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1. Introduction 
 

Due to their high strength and specific stiffness, fatigue 

strength and better corrosion resistance than conventional 

materials, composites have become an essential engineering 

material. They are used in various areas such as aerospace 

structures and sports, electronic, medical and construction 

equipment. Therefore, the estimation of their mechanical 

properties has been one of the important fields of research 

in recent decades. In addition to experimental methods 

which are time-consuming and often expensive, micro-

macro mechanical methods can be used to estimate the 

properties of these materials.  

In the micromechanical methods, the properties of the 

composite materials are obtained by an RVE or RUC 

analysis from the known properties of their components 

(fiber and resin) (Aboudi 2013). In the macromechanical 

approach, homogenous structures with anisotropic 

properties have been substituted with heterogeneous 

composite structures (Nemat-Nasser and Hori 2013). The 

advantage of the micromechanical method lies in the fact 

that not only the general properties of the composite  
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materials can be obtained, but also various mechanisms 

such as the initiation and growth of failure can be studied 

(Xia, Chen et al. 2000, Ellyin, Xia et al. 2002). There are 

multiple micromechanical methods to analyze and estimate 

the mechanical behavior of composite materials.  The 

upper and lower limit of the modulus of elasticity has been 

obtained by the principle of energy variation, and analytical 

solutions have been utilized (Hashin and Shtrikman 1963, 

Hashin and Rosen 1964). According to the energy balance 

approach, with the help of the theory of elasticity, Whitney 

and Riley (Riley and Whitney 1966) presented an analytical 

method for the modulus of elasticity of composite materials. 

Unfortunately, the extension of this method to viscoelastic, 

elastoplastic and nonlinear composite materials is very 

difficult. Aboudi (Aboudi 2013) extended the unified 

micromechanical approach based on the study of the 

interactions of periodic cells and used it to predict the 

general behavior of composite materials and inelastic 

structures. He utilized homogenous boundary conditions 

applied to an RVE or the unit cell models which are only 

applicable for cases where normal traction is applied on the 

boundaries. For shear loading, many researchers including 

Needleman and Tvergaard (1993), Sun and vaidya (1996) 

and Suquet (1987) proved that the ‘plane-remains-plane’ 

boundary conditions are of the over-constrained type.  

The micromechanical methods mentioned above can be 

considered as mechanical or engineering models. 

Mathematical models emerged in 1970s with the 
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generalization of the Asymptotic Homogenization Theory 

(AHT), opposing the engineering methods. The basis of this 

theory lies in the works of Suquet (1987), Benssousan 

(Bensoussan, Lions et al. 2011), Sanchez-Palencia (1980) 

and Bakhvalov and Panasenko (1984). The homogenization 

theory uses periodic boundary conditions explicitly in the 

linear and nonlinear modeling of composite materials 

(Tchalla, Belouettar et al. 2013). These results indicate that 

some specific kinds of deformation do not result in a change 

in planar boundaries after deformation (Suquet 

1987). Guedes and Kikuchi (1990) examined composite 

problems regarding the subject of the application of finite 

element method based on the theory of asymptotic 

homogenization. The application of the asymptotic 

homogenization theory has been used in various cases of 

composite materials analysis by Raghavan (Raghavan, 

Moorthy et al. 2001), Moorthy and Ghosh (1998).  

Hori and Nemat-Naser (1999) showed that the predicted 

effective modulus of elasticity could vary according to the 

conditions applied at the boundaries of the unit cell where 

the boundary conditions of homogeneous displacement and 

homogeneous traction will yield the upper and lower limits 

of the modulus of elasticity. Hollister and Kikuchi (1992) 

presented a good comparison between the asymptotic 

homogenization theory and mechanical methods (named the 

Average Field Theory in the study of Hori and Nemat-Naser 

(1999)) and concluded that the asymptotic homogenization 

theory, which uses periodic boundary conditions, yields 

much more accurate results. It was also proved that the 

asymptotic homogenization theory and the mechanical 

methods could be correlated, resulting in a useful hybrid 

theory. 

The finite element method has been extensively used for 

the analysis of the periodic unit cell with the goal of 

determining the mechanical properties and the failure 

mechanisms of composite materials (Adams and Crane 

1984, Pindera and Aboudi 1988, Aboudi 1990, Allen and 

Boyd 1993, Bonora, Costanzi et al. 1994, Chu, Yu et al. 

2015, Ma, Wriggers et al. 2016, Belkacem, Tahar et al. 

2018, Liao, Tan et al. 2018, Yahia, Amar et al. 2018). 

Shokrieh (Shokrieh, Nasir et al. 2012) presented a new 

model to calculate longitudinal strength of unidirectional 

composites exposed to sulfuric acid environment using the 

micromechanics theorem and emphasized on effect of 

thermal residual stresses. In most cases, the applications 

were limited to unidirectional multilayered 

materials. Afterward, a few researchers also used the 

micromechanical analysis for cross-ply laminates to study 

the residual thermal stress, crack inception and growth and 

viscoplastic and viscoelastic behaviors (Bigelow 1993, Xia, 

Chen et al. 2000, Chen, Xia et al. 2001, Ellyin, Xia et al. 

2002, Zhang, Xia et al. 2005, Ahmadi 2017, Ebrahimi and 

Habibi 2018, Hamedi, Golestanian et al. 2018, Khodjet-

Kesba, Benkhedda et al. 2018, Naghdinasab, Farrokhabadi 

et al. 2018). Xia (Xia, Zhang et al. 2003) analyzed 

unidirectional angle-ply laminates under multiaxial loading 

conditions using the finite element method in 

micromechanics and utilized periodic boundary conditions 

applicable only for the rhombohedral RVE models. He also 

showed that not only do the homogeneous boundary 

conditions have extra constraints but also that they violate 

the boundary traction continuity conditions. Xia (Xia, Zhou 

et al. 2006) proved the uniqueness of the solution of 

periodic boundary conditions problems using the 

displacement difference boundary condition in the 

displacement-based finite elements method. He proved that 

the solution does not depend on the choice of repeated unit 

cells (RUC), and using periodic boundary conditions 

guarantees the boundary traction continuity conditions. The 

combination of the homogenization theory with the finite 

element method is a very powerful technique, capable of 

analyzing complex microstructures with different shapes 

and directions and even random distribution in order to 

determine the effective mechanical properties of composite 

materials (Xia, Ju et al. 2007, Xu and Xu 2008). ABAQUS 

is a commercial software package used extensively in the 

analysis of RVEs (Lubineau and Ladeveze 2008, Yuan and 

Fish 2008). Wu (Wu, Owino et al. 2014) mentioned the 

complexity of applying periodic boundary conditions in 

finite elements software such as ABAQUS, and 

demonstrated the process of applying periodic boundary 

conditions via “input file” in a simple example. Also, 

Python code makes it possible to leverage the advanced 

finite element analysis of ABAQUS and enables the use of 

ABAQUS scripting interface. ASI is, in fact, an extension 

of the Python programming language used in modeling and 

extraction of results. Zuo (Zuo and Xie 2015) managed to 

use ASI in his work to optimize complex and 3D 

topologies.  

In this paper, an RVE and its components (fiber and 

resin) have been modeled using ASI and the asymptotic 

homogenization theory. By applying periodic boundary 

conditions (PBCs), the mechanical properties of the 

composite material were determined using strain energy. 

The results were compared with those of the homogeneous 

boundary conditions (HBCs) method to illustrate the 

advantage of PBCs, especially in shear loading cases. Since 

in reality, resin exhibits a nonlinear behavior compared to 

fiber, the effects of this nonlinear behavior on the 

mechanical properties of the composite materials are 

considered in different fiber volume fractions using a 

USDFLD subroutine. This study, in contrast with the work 

of Xia (Xia, Zhang et al. 2003) is independent of the RVE 

geometry or the properties of its components. Thus, it is 

applicable to extract mechanical properties of complex 

structures with nonlinear component behavior, any arbitrary 

geometrical shape, and random distribution of the 

reinforcement.  
 

 

2. Periodic boundary conditions 
 

Composite materials can be considered a periodic array 

of RVEs. This is why periodic boundary conditions need to 

be applied to them. This means that the deformation of all 

RVEs is the same, there is no distance between two adjacent 

RVEs and that they don’t overlap. The periodic boundary 

conditions are as follows (Suquet 1987) 

*

1 2 3 1 2 3( , , ) ( , , )iki k iu x x x x u x x x= +  (1) 
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where ik  is the average strain and *

1 2 3( , , )iu x x x  is a 

periodic function from one RVE to the next, which is 

essentially unknown and dependent on the general loading.  

Due to the periodic placement of RVEs in a structure, 

two kinds of continuity must be satisfied in RVE 

boundaries: a) the displacements must be continuous and 

similar, such that no two adjacent RVEs will separate or 

overlap after deformation; and b) the traction distribution in 

opposite boundaries in an RVE must be the same. This will 

result in a continuous configuration. Displacement field 

assumption in the form of Eq. (1) can only be done 

according to the above considerations. Unfortunately, this 

equation cannot be directly applied to the boundaries due to 

the periodic part *

1 2 3( , , )iu x x x  is unknown. The boundary 

surfaces of an RVE must be assumed as parallel pairs where 

the displacement in both the opposing boundary surfaces 

can be written as follows 

*j j
iki k iu x u+ += +  (2) 

*j j
iki k iu x u− −= +  (3) 

where the j+, j- indices denote the jth pair of parallel 
opposing surfaces in an RVE. As stated before, the periodic 
part of Eq. (1), *

1 2 3( , , )iu x x x , is unknown but its value is 
the same for a pair of parallel surfaces. Therefore the 
difference between their displacements can be written as 
follows: 

( )j j j j j
ik iki i k k ku u x x x + − + −− = − =   (4) 

This eliminates the unknown periodic part of the 

displacement field. For each parallelepiped RVE model, the 

amount of 
j

kx  is constant, and, knowing the value of  

ik , the right-hand side of the equation will be constant. 

This transforms Eq. (4): 

( , , ) ( , , )j j j

i i iu x y z u x y z c+ −− = , ( , 1,2,3)i j =  (5) 

where the constants, 2

2c  and 3

3c  denote the average 

contraction and expansion of the RVE model due to normal 

traction components, while the other three pairs of 

constants, 2 1

1 2c c= , 3 1

1 3c c=  and 3 2

2 3c c=  are related to 

shear deformation due to the shear components. 

As it is evident from Eq. (5), this relation is written 

between node pairs on opposing boundary surfaces, and a 

plane may not remain planar after deformation. Also, Eq. 

(5) does not have the periodic part of the displacement field, 

making its utilization in the finite elements process as a 

constraint of the node displacement equation type, easier 

compared to Eq. (1). Eq. (5) is a special type of boundary 

condition of the displacement kind, which expresses the 

displacement difference between node pairs on opposing 

parallel surfaces, instead of the amount of displacement on 

boundaries. One may imagine that a boundary condition of 

the displacement difference type does not guarantee the 

traction continuity condition: 

0j j

n n + −− =  (6) 

0j j

nt nt + −− =  (7) 

where 
n  and 

nt  denote the normal and shear 

stresses in opposing parallel surfaces.  

Xia (Xia, Zhou et al. 2006) proved in his works that in 

displacement-based finite elements micromechanical 

analysis, using Eq. (5) guarantees the uniqueness of the 

solution, and Eqs. (6)-(7) will be automatically satisfied, 

thus there is no need to apply them in the analysis.  
 
 

3. Homogenization 
 

Homogenization is carried out to identify the behavior 

of the RVE in response to an applied mechanical loading 

and eventually, the estimation of mechanical properties. It is 

assumed that the average mechanical properties of the RVE 

is the same as those of composite laminates. The average 

stresses and strains in an RVE are defined as follows: 

1

1 1 N
k k

ij ij ij
v

kRVE RVE

dV V
V V

  
=

= =   (8) 

1

1 1 N
k k

ij ij ij
v

kRVE RVE

dV V
V V

  
=

= =   (9) 

where 
RVEV  denotes the volume of RVE, 

k

ij , 
k

ij  

and 
kV  denote the stress, strain and volume of the kth 

element, respectively. 
k

ij and 
k

ij denote the average stress 

and strain.  

The strain energy of the applied displacement under 

periodic conditions can be used to determine the 

homogenized module. If the strain is not zero, the strain 

energy due to displacement can be expressed as follows: 

1

2
ij ij RVEU V =  (10) 

where U denotes the total strain energy and ij  can be 

obtained via the applied displacement. ij  can be 

calculated using the total strain energy and the average 

strain from Eq. (10). This eliminates the need to use the 

general relations of average stress and strain, Eqs. (8)-(9).  

The obtained strain energy from different boundary 

conditions must satisfy the following inequality if the 

average strain is the same for all boundary conditions: 

T P DU U U   (11) 

where 
TU , 

PU and 
DU denote the strain energy of 

homogeneous traction boundary conditions, periodic 

boundary conditions, and homogenous displacement 

boundary conditions, respectively. It is clear that using the 

homogenous displacement boundary conditions leads to an 

overestimation of effective mechanical properties while 

using the homogeneous traction boundary conditions results 

in an underestimation compared to ideal conditions. It is 

worth noting that using the homogenous displacement 

boundary conditions will not guarantee the continuity of 

traction at boundaries, also using the homogeneous traction 

boundary conditions will not ensure the continuity of 

displacement at boundaries.  
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The ratio of average stresses and strains computed as 

follow: 

ij

ij

ij

C



=  (12) 

where 
ijC  are the components of the stiffness matrix.  

In the case of pure shear deformation, the following 

relation holds: 

2ij ij ij ij   = + =  (13) 

where 
ij  denotes the engineering shear strain.  

If the RVE is assumed to be unidirectional and 

orthotropic with a linear behavior in the elastic zone, the 

constitutive equation for a 3D RVE will be: 

11 11
11 12 13

22 22
12 22 23

33 3313 23 33

4412 12

5513 13

66
23 23

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 

 

 

 

 

 

   
    
    
    
    

=     
    
    
    
     

   

 (14) 

Considering Eqs. (10), (12) and (14), the relation 

between strain energy and average strain is obtained as: 

1

2

T

RVEU V    =
   

 (15) 

2

11 11 22 11 3311 12 13

2 2 2

22 22 33 33 1222 23 33 44

2 2

13 2355 66

1

2

1 1 1

2 2 2

1 1

2 2

RVE

U
C C C

V

C C C C

C C

    

    

 

= + +

+ + + +

+

 (16) 

With the average strain components, strain energy and 

RVE volume, the stiffness matrix components can be 

obtained from Eq. (16). 

To determine the compliance matrix, the inverse of the 

stiffness matrix can be used: 

   
1

S C
−

=  (17) 

Knowing the components of the compliance matrix, the 

effective mechanical properties of the RVE can be 

calculated: 

12

1 12 12

11 11 44

13

2 13 13

22 11 55

23

3 23 23

33 33 66

1 1
, ,

1 1
, ,

1 1
, ,

S
E G

S S S

S
E G

S S S

S
E G

S S S







= = − =

= = − =

= = − =

 (18) 

where Ei, Gij, vij and denote the modulus of Sij, elasticity, 

shear modulus, Poisson’s ratio and components of the 

flexibility matrix, respectively. 

 

Fig. 1 Meshed unidirectional RVE model with unit 

dimensions 
 

 

4. Finite element modeling 
 

The RVE shown in Fig. 1, has been modeled in three 

dimensions, with unit dimensions ( 1x y z =  =  = ), 

using 8 node hexahedral C3D8R elements. 11060 elements 

have been used to create a unidirectional RVE.  
 

4.1 Constraint Equations in ABAQUS 
 

Periodic boundary conditions are applied as linear 

constraints in ABAQUS. A large number of points can be 

constrained using a linear combination of nodal variables 

such as the displacement of different nodes. The sum of the 

nodal variables multiplied by their coefficients must be 

zero. Therefore, the linear homogenous equation in its 

general form is defined as follows (Wu, Owino et al. 2014) 

1 2 ... 0P Q R

i j N kA u A u A u+ + + =  (19) 

where P, Q and R represent nodes and i , j and k

denote the directions of freedom. 
1A , 

2A  and
NA denote 

constant coefficients underlining the share of each nodal 

variable in the equation. In ABAQUS the keyword 

*EQUATION is used to create linear constraints for N 

nodes.  
 

4.2 Dummy node 
 

To apply periodic boundary conditions using the 

constraint equations mentioned above, the concept of 

dummy nodes is introduced in ABAQUS. By substituting a 

non-zero value instead of zero in the right-hand side of Eq. 

(19), the following equation is obtained: 

1 2 ...P Q R

i j N kA u A u A u u+ + + =  (20) 

where u  is a determined value such as strain or 

displacement.  

This determined value of strain or displacement is 

applied to the dummy node which is not connected to any 

part of the created model. To this end, a reference point with 

arbitrary coordinates is created to define this dummy node. 

The value u is applied to this reference point as a boundary 

condition in a fixed direction. 
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4.3 Meshing 
 

In finite element analysis, appropriate meshing is 

required to obtain meaningful results. In the RVE modeled 

in this study, the constraints on meshing are more severe. To 

apply periodic boundary conditions on the RVE, both the  

 

 

 

opposing parallel surfaces must have the same meshing 
pattern, so that the node pairs on the opposing faces will 
have the same in-plane coordinates, and it will be possible 
to apply the displacement constraint equations in the three 
x, y and z direction on the RVE. This is only possible by 
copying the mesh pattern of a surface on its opposing 
surface. 

 

Fig. 2 Python scripting flowchart for RVE modeling to obtain effective mechanical properties 

  
(a) normal strain 

11 0.01 =  (b) normal strain 
33 0.01 =  

  
(c) normal strain 

11 0.01 =  (d) shear strain 
12 0.01 =  

Fig. 3 The displacement and stress field of different loading stages 
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Since a constraint equation is needed for every node 
pairs in each of the x, y and z directions, there will be so 
many of these constraint equations that applying them 
without an automatic procedure (Python script) will be 
almost impossible.  

 

 4.4 Loading 
 

For loading, six macroscopic strains 
11 , 

22 , 
33 , 

12 , 

13 and
23 are applied individually on the RVE to find the 

six components of the stiffness matrix, C11, C22, C33, C44, 

C55 and C66. Mixed loading can also be used to determine 

the C12, C13 and C23 components of the stiffness matrix. In 

other words, loading must be applied in nine stages in the 

RVE model to obtain the nine components of the stiffness 

matrix. Fig. 3 depicts the different stages of normal, and 

shear loading applied to the RVE.  
 

 4.5 Applying the periodic boundary conditions  
 

The procedure for applying periodic boundary 
conditions on the RVE model is detailed below 
(Shahzamanian, Tadepalli et al. 2014): 

• First, the nodes must be divided into three groups: 

face nodes, edge nodes and vertex nodes, in a way that each 

node is only in one group, and the groups have no common 

members so that no over-constraint happens.  

• Using the keyword *EQUATION to create the 

constraint equations between the node pairs on opposing 

faces. These equations are detailed in Table 1 separately for 

each node group in Fig. 4.  

• Creating as many dummy nodes as the equations 

in Table 1 and assigning each node to an equation. 

• Applying the specified loadings on the dummy 

nodes, which are outside the RVE model zone 

The general procedure for Python scripting from the 

beginning of RVE modeling up until extracting the results is 

shown in Fig. 2. 
 

 

5. Results 
 

One simple way to find out whether the applied periodic 
boundary conditions are working correctly or not, is to 
subject a model with isotropic and simple geometry to the 
intended procedure for applying the periodic boundary 
conditions. If the procedure is indeed correct, similar strains 
and stresses must be induced across the entirety of the 
isotropic model, which are equal to the average strain and 
stress.  

 

 
Fig. 4 Naming the vertices, edges, and faces of the RVE 

for applying the periodic boundary conditions 

 

Table 2 The mechanical properties of fiber and resin 

Poisson’s Ratio 
Modulus of Elasticity 

 ( )GPa 
Material 

0.1 379.3 Boron 

0.3 68.3 Aluminum 

0.22 72.5 E-glass 

0.38 3.54 Epoxy 

 
 

5.1 The linear elastic behavior of resin 
 

In this part, the modeled RVE is comprised of Boron 

fiber and Aluminum matrix, as a unidirectional laminate 

composite, with the mechanical properties presented in 

Table 2, and a fiber volume fraction of 47%, which are 

individually isotropic but have different mechanical 

properties. 

It is worth noting that in materials with an overall 

orthotropic behavior, according to Eq. (14), there are nine 

independent components in the three-dimensional case, but 

based on Fig. 1, the modeled unidirectional RVE has similar 

behavior in the x and y directions, and is thus a transversely 

isotropic material. Therefore the mechanical properties of 

the two x and y directions can be written as: E1=E2, v13=v23. 

By comparison of the results of this study and those of past 

analytical and experimental studies, listed in Table 3, the 

validity of the present procedure is proved. Using 

homogenous displacement boundary conditions, plane- 

Table 1 Required equations to apply the periodic boundary conditions in node pairs 

Vertex Nodes Edge Nodes Face Nodes 

1 2 3
0

G A

i i i i i
u u x y z  − − − − = 

1 2
0

GF DA

i i i i
u u x y − − − = 

1
0

FGCB EHDA

i i i
u u x − − = 

1 2 3
0

F D

i i i i i
u u x y z  − − − + = 

1 2
0

CB HE

i i i i
u u x y − − +  = 

2
0

FEHG BADC

i i i
u u y − − = 

1 2 3
0

H B

i i i i i
u u x y z  − +  − − = 

1 3
0

GC EA

i i i i
u u x z − − − = 

3
0

GHDC FEAB

i i i
u u z − − = 

1 2 3
0

C E

i i i i i
u u x y z  − − +  − = 

1 3
0

FB HD

i i i i
u u x z − − +  =  

 
2 3

0
GH BA

i i i i
u u y z − − − =  

 
2 3

0
FE CD

i i i i
u u y z − − +  =  
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remains-plane, is acceptable when normal traction is 

applied to the boundaries, while in the case of shear 

loading, results are an overestimation of the effective 

mechanical properties due to over-constrained boundary 

conditions. To apply the homogenous displacement  

boundary conditions, the relations suggested by Aliabadi 

(Aliabadi 2015) have been utilized, which leads to the 

overestimation of shear moduli according to the data in 

Table 3. Compared to the periodic boundary conditions 

case, each of the shear moduli G23 and G12 increased by 

33% and 13%, respectively, with the application of the 

homogeneous boundary conditions. Therefore, using the 

homogenous displacement boundary conditions for an RVE 

subjected to shear loading is not appropriate. 
 

5.2 The nonlinear elastic behavior of resin 
 

In reality, resin exhibits a nonlinear behavior in the 

elastic zone, which causes the unidirectional multilayered 

composite to have a nonlinear shear stress-strain relation. In 

this section, the effects of this nonlinear behavior on the 

shear stress-strain diagram of the unidirectional composites 

laminate, considering the fiber volume fraction, has been 

addressed. The nonlinear constitutive equation of resin 

under tension has been assumed to be an 3rd
 order 

polynomial: 

3ij

ij ij

ijE


 = +    ( , 1,2,3)i j =  (21) 

where  denotes the nonlinear coefficient of resin.  

To use the nonlinear equation in the computer code, the 

instantaneous (tangential) elasticity modulus must be 

calculated. Differentiating Eq. (21) concerning tensile stress 

yields the instantaneous (tangential) modulus: 

2

1

1
3

ij

ij
ij

ijE







=


+

 
(22) 

To obtain the nonlinear equation between normal stress 

and strain, the relation of stress and strain must be described 

in a different form. In other words, at the end of an 

increment, stress must be a linear function of strain. The 

simplest way to achieve this is by linearizing the nonlinear  

 

 

terms as (Simulia 2013): 

( )( )2
( 1) 1 ( ) ( 1)k k k

ij ij ij ijE   + − += +  (23) 

where k denotes the increment index. 

 

 

Fig. 5 The tensile stress-strain diagram of the epoxy resin 
 

 

Since using Eq. (23) results in instability with higher 

levels of strain, Eq. (24) can be used, which is an optimized 

algorithm obtained from the previous relation. Finally, this 

relation is written in the form of Eq. (26) as a function of 

the damage parameter, then it is implemented inside the 

USDFLD subroutine, and the value of the damage 

parameter is thus directly assigned to the field variables 

required for defining the elastic properties.  
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(24) 

( 1) ( 1)(1 )k k

ij ij ijd E + += −  (25) 
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−
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(26) 

Fig. 5 depicts the normal stress-strain diagram obtained 

from the epoxy resin tension test (Gilat, Goldberg et al. 

2007), the properties of which are listed in Table 2. The.  

Table 3 The results for the mechanical properties of the multi-layered composite of Boron / Aluminum 

Experimental 

(Kenaga, Doyle 

et al. 1987) 

Analytical 

(Energy 

variation) 

(Hashin and 

Rosen 1964) 

Analytical 

(Micromechanics 

Equations) 

(Chamis 1983) 

 

Analytical 

(Elastic-

Plastic) 

(Sun and Chen 

1991) 

Numerical 

(Symmetric 

BC) 

(Sun and Vaidya 

1996) 

Numerical 

(Periodic BC) 

(Xia, Zhang et 

al. 2003) 

Present 

Mechanical 

Properties HBC PBC 

216 215 214 214 215 214 215 214.9 3
( )E GPa  

140 135.2 156 135 144 143 145 143.6 2
( )E GPa  

52 53.9 62.6 51.1 57.2 54.2 71.9 54.2 23
( )G GPa  

- 52.3 43.6 - 45.9 45.7 51.5 45.7 12
( )G GPa  

0.29 0.195 0.20 0.19 0.19 0.195 0.195 0.195 23
  

- 0.295 0.31 - 0.29 0.253 0.249 0.255 12
  
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Fig. 6 The linear and nonlinear diagram of 

12 12 −  in 

different fiber volume fractions 

 

 
Fig. 7 The linear and nonlinear diagram of 

23 23 −  in 

different fiber volume fractions 

 

 

diagram is resulting from Eq. (21) is also presented in Fig 5, 

exhibiting a good agreement with the experimental curve. 

The value α is obtained by curve fitting on the experimental 

curve using Eq. (21) as 
26 34.267 10 Pa− − . This is 

substituted in Eq. (26). 

In this section, the modeled RVE, as a unidirectional 

composite laminate, is formed from glass fiber and epoxy 

resin with the mechanical properties listed in Table 2 with 

fiber volume fractions of 30%, 50% and 70%. Figs. 6 and 7 

depict the linear and nonlinear diagrams of 
12 12 −  and 

23 23 − curves, respectively, in the elastic zone. The effect 

of fiber volume fraction on these curves is visible. Under 

constant stress, the lower the fiber volume fraction, the 

linear and nonlinear curves are pushed farther and farther 

apart, while in high fiber volume fractions, the nonlinearity 

of the shear stress-strain curve decreases. 

To compare the degree of nonlinearity of the shear 

behavior in composite laminates, the amount of drop in the 

shear moduli G12 and G23under arbitrary constant stress as 

80 MPa has been reported. In Fig. 6 the shear modulus G12 

G12 equals 1.94, 2.66 and 4.74 GPa in 30%, 50% and 70% 

fiber volume fractions, respectively, which is decreased in 

the nonlinear diagram by 47%, 41%, and 31%, respectively. 

Fig. 7 depicts the shear modulus G23 having the value of 

2.25, 3.51 and 6.89 GPa with 30%, 50% and 70% fiber 

volume fractions, respectively, while it experiences a 45%, 

39% and 27% drop under a constant 80 MPa stress, due to 

nonlinear shear behavior. 

6. Conclusion 
 

Applying periodic boundary conditions guarantees the 

continuity of traction, as well as the continuity of 

displacement at the boundaries of the RVE and any periodic 

structure made of composite laminates under multiaxial 

loading. It was shown that using homogenous boundary 

conditions, plane-remains-plane, under shear loading is not 

appropriate and leads to an overestimation of the effective 

mechanical properties of the RVE. The results indicate that 

applying homogenous boundary conditions results in a 33% 

and 13% increase in the shear moduli G23 and G12, 

respectively. 

The Python code developed in this research can be used 

to extract the mechanical properties of complex structures 

with random shape, direction and distribution of the 

reinforcing part.  

This solution does not depend on the properties of the 

RVE components, which is the reason it can be used for 

nonlinear analyses. The nonlinear behavior of resin in the 

elastic zone was examined, and its effects on the shear 

stress-strain curve of the unidirectional composite laminate 

were studied. Results indicate that at arbitrary constant 

stress as 80 MPa in-plane shear modulus, G12, experienced 

a 47%, 41% and 31% reduction at the fiber volume fraction 

of 30%, 50% and 70%, compared to the linear assumption. 
 
 

References 
 

Aboudi, J. (1990), “Micromechanical prediction of initial and 

subsequent yield surfaces of metal matrix composites”, J. 

Plasticity, 6(4), 471-484. https://doi.org/10.1016/0749-

6419(90)90014-6. 

Aboudi, J. (2013), Mechanics of Composite Materials: A Unified 

Micromechanical Approach, Elsevier, The Netherlands. 

Adams, D.F. and Crane, D.A. (1984), “Finite element 

micromechanical analysis of a unidirectional composite 

including longitudinal shear loading”, Comput. Struct., 18(6), 

1153-1165. https://doi.org/10.1016/0045-7949(84)90160-3. 

Ahmadi, I. (2017), “Micromechanical failure analysis of 

composite materials subjected to biaxial and off-axis loading”, 

Struct. Eng. Mech., 62(1), 43-54. 

https://doi.org/10.12989/sem.2017.62.1.043 

Aliabadi, M.H. (2015), Woven Composites, Imperial College 

Press, London, United Kingdom. 

Allen, D.H. and Boyd, J.G. (1993), “Convergence rates for 

computational predictions of stiffness loss in metal matrix 

composites”, Composite Materials and Structures, AMD 

179/AD 37, ASME, New York, USA. 31-45. 

Bakhvalov, N.S. and Panasenko, G.P. (1984), Homogenization in 

Periodic Media, Mathematical Problems of the Mechanics of 

Composite Materials, Nauka, Moscow, Russia. 

Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., 

Mohamed, Z. and Boussad, A. (2018), “Mechanical buckling 

analysis of hybrid laminated composite plates under different 

boundary conditions”, Struct. Eng. Mech., 66(6), 761-769. 

https://doi.org/10.12989/sem.2018.66.6.761. 

Bensoussan, A., Lions, J.L. and Papanicolaou, G. (2011), 

Asymptotic Analysis for Periodic Structures, American 

Mathematical Society, Providence, Rhode Island, USA.  

Bigelow, C.A. (1993), “Thermal residual stresses in a silicon-

carbide/titanium [0/90] laminate”, J. Compos. Technol. Res., 

15(4), 304-310. https://doi.org/10.1520/CTR10383J. 

Bonora, N., Costanzi, M., Newaz, G. and Marchetti, M. (1994), 

720



 

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites 

 

“Microdamage effects on the overall response of long 

fibre/metal-matrix composites”, Compos., 25(7), 575-582. 

https://doi.org/10.1016/0010-4361(94)90187-2.  

Chamis, C.C. (1983), “Simplified composite micromechanics for 

hygral, thermal and mechanical properties”, SAMPE Quarterly, 

14-23. https://ntrs.nasa.gov/search.jsp?R=19830011546.  

Chen, Y., Xia, Z. and Ellyin, F. (2001), “Evolution of Residual 

Stresses Induced during Curing Processing Using a Viscoelastic 

Micromechanical Model”, J. Compos. Mater., 35(6), 522-542. 

https://doi.org/10.1177%2F002199801772662145. 

Chu, X., Yu, C., Xiu, C. and Xu, Y. (2015), “Two scale modeling 

of behaviors of granular structure: size effects and displacement 

fluctuations of discrete particle assembly”, Struct. Eng. Mech., 

55(2), 315-334. https://doi.org/10.12989/sem.2015.55.2.315. 

Ebrahimi, F. and Habibi, S. (2018), “Thermal effects on nonlinear 

dynamic characteristics of polymer-CNT-fiber multiscale 

nanocomposite structures”, Struct. Eng. Mech., 67(4), 403-415. 

https://doi.org/10.12989/sem.2018.67.4.403. 

Ellyin, F., Xia, Z. and Chen, Y. (2002), “Viscoelastic 

micromechanical modeling of free edge and time effects in glass 

fiber/epoxy cross-ply laminates”, Composites Part A Appl. Sci. 

Manufact., 33(3), 399-409. https://doi.org/10.1016/S1359-

835X(01)00112-9. 

Gilat, A., Goldberg, R.K. and Roberts, G.D. (2007), “Strain Rate 

Sensitivity of Epoxy Resin in Tensile and Shear Loading”, J. 

Aerosp. Eng., 20(2), 75-89. https://doi.org/10.1061/(ASCE)0893-

1321(2007)20:2(75). 

Guedes, M. and Kikuchi, N. (1990), “Preprocessing and 

postprocessing for materials based on the homogenization 

method with adaptive finite element methods”, Comput. Methods 

Appl. Mech. Eng., 83, 143-198. https://doi.org/10.1016/0045-

7825(90)90148-F. 

Hamedi, M., Golestanian, H., Tadi Beni, Y. and Alasvand 

Zarasvand, K. (2018), “Evaluation of fracture energy for 

nanocomposites reinforced with carbon nanotubes using 

numerical and micromechanical methods”, Mech. Adv. Mater. 

Struct., 1-9. https://doi.org/10.1080/15376494.2018.1432787. 

Hashin, Z. and Rosen, B.W. (1964), “The Elastic Moduli of Fiber-

Reinforced Materials”, J. Appl. Mech., 31, 223-232. 

Hashin, Z. and Shtrikman, S. (1963), “A variational approach to 

the theory of the elastic behaviour of multiphase materials”, J. 

Mech. Phys. Solids, 11, 127-140. https://doi.org/10.1016/0022-

5096(63)90060-7. 

Hollister, S.J. and Kikuchi, N. (1992), “A comparison of 

homogenization and standard mechanics analyses for periodic 

porous composites”, Comput. Mech., 10(2), 73-95. 

https://doi.org/10.1007/BF00369853. 

Hori, M. and Nemat-Nasser, S. (1999), “On two micromechanics 

theories for determining micro–macro relations in heterogeneous 

solids”, Mech. Mater., 31(10), 667-682. 

https://doi.org/10.1016/S0167-6636(99)00020-4. 

Kenaga, D., Doyle, J.F. and Sun, C.T. (1987), “The 

characterization of boron/aluminum composite in the nonlinear 

range as an orthotropic elastic-plastic material”, J. Compos. 

Mater., 21(6), 516-531. 

https://doi.org/10.1177/002199838702100603. 

Khodjet-Kesba, M., Benkhedda, A., Adda Bedia, E. and Boukert, 

B. (2018), “On transverse matrix cracking in composite 

laminates loaded in flexure under transient hygrothermal 

conditions”, Struct. Eng. Mech., 67(2), 165-173. 

https://doi.org/10.12989/sem.2018.67.2.165. 

Liao, B., Tan, H., Zhou, J. and Jia, L. (2018), “Multi-scale 

modelling of dynamic progressive failure in composite laminates 

subjected to low velocity impact”, Thin-Walled Struct., 131, 695-

707. https://doi.org/10.1016/j.tws.2018.07.047. 

Lubineau, G. and Ladeveze, P. (2008), “Construction of a 

micromechanics-based intralaminar mesomodel, and illustrations 

in ABAQUS/Standard”, Comput. Mater. Sci., 43(1), 137-145. 

https://doi.org/10.1016/j.commatsci.2007.07.050. 

Ma, J., Wriggers, P. and Li, L. (2016), “Homogenized thermal 

properties of 3D composites with full uncertainty in the 

microstructure”, Struct. Eng. Mech., 57(2), 369-387. 

https://doi.org/10.12989/sem.2016.57.2.369. 

Moorthy, S. and Ghosh, S. (1998), “Particle cracking in discretely 

reinforced materials with the voronoi cell finite element model”, 

J. Plasticity, 14(8), 805-827. https://doi.org/10.1016/S0749-

6419(98)00024-2. 

Naghdinasab, M., Farrokhabadi, A. and Madadi, H. (2018), “A 

numerical method to evaluate the material properties degradation 

in composite RVEs due to fiber-matrix debonding and induced 

matrix cracking”, Finite Elements Analysis Design, 146, 84-95. 

https://doi.org/10.1016/j.finel.2018.04.008. 

Needleman, A. and Tvergaard, V. (1993), “Comparison of Crystal 

Plasticity and Isotropic Hardening Predictions for Metal-Matrix 

Composites”, J. Appl. Mech., 60, 70-76. 

Nemat-Nasser, S. and Hori, M. (2013), Micromechanics: Overall 

Properties of Heterogeneous Materials, Elsevier, The 

Netherlands. 

Pindera, M.J. and Aboudi, J. (1988), “Micromechanical analysis of 

yielding of metal matrix composites”, J. Plasticity, 4(3), 195-

214. https://doi.org/10.1016/0749-6419(88)90010-1. 

Raghavan, P., Moorthy, S., Ghosh, S. and Pagano, N.J. (2001), 

“Revisiting the composite laminate problem with an adaptive 

multi-level computational model”, Compos. Sci. Technol., 61, 

1017-1040. https://doi.org/10.1016/S0266-3538(00)00230-X. 

Riley, M.B. and Whitney, J.M. (1966), “Elastic properties of fiber 

reinforced composite materials”, AIAA J., 4(9), 1537-1542. 

https://doi.org/10.2514/3.3732. 

Sánchez-Palencia, E. (1980), Non-homogeneous Media and 

Vibration Theory, Lecture Notes in Physics Series Volume 127, 

Springer, Berlin, Germany. 

Shahzamanian, M.M., Tadepalli, T., Rajendran, A.M., Hodo, W.D., 

Mohan, R., Valisetty, R., Chung, P.W. and Ramsey, J.J. (2014), 

“Representative volume element based modeling of cementitious 

materials”, J. Eng. Mater. Technol., 136(1), 

https://doi.org/10.1115/1.4025916. 

Shokrieh, M., Nasir, V. and Karimipour, H. (2012), “A 

micromechanical study on longitudinal strength of fibrous 

composites exposed to acidic environment”, Mater. Design, 35, 

394-403. https://doi.org/10.1016/j.matdes.2011.08.044. 

Simulia, A.V. (2013), “6.13 Documentation”, Dassault System, 

Vélizy-Villacoublay, France. 

Sun, C.T. and Chen, J.L. (1991), “A micromechanical model for 

plastic behavior of fibrous composites”, Compos. Sci. Technol., 

40(2), 115-129. https://doi.org/10.1016/0266-3538(91)90092-4. 

Sun, C.T. and Vaidya, R.S. (1996), “Prediction of composite 

properties from a representative volume element”, Compos. Sci. 

Technol., 56, 171-179. https://doi.org/10.1016/0266-

3538(95)00141-7. 

Suquet, P. (1987), Elements of Homogenization Theory for 

Inelastic Solid Mechanics, Homogenization Techniques for 

Composite Media, Springer-Verlag, Berlin, Germany. 

Tchalla, A., Belouettar, S., Makradi, A. and Zahrouni, H. (2013), 

“An ABAQUS toolbox for multiscale finite element 

computation”, Compos. Part B Eng., 52, 323-333. 

https://doi.org/10.1016/j.compositesb.2013.04.028. 

Wu, W., Owino, J., Al-Ostaz, A. and Cai, L. (2014), “Applying 

periodic boundary conditions in finite element analysis”, Simulia 

Community Conference, 707-719. 

Xia, Z., Chen, Y. and Ellyin, F. (2000), “A meso/micro-mechanical 

model for damage progression in glass-fiber/epoxy cross-ply 

laminates by finite-element analysis”, Compos. Sci. Technol., 60, 

1171-1179. https://doi.org/10.1016/S0266-3538(00)00022-1. 

Xia, Z., Ju, F. and Sasaki, K. (2007), “A general finite element 

721



 

Fathollah Taheri-Behrooz and Emad Pourahmadi 

 

analysis method for balloon expandable stents based on repeated 

unit cell (RUC) model”, Finite Elements Anal. Design, 43(8), 

649-658. https://doi.org/10.1016/j.finel.2007.01.001. 

Xia, Z., Zhang, Y. and Ellyin, F. (2003), “A unified periodical 

boundary conditions for representative volume elements of 

composites and applications”, J. Solids Struct., 40(8), 1907-

1921. https://doi.org/10.1016/S0020-7683(03)00024-6. 

Xia, Z., Zhou, C., Yong, Q. and Wang, X. (2006), “On selection of 

repeated unit cell model and application of unified periodic 

boundary conditions in micro-mechanical analysis of 

composites”, J. Solids Struct., 43(2), 266-278. 

https://doi.org/10.1016/j.ijsolstr.2005.03.055. 

Xu, K. and Xu, X.W. (2008), “Finite element analysis of 

mechanical properties of 3D five-directional braided 

composites”, Mater. Sci. Eng. A, 487(1-2), 499-509. 

https://doi.org/10.1016/j.msea.2007.10.030. 

Yahia, S.A., Amar, L.H.H., Belabed, Z. and Tounsi, A. (2018), 

“Effect of homogenization models on stress analysis of 

functionally graded plates”, Struct. Eng. Mech., 67(5), 527-544. 

https://doi.org/10.12989/sem.2018.67.5.527. 

Yuan, Z. and Fish, J. (2008), “Toward realization of computational 

homogenization in practice”, J. Numerical Methods Eng., 73(3), 

361-380. https://doi.org/10.1002/nme.2074. 

Zhang, Y., Xia, Z. and Ellyin, F. (2005), “Nonlinear viscoelastic 

micromechanical analysis of fibre-reinforced polymer laminates 

with damage evolution”, J. Solids Struct., 42(2), 591-604. 

https://doi.org/10.1016/j.ijsolstr.2004.06.021. 

Zuo, Z.H. and Xie, Y.M. (2015), “A simple and compact Python 

code for complex 3D topology optimization”, Adv. Eng. Software, 

85, 1-11. https://doi.org/10.1016/j.advengsoft.2015.02.006. 

 

 

CC 

722




