs : Tuning frequency ratio 

λ=ω / ωs : Input frequency ratio 

μj = mj / ms : Mass ratio 

ωT : Average frequency of all the TVMDs 

ξT : Average damping ratio of the TVMDs 

β : 
Non-dimensional frequency spacing of the 

TVMDs 

f =ωT/ωs : Average tuning frequency ratio 

mT : Total mass of TVMDs 

μ= mT/ms : Total mass ratio 

cT : Constant damping for each TVMD 

kT : Constant stiffness for each TVMD 

Hs(λ) : 
Displacement frequency response function 

of the primary system 

Hj(λ) : 
Displacement frequency response function 

of each TVMD 

I : 
Rotational moment of inertia of the 

physical mass in TVMD 

ρj : Lead of the ball screw in TVMD 

M : 
Mass matrix of the MTVMD-structure 

system 

C : 
Damping matrix of the MTVMD-structure 

system 

K : 
Stiffness matrix of the MTVMD-structure 

system 

r : 
Influence coefficient vector due to the 

ground motion 

 

 
  

Ω : 
Eigenvalues of the MTVMD-structure 

system 

𝜔̂𝑖 : 
Natural frequency of the MTVMD-

structure system 

𝜉𝑖 : 
Modal damping ratio of the MTVMD-

structure system 

ϕi : 
Mode vector of the MTVMD-structure 

system 

ϕj,i : The jth component of ϕi 

ηs,i : 
Modal participation factor in the 

frequency-domain 

 

 
which can be further written in a matrix form as 

+ + = ( )tMx Cx Kx f
 (2) 

where the vector x = [xs x1 x2 … xn]T is a n+1 dimensional 

displacement vector and xj denotes the relative displacement 

of the two inerter terminals; f(t) = [f(t) 0 0 … 0]T is the 

applied loading vector. Since the TVMD is not activated by 

the ground motion but the displacement in the primary 

structure, the present study is also suitable for the case of 

base acceleration excitations. In such case, only the primary 

structure is subjected to the base excitation and f(t) = 

[−𝑚𝑠𝑥̈𝑔(𝑡) 0 0 … 0]T = −𝐌𝐫𝑥̈𝑔(𝑡), where r = [1 0 0 … 

0]T denotes the influence coefficient vector due to the 

ground motion and 𝑥̈𝑔(𝑡) is an ground acceleration. M, C 

and K are the mass, damping and stiffness matrices, 

respectively. They are given by 

1 2diag( )s nm m m m=M
 

1 2diag( )s nc c c c=C

1 2

1

1 1

2 2

=

n

s j n

j

n n

k k k k k

k k

k k

k k

=

 
+ − − − 

 
 −
 

− 
 
 

−  



K

 

Herein, diag(.) denotes the diagonal matrix with diagonal 

elements given in braces. 

The steady-state harmonic response of the system can be 

obtained by substituting f(t) = eiωt into Eq. (2) and using  

ks

cs

ms

k1

c1
m1

k2

c2
m2

kn

cn

mn
...

MTVMD

Structure 

(SDOF)

 
Fig. 1 MTVMD-structure system 
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x(t)=e
st 
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m1

k2

c2
m2

kn

cn

mn
....

 

Fig. 2 Configuration for impedance definition 
 
 

Cramer’s rule for the solution, as done by Xu and Igusa 

(1992) and Yamguchi and Harnpornchai (1993). 

Alternatively, it is more convenient to use Laplace 

transformation. According to Eq. (1), the equation of 

motion for the primary structure in the Laplace domain can 

be expressed as 

2 ( ) ( ) ( )s s s sm s c s k Z s X s f s + + + =   
(3) 

where Z(s) is the impedance of the MTVMD. In this paper, 

impedance is defined to be the ratio of force to velocity as 

shown in Fig. 2. From this figure, Z(s) can be derived as 

2

2
1

( )
( )

n
j j j

j j j j

k m s c s
Z s

m s c s k=

+
=

+ +


 

(4) 

Then, one can obtain the normalized displacement 

transfer function of the primary structure as 

2

0 2

2
1

( )
( ) =

( )( )

s s
s n

j j j

s s s

j j j j

X s k
H s

k m s c sX s
m s c s k

m s c s k=

=
+

+ + +
+ +


 

(5) 

where X0(s) = f(s)/ks represents the static displacement of 

the primary system. 

Similarly, based on the Laplace transformation of Eq. 

(1), the frequency-domain displacement corresponding to xj 

in the TVMD can be obtained as  

2

( )
( )

j s

j

j j j

k X s
X s

m s c s k
=

+ +
 

(6) 

For generality and convenience, the following 

parameters are introduced: 

2 = s
s

s

k

m


  

=
2

s
s

s s

c

m



  

2 =
j

j

j

k

m


  

=
2

j

j

j j

c

m



 

By substituting s=iω in Eq. (5), the frequency response 

function of the structure with MTVMD can be represented 

as 

2

2 2
( )

i2 ( ) /

s
s

s s s s

H
Z m




     
=
− + + +

 

(7) 

where 
2

2 2
1

( i2 )
( )

i2

n
j j j

j j j j

k
Z

   


    =

− +
=

− + +


 
Introducing the tuning frequency ratio of the jth TVMD, 

i.e., γj = ωj / ωs , the mass ratio of the jth TVMD, i.e., μj = mj 

/ ms, and the input frequency ratio of the excitation, i.e., λ 

=ω / ωs, and carrying out mathematical manipulations, the 

frequency response functions of the structure and individual 

TVMD can then be written in the explicit and general form 

as 

2 2

2

2 2
1

1
( )

( i2 )
i2 1

i2

s n
j j j j

s

j j j j

H 
     

  
    =

=
− +

− + + +
− + +


 

(8) 

and 

2

2 2
( ) ( )

i2

j

j s

j j j

H H


 
    

=
− + +

 

(9) 

respectively. Note that the response ratio of each TVMD in 

the above equation is exactly the same as that of a single 

TVMD (STVMD) because there is no direct interaction 

among the TVMDs in a MTVMD. 

The displacement amplitudes in the structure and each 

TVMD can be represented by |Hs(λ)| and |Hj(λ)|, 

respectively. Simultaneously, they are dynamic 

magnification factors of structural and TVMD responses. In 

this paper, the reduction in the amplitudes of the structural 

frequency response or the dynamic magnification factor of 

structural response is discussed numerically for different 

characteristics of MTVMD in order to investigate its 

performance. 

 

 

3. Simplification for the MTVMD-structure system 
 

In this paper, interest is on fundamental characteristics 

on the mechanism of control of this kind of MTVMD for 

the suppression of harmonically forced structural vibration. 

The harmonic responses of the MTVMD-structure system 

can always be evaluated using the exact expressions in Eqs. 

(8) and (9). However, when the TVMDs in the MTVMD 

have arbitrary properties, the system responses can be 

erratic and complicated. It is then difficult to obtain a 

physical understanding of the dynamic characteristics of the 

system. Therefore, in this section a special class of TVMD 

is examined. It is assumed that the stiffness and damping 

coefficient of each TVMD in the MTVMD are same and the 

natural frequencies of the MTVMD are uniformly 

distributed. As a result, the MTVMD is made by keeping 

the stiffness, damping constant and mass variation, i.e. k1 = 

k2 = … = kn; c1 = c2 = … = cn ; m1 ≠ m2 ≠ … ≠ mn. Note that 

for a ball-screw type TVMD sketched in Fig. 3, its 

equivalent mass or inertance is 

2

2π
j

j

m I


 
=   

   

(10) 

where I is the rotational moment of inertia of the physical 

mass in the damper and ρj is the lead of the ball screw. In 

the MTVMD, I can be fixed and ρj varies such that various 

equivalent masses of the TVMDs can be obtained. 
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Let ωT be the average frequency of all the TVMDs, i.e., 

𝜔𝑇 = ∑ 𝜔𝑗/𝑛
𝑛
𝑗=1 . The natural frequency of the jth TVMD 

can be presented as follows  

T

1
1

2 1
j

n
j

n


 

 +  
= + −  

−    

(11) 

where the parameter β is the non-dimensional frequency 

spacing of the MTVMD, defined as 

1

T

n 




−
=

 

(12) 

in which, ω1 and ωn represent natural frequencies of the first 

and the last TVMD, respectively. 

If kT and cT are the constant stiffness and damping of 

each TVMD, respectively, then the mass and damping ratio 

of the jth TVMD are expressed as 

T

2j

j

k
m


= T T

T2 2
j j

j j

c c

m k
 


= =

 

(13) 

Note that the mass of the TVMD in the above equation 

follows an inverse quadratic relation to the natural 

frequency of the TVMD and the damping ratio of each 

TVMD is proportional to its natural frequency such that the 

distribution of damping ratios of the MTVMD is consistent 

with that of its natural frequencies. The damping ratio 

spacing can be given by ∆ξ = βξT, where ξT is the average 

damping ratio of the TVMDs in the MTVMD, defined as 

T T
T

1 T

1

2

n

j

j

c

n k


 

=

= =
 

(14) 

The ratio of the total mass of the MTVMD to the mass 

of the main structure (i.e., the generalized mass of the 

structure in the mode that needs to be controlled) is referred 

to as the total mass ratio, i.e., 

T

s

m

m
 =

 

(15) 

where 𝑚𝑇 = ∑ 𝑚𝑗
𝑛
𝑗=1  is the total mass of the MTVMD. 

The constant stiffness and damping of each TVMD may 

be evaluated using 

T 2
1

1
/

n

s

j j

k m
=

= 
  

T T T 2
1

1
2 /

n

s

j j

c m  
=

 
=   

 


 

(16) 

 

 

The ratio of the average frequency of the MTVMD to 

the natural frequency of the main structure is defined as the 

tuning frequency ratio, i.e., 

T

s

f



=

 

(17) 

Then, utilizing Eqs. (11)-(17), the parameters required in 

the frequency response functions in Eqs. (8) and (9) can be 

expressed as 

2

2
1

1
/

n

j j

j j

  
=

 
=   

 


 j jf =
 Tj j  =

 

(18) 

where 

1
1

2 1
j

n
j

n




+ 
= + − 

−   

After introducing these assumptions on MTVMD, it is 

apparent that the frequency response functions of the 

MTVMD-structure system only depend on the frequency 

band β, the average damping ratio ξT, the tuning frequency 

ratio f, the total number of TVMD n and the total mass ratio 

μ. The problem is thus simplified significantly. 

If the natural frequencies of the TVMDs are equal to 

each other, this configuration degenerates to a STVMD with 

mass m0 = mT, damping c0 = cT or damping ratio ξ0 = cT 

/(2mTωT) and natural frequency ω0 = ωT, as shown in Fig. 4. 

The frequency response function of the structure becomes 

2 2
2 0 0 0

2 2

0 0 0

1
( )

( i2 )
1 i2

i2

s

s

H 
    

  
    

=
− +

− + +
− + +

 

(19) 

which is consistent with the result provided by Ikago et al. 

(2012a) and this type damper has been effectively used in 

controlling motion of SDOF and MDOF structures for the 

optimally tuned situation (Ikago et al. 2012a,b). 

Like studies on MTMD (Abe and Fujino 1994, Kim and 

Lee 2018, Li 2002, Yamaguchi and Harnpornchai 1993, Zuo 

et al. 2017), these assumptions on MTVMD are introduced 

just to simplify the problem and do not change the 

fundamental characteristics of MTVMD. In this paper, 

following studies on MTVMD are based on the simplified 

analytical model. 

 

Fig. 3 Configuration of TVMD 
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Fig. 4 STVMD-structure system 

 

 
4. Modal properties of the MTVMD-structure 
system 

 

The poles of Hs(λ) correspond to the eigenvalues Ω 

(normalized by ωs) of the MTVMD-structure system, 

according to Eq. (8), which can be obtained by solving the 

following 2(n+1) order polynomial with respect to Ω 

( )

( )

2 2 2 2

1 1

4 2 2

1 1

i2 1 i2

i2 0

nn

s j j j j j

j j

nn

j j i i i

j i
i j

     

    

= =

= =


 
− + + + − + + − 
 

− + + =

 

 
 

(20) 

We know that there are 2(n+1) solutions to the above 

equation in the complex-valued field, which are real- or 

complex-valued depending on the amount of damping in the 

MTVMD-structure system. For simplification, in the 

present study attention is restricted to under-critical 

damping such that the eigenvalues of the system are 

complex-valued and appear in conjugate pairs. In such case, 

the ith eigenvalue can be expressed as (Chen et al. 2017) 

2ˆ ˆˆ ˆ, i 1i i
i i i i

s s

 
 

 
  = −  −

 

(21) 

where the superposed bar denotes complex conjugate; 𝜔̂𝑖 

and 𝜉𝑖 are the ith natural frequency and modal damping 

ratio, respectively. They can be obtained by  

ˆ
i

i

s




= 
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(22) 

herein, |.| and Re(.) represent the modulus and real part of a 

complex value, respectively. 

Substituting the calculated eigenvalues individually into 

the eigenvector equation, i.e., 

2 2( i )i s i s i − +  + =M C K 0
 

(23) 

the corresponding mode vector, ϕi, can then be obtained. 

Referring to vibration shapes, these modes can be divided 

into two categories. One is associated with the main 

structure, named as structure-dominant mode, representing 

the whole motion of the MTVMD-structure system and the 

other is called TVMD-dominant mode, which reflects the 

local motion of individual TVMD. In this study, each mode 

is normalized such that the largest modulus of entities in the 

mode vector is unit. Since no interaction exists among these 

TVMDs, each TVMD-dominant mode is close to an n+1 

dimensional vector, ei, with the ith entity being unit and 

others zero, where i is the DOF identifier of each TVMD. 

To investigate the effect of each mode on the structural 

response, it is convenient to express the frequency response 

function shown in Eq. (8) in terms of mode superposition as 
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where 
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ϕj,i is the jth component of the ith mode and ϕs,i denotes the 

component associated with the structure. Considering the 

modal participation factor in the modal superposition 

approach in the time-domain, define the modal participation 

factor in the frequency-domain as follows 
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(25) 

which reflects the relative contribution of the ith mode to the 

structural response. Since the natural frequencies and modal 

damping ratios are also included in the above expression, 

ηs,i should, to some degree, be viewed as a comprehensive 

indicator. This is very different from the conventional 

modal participation factor, which only represents the 

contribution of each mode to the spatial distribution of the 

applied loading. 

Recalling the assumptions introduced into the MTVMD-

structure system, it is apparent that the modal properties 

(the natural frequency, modal damping ratio and modal 

participation factor) are functions of the frequency band, the 

average damping ratio, the tuning frequency ratio, the total 

number of TVMD and the total mass ratio. In the following, 

the effect of these parameters on the modal properties is 

examined with only one parameter varying and others being 

constant. The analytical results are illustrated by several 

numerical examples. In all the examples, the natural 

frequencies are sorted in descending order and the modes 

are divided into two categories, i.e., structure-dominant 

mode and TVMD-dominant mode. The former is always at 

the center of all the modes and the latter further consists of 

the outer two modes and the intermediate modes. For the 

sake of comparison, the natural frequency and damping 

ratio of individual TVMD calculated by Eqs. (11) and (13) 

are also presented with dashed curves or discrete dots in the 

subsequent figures. 
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Fig. 5 shows how changes in the frequency band of the 

MTVMD affect the modal properties. Ten TVMDs are used 

with the average damping ratio ξT = 0.05, the tuning 

frequency ratio f = 1.0, the total mass ratio μ = 0.1 and the 

structural damping ratio ξs = 0.02. It can be observed that 

for the TVMD-dominant modes, the distribution or spacing 

of the natural frequencies increases continually as β 

increases, which means that the MTVMD-structure system 

becomes a system with well-separated natural frequencies 

from one with closely spaced frequencies and the 

interaction between the structure and the TVMD then 

becomes weaker for the input frequency around the 

structural natural frequency. Note that 𝜔̂𝑖 and 𝜉𝑖  in the 

first half modes decrease linearly with β increasing, which 

indicates some secondary peaks corresponding to these 

modes in the structural frequency response curve may 

appear in the case of larger frequency bands. It can also be 

found that the outer two (TVMD-dominant) modes 

significantly differ from other intermediate ones, 

particularly when β<0.46, their modal damping ratios are 

far lower than the average value, and their contributions to 

the structural response are very important as shown in Fig. 

5(c). For the structure-dominant mode, the modal damping 

ratio decreases constantly with β increasing. In addition, the 

contribution of this mode becomes remarkable when 

β>0.46 (see Fig. 5(c)). As a result, it is easy to predict that 

two primary peaks locating at the natural frequencies of the 

two outer (TVMD-dominant) modes will appear in the 

frequency response curve of structure when β is small,  

 

 

otherwise a single primary peak locating at the structural 

natural frequency will appear in conjunction with some 

secondary peaks resulting from the nonignorable 

contribution of intermediate TVMD-dominant modes 

shown in Fig. 5(c). In other words, the structural response is 

firstly controlled by the outer two (TVMD-dominant) 

modes and then by the structure-dominant mode with β 

increasing from zero. 

Fig. 6 depicts the analyzed modal properties for 

different average damping ratios. In this study, parameters 

required about MTVMD except the frequency band β = 

0.46 are the same as those used in Fig. 5. It can be seen in 

Fig. 6(a) that the natural frequencies corresponding to the 

TVMD-dominant modes are hardly affected by the change 

of MVTMD damping and very close to the natural 

frequency of individual TVMD, especially in the case of 

high MTVMD damping, while the natural frequency of the 

structure-dominant mode significantly decreases after ξT = 

0.137. Fig. 6(b) shows that all the damping ratios of 

TVMD-dominant modes increase linearly as ξT increases 

and are also very close to the damping ratio of individual 

TVMD. However, after the average damping ratio reaches a 

certain value (ξT is approximately 0.137 in this case), the 

damping ratio of the structure-dominant mode, starts 

decreasing gradually. This indicates that there exits a proper 

average damping ratio making the damping ratio of the 

structure-dominant mode maximum. After that, the 

contribution of the structure-dominant mode to the 

structural response increases sharply as shown in Fig. 6(c).  

   
(a) frequency ratio (b) damping ratio (c) modal participation factor 

Fig. 5 Effect of the frequency band on the modal properties (ξT=0.05, f=1.0, μ=0.1, n=10, ξs=0.02) 

   
(a) frequency ratio (b) damping ratio (c) modal participation factor 

Fig. 6 Effect of the average damping ratio on the modal properties (β=0.46, f=1.0, μ=0.1, n=10, ξs=0.02) 
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From this figure, we can also get that the structure-

dominant mode almost dominates the whole structural 

response when the average damping ratio is larger. 

 As shown in Fig. 7, it is obvious that the effect of 

tuning frequency ratio on the outer two (TVMD-dominant) 

modes is very different from other modes. When f decreases 

gradually from 1.0, the natural frequency and damping ratio 

of the second of the outer two modes tend towards to those 

of the structure-dominant mode, while its contribution to 

the structural response becomes larger and larger. When f 

increases gradually from 1.0, the modal properties of the 

first of the outer two modes has the same trend as those of 

the second of the outer two modes. Therefore, when f varies 

around 1.0, the maximum value of the two primary peaks in 

the frequency response of the structure will swing from one 

side to another. 

Fig. 8 presents the variation of the modal properties with 

respect to the total number of TVMD included in the 

MTVMD-structure system with β = 0.46, ξT = 0.05, f = 1.0, 

μ = 0.1 and ξs = 0.02. From this figure, it can be seen that 

the natural frequencies, damping ratios and modal 

participation factors of the outer two (TVMD-dominant) 

modes almost contain constant with the change of the 

number of TVMD when n is beyond 10. Likewise, the 

effect of the number of TVMD on the natural frequency of 

the structure-dominant mode is also ignorable. However, its 

modal damping ratio heavily depends on the number of 

TVMD, particularly in the case of smaller number of 

TVMD. Fig. 8(c) shows that the structure-dominant mode  

 

 

 

plays an important role in the structural response when a 

smaller number of TVMD is used and the contribution 

decreases with the number of TVMD increasing as same as 

that of the intermediate TVMD modes such that secondary 

peaks in the structural frequency response curve can be 

suppressed. 
Displayed in Fig. 9 is the variation of the modal 

properties with the total mass ratio. Other parameters 
required in this numerical example about the MTVMD-
structure system are the same as those used in the above 
studies. From Fig. 9(a), the total mass ratio mainly affects 
the natural frequencies of the outer two (TVMD-dominant) 
modes and one increases as μ increases, while the other is 
reverse. It can be found in Fig. 9(b) that when the total mass 
ratio is small, the damping ratio of the structure-dominant 
mode is very sensitive to μ and increases sharply as μ 
increases. What’s more, in such case, the structure-
dominant mode almost dominates the structural response as 
shown in Fig. 9(c). However, the contribution of the outer 
two (TVMD-dominant) modes to the structural response 
becomes more and more important with μ increasing. 
Therefore, when μ increases from a very low level, one 
primary peak firstly appearing in the structural frequency 
response curve, which corresponds to the structure-
dominant mode, will decrease constantly resulting from the 
increase of the modal damping ratio or the decrease of the 
modal contribution, then two primary peaks will appear and 
increase gradually, which can be verified by Fig. 15 
depicting the effect of total mass ratio on the structural 
response. 

   
(a) frequency ratio (b) damping ratio (c) modal participation factor 

Fig. 7 Effect of the tuning frequency ratio on the modal properties (β=0.46, ξT=0.05, μ=0.1, n=10, ξs=0.02) 

   
(a) frequency ratio (b) damping ratio (c) modal participation factor 

Fig. 8 Effect of the total number of TVMD on the dynamic characteristics (β=0.46, ξT=0.05, f=1.0, μ=0.1, ξs=0.02) 
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From the previous discussions, the frequency band is a 

key design parameter because it controls the natural 

frequency spacing of the MTVMD-structure system and 

affects the effectiveness of MTVMD to suppress the 

vibration of structure. As shown in the above figures, the 

effect of the parameters of MTVMD on the structure-

dominant mode and the outer two TVMD-dominant modes 

is very different from other modes and more contribution to 

the structural response comes from the structure-dominant 

mode or the outer two TVMD-dominant modes. The 

increases of both the frequency band and the average 

damping ratio make the damping ratios of the outer two 

TVMD-dominant modes increase (for the frequency band, 

one damping ratio of the outer two TVMD-dominant modes 

decreases, but the contribution of this mode also decreases). 

The total number of TVMD and the total mass ratio play an 

important role in the increase of the damping ratio of the 

structure-dominant mode, while larger frequency band and 

average damping ratio significantly reduce the damping 

ratio of the structure-dominant mode. All the design 

parameters can adjust the relative contributions of the 

structure-dominant mode and the outer two TVMD-

dominant modes. These modal properties determine the 

performances of MTVMD in the following section. 
 

 

5. Performance of MTVMD 
 

As shown in Eqs. (8) and (18), the structural frequency 

response is associated with the frequency band β, the 

average damping ratio ξT, the tuning frequency ratio f, the 

total number of TVMD n and the total mass ratio μ. In this 

section, the fundamental characteristics of MTVMD are 

investigated numerically with these parameters by the 

reduction in the structural frequency response. For 

convenience of study, only one parameter varies and other 

four parameter are fixed in each numerical example. 

Moreover, the structural damping ratio keeps constant and 

ξs = 0.02 is also selected as the same as that in the 

aforementioned studies of modal properties. 
 

5.1 Effects of frequency band 
 

Fig. 10 depicts the analyzed frequency response curves 

of the structure for five different values of frequency band.  

 

 

Fig. 10 Frequency response curves of structure for 

different frequency bands of MTVMD (ξT=0.05, f=1.0, 

μ=0.1, n=20, ξs=0.02) 

 

 
The total mass ratio μ is 0.1 and the tuning frequency f =1.0. 

To adequately suppress secondary peaks, the total number n 

of TVMD should be large enough such that the frequency 

response curves can be smoothed adequately (see Fig. 13 

for more details). In this example, n is fixed to be 20. 

Similarly, the average damping ratio ξT is set to be 0.05 

according to Fig. 11, which is relatively very small 

compared with the optimum damping ratio (about 0.20) for 

a single TVMD. 

As can be seen from Fig. 10, the controlled structural 

response is transformed from a two-peak characteristic to a 

one-peak characteristic with the increase in frequency band 

of MTVMD due to the change in contributions of the outer 

two TVMD-dominant modes and the structure-dominant 

mode to the structural response shown in Fig. 5(c). From 

the perspective of physical significance, if the frequency 

band is large enough, the natural frequencies of the 

MTVMD-structure system are well-separated such that the 

interaction between the structure and TVMD is very weak 

and the system behaves like a SDOF system with natural 

frequency around that of the structure. If the frequency band 

is zero, all the natural frequencies of TVMD are practically 

equal to each other and the behavior of the MTVMD-

structure system becomes that of the STVMD-structure  
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(a) frequency ratio (b) damping ratio (c) modal participation factor 

Fig. 9 Effect of the total mass ratio on the dynamic characteristics (β=0.46, ξT=0.05, f=1.0, n=10, ξs=0.02) 
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Fig. 11 Frequency response curves of structure for 

different average damping ratios (ξT=0.05, f=1.0, μ=0.1, 

n=20, ξs=0.02) 

  

 

system, i.e., the maximum structural response is controlled 

by two primary peaks. Apparently, there is a proper or 

optimum value of the frequency band of MTVMD (0.46 for 

the case of Fig. 10) which makes the frequency response 

curve flat for a wide range of frequency (the maximum 

structural response is about 3.35 and the frequency range of 

the flat region is about 0.45). This is also the mechanism of 

vibration control by MTVMD. Because of this control 

mechanism, the effectiveness of MTVMD is very much 

dependent on the frequency band. 

It should also be noted that the effect of MTVMD is 

reduced if the frequency band increases too much as shown 

in Fig. 10. In addition, there are several slight secondary 

peaks in the response curve in the case of β = 1.0 and 1.5 as 

a result of the decrease of damping ratios of some lower 

TVMD-dominant modes (see Fig. 5(b)) or the increase of 

their contribution to the structural response (see Fig. 5(c)). 

 

5.2 Effects of average damping ratio 
 

Fig. 11 shows the changes in the frequency response 

curve of the structure due to the different values of average 

damping ratio of the MTVMD. The frequency band, the 

tuning frequency ratio, the total mass ratio and the total 

number of TVMD selected are 0.46, 1.0, 0.1 and 20, 

respectively. From this figure, it can be seen in the case of 

very small damping ratio that there exist a large number of 

significant secondary peaks, caused by the resonances of 

the intermediate TVMD, between the outer two peaks, 

which correspond to the outer two TVMD-dominant modes, 

and that one of the outer two peaks gives the maximum 

response of the structure. On the contrary, these secondary 

peaks vanish if the average damping ratio increases, since 

the damping ratios of the intermediate TVMD-dominant 

modes significantly increase as well (see Fig. 6(b)). As the 

average damping ratio continues to grow, the maximum 

response of the structure occurs at the resonance frequency 

of the structure due to the important contribution of the 

structure-dominant mode as shown in Fig. 6(c) and the 

frequency response curve with two primary peaks turns into  

 
Fig. 12 Frequency response curves of structure for 

different tuning frequency ratios (β=0.46, ξT=0.05, μ=0.1, 

n=20, ξs=0.02) 

 

 

Fig. 13 Frequency response curves of structure for 

different numbers of TVMD (β=0.46, ξT=0.05, f=1.0, 

μ=0.1, ξs=0.02) 

 

 

one with a single primary peak. The amplitude of the single 

primary peak, however, becomes larger if the damping ratio 

is too large. This is because the damping ratio of the 

structure-dominant mode becomes very small, and its 

contribution to the structural response is very remarkable in 

such case. In fact, in the case of a very large damping ratio, 

each TVMD is almost fixed to the structure such that the 

system becomes a SDOF one and the vibration energy in 

the structure cannot be dissipated. It can be concluded that 

the damping in MTVMD plays an important role in 

reducing the secondary peaks and the two primary peaks if 

the damping ratio is smaller, while the excessive damping 

increases the structural resonant peak. Therefore, an 

optimum average damping ratio exists in the MTVMD. 

 
5.3 Effects of tuning frequency ratio 
 

Fig. 12 presents the variation of frequency response 

curves of the structure with regard to the tuning 

frequencyratio. The frequency band, the average damping 

ratio, the total mass ratio and the total number of TVMD are 

set to 0.46, 0.05, 0.1 and 20, respectively. It is observed that  
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changing f can shift the amplitudes of the two primary 

peaks, one peak going up and the other going down due to 

the change in the contributions of the two outer TVMD-

dominant modes as shown in Fig. 7. The most favorable 

case is where the tuning frequency has equal amplitudes at 

the two primary peaks such that the response curve has the 

smallest vibration peak. Thus, the tuning frequency ratio 

plays a role in adjusting the heights of two primary peaks, 

which is identical to that in the conventional TDM, MTMD 

and STVMD systems. 
 

5.4 Effects of total number of TVMD 
 

The effectiveness of MTVMD is also very dependent on 

the total number of TVMD used in the MTVMD-structure 

system, as can be seen from Fig. 13, which depicts different 

response curves of structure for different total numbers of 

TVMD under the condition of β = 0.46, ξT = 0.05, f = 1.0 

and μ = 0.1. It is clear that increasing the total number of 

TVMD has the effect of reducing the magnitude of the 

secondary peaks due to the decrease in the contribution of 

the intermediate TVMD-dominant modes to the structural 

response (see Fig. 8(c)), which is very similar to the effect 

of the average damping ratio of MTVMD as shown in Fig. 

11. Also, as n increases continually, the primary peak is 

reduced remarkably. This is because the primary peak is 

dominated by the structure-dominant mode, whose damping 

ratio becomes higher with the increase of n as shown in Fig. 

8(b). However, when n reaches a certain value, increasing n 

continually no longer reduces the primary peak significantly 

since the damping ratio of the structure-dominant mode  

 

 
Fig. 15 Frequency response curves of structure for 

different total mass ratios (β=0.46, ξT=0.05, f=1.0, n=20, 

ξs=0.02) 

 

 

almost keeps constant (see Fig. 8(b)). Therefore, there is a 

minimum number of TVMD for the effectiveness of 

MTVMD. 

Like the traditional TMD, the working principle of 

MTVMD is also using resonance to introduce the vibration 

of structure into the TVMDs and as a result, the vibration 

energy is dissipated through the damping in the TVMDs. 

For instance, at λ = 0.75 and 1.0 in Fig. 14, there are always 

peaks with different amplitudes in all the frequency 

response curves of TVMD, which indicates more structural 
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Fig. 14 Frequency response curves of structure and TVMD for different numbers of TVMD 
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vibration is absorbed into the MTVMD at the two input 

frequencies. Hence, the peaks in the frequency response 

curve of the structure can be reduced continually, 

particularly the peak at λ = 1.0, as the total number of 

TVMD increases. This process is presented in Fig. 14. It 

should be noted that the effective frequency range of each 

TVMD (in the frequency range, more vibration occurs in 

the TVMD) is limited such that a reasonable number of 

TVMD is required to flatten the structural response curve in 

a wider input frequency band. In addition, we know that 

TVMD is a two-terminal device and activated by the 

displacement in the structure. However, from Fig. 14, the 

displacement in the damper is far larger than that in the 

structure. This is resulting from the negative stiffness 

characteristic of the inerter element such that the relative 

velocity and displacement in the viscous damper element 

connected to the inerter element can be amplified largely 

and more energy thus are dissipated. 
 

5.5 Effects of total mass ratio 
 

Fig. 15 shows the effect of different total mass ratios on 

the frequency response of the structure. Herein, β = 0.46, ξT 

= 0.05, f = 1.0 and n = 20. From this figure, it is obvious 

that increasing μ can constantly reduce the structural 

response within the input frequency range of β, while two 

primary peaks associated with the outer two TVMDs grow 

significantly and their spacing Δω=(ωn–ω1)/ωs, where ω1 

and ωn are natural frequencies of the outer two (TVMD-

dominant) modes, also increases. This is identical to the 

description of Fig. 9. In general, the total mass ratio is 

known or given in advance. However, it should be noticed 

that excessive mass ratios may result in larger peaks if the 

damping ratio cannot be changed simultaneously. 

According to the previous discussions based on the 

analytically calculated results of structural response curve, 

it can be said that the maximum response of the structure is 

controlled by the structure-dominant mode or one of the 

outer two TVMD-dominant mode, heavily depending on the 

selection of these parameters, unlike the MTMD in which 

the secondary peaks may dominate the maximum response 

of the structure (Yamaguchi and Harnpornchai 1993).The 

frequency band and the average damping ratio can be 

designed to reduce the amplitudes of the two primary peaks 

associated with the outer two TVMD-dominant modes, 

while larger values in the two parameters lead to the 

transformation of the two primary peaks to a single primary 

peak corresponding to the structure-dominant mode and the 

peak increases with the increase of the two parameters. The 

relative heights of the two primary peaks can be adjusted by 

the tuning frequency ratio. The number of TVMD and the 

total mass ratio can be used to suppress the primary peak at 

the structure-dominant mode, but larger values in the two 

parameters cannot further improve the effectiveness of 

MTVMD. Moreover, the effective input frequency range 

where the MTVMD works well is mainly determined by the 

frequency band. Therefore, a appreciate set of the 

parameters is one that makes the frequency response curve 

of the structure flattened and amplitudes smaller in a wider 

input frequency range with a lesser number of TVMD and 

total mass. 

 
Fig. 16 Effectiveness of MTVMD versus frequency band 

for different damping ratios 

 

 
Fig. 17 Effectiveness of MTVMD versus damping ratio 

for different frequency bands 

 
 
6. Effectiveness and robustness of MTVMD 

 

6.1 Effectiveness of MTVMD 
 

The maximum peak value in the frequency response 

curve is used as one of the performance indices which 

represent the effectiveness of a MTVMD. It is noted that 

the MTVMD which gives the smaller value of |Hs(λ)|max is 

more effective. In this study, the total mass ratios is μ = 0.1. 

Since much larger number of TVMD is unnecessary for the 

vibration control as shown in Fig. 13, the effect of the total 

number of TVMD on |Hs(λ)|max is not considered here. To 

suppress secondary peaks, the total number of TVMD n = 

20 is selected. The structural damping is still 0.02. 

Fig. 16 shows the relation between the effectiveness of a 

MTVMD, or the maximum structural response, and the 

frequency band of the MTVMD for different values of 

damping ratio with the tuning frequency ratio f = 1.0. It can 

be clearly seen that there is a well distinguished optimum 

frequency band which gives the minimum value of the 

maximum structural response or the maximum effectiveness, 

for each damping ratio ξT. This figure also shows that the 

optimum frequency band becomes smaller with the increase  

 
𝑠
( 
)
 
 
 

ξT = 0.01

ξT = 0.02

ξT = 0.05

ξT = 0.10

ξT = 0.20

 
𝑠
( 
)
 
 
 

β = 0.0

β = 0.6

β = 0.46

β = 0.2
β = 0.8

ξT

758



 

Dynamic characteristics of multiple inerter-based dampers for suppressing harmonically forced oscillations 

 

 
Fig. 18 Effectiveness of MTVMD versus tuning frequency 

ratio for different damping ratios 
 

 

 

of ξT and the effectiveness of the MTVMD tends to that of a 

single TVMD. 

The effect of damping ratio on the effectiveness of a 

MTVMD is depicted more clearly in Fig. 17 for different 

values of the frequency band with the tuning frequency 

ratio f = 1.0. There exists an optimum value of damping 

ratio which minimizes the maximum structural response for 

the given frequency band of a MTVMD. As shown in this 

figure, the optimum damping ratio increases continually and 

the minimum value of |Hs(λ)|max becomes smaller when the 

frequency range of a MTMD decreases and approaches its 

optimum value. If the frequency band is too small, the 

optimum damping ratio becomes much larger and closer to 

the optimum damping ratio of a single TVMD of 0.20. 

Figs. 18 and 19 show the effect of tuning frequency ratio 

on effectiveness of MTVMD with different frequency bands 

and damping ratios (in Fig. 18, β = 0.46 and in Fig. 19, ξT = 

0.05). From these figures, it can be observed clearly that if 

the damping ratio and frequency band are not too large, the 

optimum tuning frequency ratio of the MTVMD is not 

much affected by the damping ratio and frequency band and 

is around 1.0. 

According to the above discussions, it is concluded that 

the effectiveness of a MTVMD is much dependent on the  

 
Fig. 19 Effectiveness of MTVMD versus tuning frequency 

ratio for different frequency bands 
 

 

 

frequency band, the damping ratio and the tuning frequency 

ratio and that there is an optimum MTVMD, whose 

effectiveness is a maximum with respect to the three above 

parameters for a given total mass ratio and total number of 

TVMD. This is equivalent to the existence of an optimum 

TVMD with respect to the tuning ratio and the damping 

ratio in the case of a single TVMD. 

 
6.2 Robustness of MTVMD 
 

In real applications, structural properties are possibly in 

error due to uncertainty in modeling or measurement. 

Hence, one concern with the MTVMD in practice is the 

robustness to the parameter change of the primary system. 

Utilizing a numerical searching technique shown in Section 

7, the optimum parameters of the MTVMD can be obtained 

based on a given total mass ratio (in this study μ=0.1) and a 

total number of TVMD. Then, the variations of the 

structural response as the mass ms, stiffness ks and damping 

ratio ξs of the primary system deviate from their nominal 

values are discussed and shown in Figs. 20-22. 

Fig. 20 depicts the robustness of the MTVMD-structure 

system with different numbers of TVMD against the change 

or the estimation error in the structural stiffness. As shown  
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in Fig. 20(a), both the optimum single TVMD and 

MTVMD are not robust in the sense that the error in the 

stiffness of the structure increases the maximum structural 

response and the increase in the total number of TVMD 

cannot improve the robustness. However, it should be noted 

that the effectiveness of MTVMD is better than that of the 

optimal single TVMD when the shift of the structural 

stiffness is not large, approximately ±0.1. Furthermore, the 

effective frequency range of MTVMD is much wider than 

that of the single TVMD as shown in Fig. 20(b).  

From Fig. 21(a), the robustness of the single TVMD 

against the change in the structural mass is very different 

from that of the MTVMD, that is, negative error in the 

structural mass makes the single TVMD more effective. 

However, the effectiveness of the single TVMD is much 

less than that of the MTVMD in a large error range of the 

structural mass and the effective frequency range of 

MTVMD is wider. In this sense, the MTVMD is more 

robust compared with the single TVMD. The same 

conclusion can also be drawn for the change in the 

structural damping ratio presented in Fig. 22. 

 
 

7. Application to passive control 
 

For a single TMD- or TVMD-structure system, the 

fixed-point method is commonly used to analytically obtain 

the optimal parameters. Since there do not exist fixed points 

with respect to the damping ratio for MTVMD, it is difficult 

to obtain simple and analytical representations for optimal 

parameters. However, the value of the optimal parameters 

of MTVMD can be determined by numerical searching 

techniques. In this paper, the optimum objective selected is 

to minimize the maximum magnitude of the structural 

frequency response, which is known as H∞ optimization. 

For a given total mass ratio and total number of TVMD, the 

optimization problem can be expressed as  

T, ,

T

min  max| ( )|

s.t.   0 ,0 1,0

j

s j
f

H

f

  


    
 

(26) 

where λj, j = 1, 2, …, N, are the solutions of the following 

equation  

  
(a) The maximum structural response (b) The structural frequency response 

Fig. 21 Robustness of MTVMD systems to variations in the structural mass ms 

 

  
(a) The maximum structural response (b) The structural frequency response 

Fig. 22 Robustness of MTVMD systems to variations in the structural damping ratio ξs 
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Fig. 23 Optimized structural responses of MTVMD- and 

MTMD-structure system 
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(27) 

These conditions satisfy (i) the natural frequencies of 

the TVMD are positive real and (ii) the TVMD are under-

damped. 

Note that the solution set of Eq. (27), i.e., λj, j = 1, 2, …, 

N, contains the resonance frequencies, anti-resonance 

frequencies, and other frequencies that the curves 

horizontally pass through. Since the largest magnitude of 

the frequency response, representing the H∞ norm, only 

occurs at the resonance frequencies, the eigenvalue set Ω, 

i.e., the solutions of Eq. (20), can be used to replace λj. The 

optimization condition about λj then becomes λj∈Ω. The 

above optimization problem is actually a multi-objective 

optimization problem. In this paper, the Matlab solver 

fminimax is employed to solve this problem. 

Taking advantage of the previous optimization 

procedure, the optimized structural response |Hs(λ)|max of the 

MTVMD-structure system can be obtained, which is shown 

in Fig. 23 together with that of the MTMD-structure system. 

In the present study, the structural damping ratio ξs =0:02 is 

taken into account and the total mass ratio μ=0.05, 0.10 and 

0.15 are considered. From this figure, it can be seen that the 

effectiveness of MTVMD is much dependent on the total 

mass ratio and the effect of the number of TVMD on the 

structural response is also associated with the mass ratio. 

When the mass ratio is smaller, for instance, μ=0.05, the 

structural response can be suppressed continually as the 

number of TVMD increases. It is worth noting that when 

the number of TVMD is beyond a certain value, the 

improvement of the structural response becomes slight. 

Also, with the increase of the mass ratio, increasing the 

number of TVMD cannot reduce the structural response 

significantly. Therefore, much larger number of TVMD is 

unnecessary in practice. Compared with MTMD, the 

effectiveness of MTVMD is always better than that of 

MTDM no mater what the mass ratio and the number of 

damper are used. 

8. Conclusions 
 

The fundamental characteristics of MTVMD have been 

investigated analytically with emphasis on its mechanism of 

vibration control, effectiveness and robustness for 

harmonically forced structural oscillations. The major 

conclusions obtained through the present study are as 

follows: 

1. The MTVMD design parameters consist of the 

frequency band, the average damping ratio and the tuning 

frequency ratio. The frequency band controls the natural 

frequency spacing of the MTVMD-structure system and 

directly dominates the effectiveness of frequency tuning. A 

proper average damping ratio can significantly reduce the 

secondary peaks and the outer two primary peaks of the 

structural response, and the relative amplitudes of the outer 

two primary peaks can be shifted by the tuning frequency 

ratio. 

2. The maximum response of the structure is dominated 

by the structure-dominant mode or the outer two TVMD-

dominant modes. Their relative contributions heavily 

depend the frequency band and the average damping ratio, 

which can result in the transformation between the two-

peak characteristic and the one-peak characteristic of 

structural response. 

3. There exists an optimum MTVMD, which makes the 

structural frequency response curve flattened with minimum 

amplitude in a wider input frequency range, for a given total 

number of TVMD and a total mass ratio. 

4. The optimum MTVMD, in a strict sense, is as 

unrobust as the optimum single TVMD against the changes 

in the structural parameters. However, the optimum 

MTVMD is more effective than the optimum single TVMD 

in a wider range of both the estimation error in the 

structural property and the input frequency. In this sense, 

the MTVMD is more robust than the singe TVMD. 

5. Compared with the traditional MTMD, MTVMD is 

more effective. The effectiveness is much dependent on the 

total mass ratio. When the mass ratio is small, increasing 

the number of TVMD can suppress the structural response 

significantly, while the effectiveness of increasing the 

number of TVMD cannot be improved further as the mass 

ratio increases. 
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