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1. Introduction 
 

Damage detection is based on the premise that damage 
in the structure will cause changes in the dynamic 
characteristics of the structure and reflect in the measured 
vibration data.  The step by step process of SHM involves 
the determination of the comprehensive health of the 
structure by identifying the presence, location, extent of 
damage and the assessment of the useful remaining life of 
the structure.  Doebling et al. (1998), Sohn et al. (2003)    
and structural health monitoring conferences (Akhras et al. 
2008) have provided an extensive literature of various 
methods and advancements of SHM.  Majority of the 
methods, based on the vibration measurements(Li and Chen 
2013) make use of modal parameters(Homaei et al. 2014) 
like natural frequency, mode shapes, the curvature of mode 
shapes, modal strain energy, flexibility(Nobahari and 
Seyedpoor 2013) and FRFs(Huynh et al .  2005). 
Multivariate techniques such as principal component 
analysis (Rao et al. 2012), soft computing techniques like 
Artificial neural networks (ANN)(Hore et al. 2016), 
evolutionary techniques like genetic algorithms (Koh and 
Perry 2009, Laier and Morales 2009) and differential  
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evolution (Seyedpoor and Montazer 2016) are also being 
used in damage detection recently. Methods based on time 
scale analysis like wavelets (Bagheri et al. 2011, Hamidian 
et al. 2018) or time-frequency analysis such as Hilbert-
Huang transform (HHT)(Bao et al. 2009) are also being 
popularly employed. 

A major challenge in structural health monitoring 
(SHM) is distinguishing the effects of damage on structural 
behaviour from the effects of environmental and operational 
variation (EOV). Real-world structures are exposed to 
constantly changing conditions, and therefore, methods 
robust to the effects of EOV must be established, for SHM 
to be practical. Environmental and operational variability is 
usually handled by framing the SHM problem as a novelty 
detection problem, in which a model for healthy structural 
behaviour is established and new observations are classified 
as healthy or damaged depending on whether or not they 
continue to follow that model. An alternative approach is to 
preprocess the measured raw data to identify combinations 
of features invariant under environmental variability. 
Techniques like PCA, nonlinear PCA and cointegration can 
be applied for this purpose. The third alternative is to learn 
commonalities across different conditions to explicitly 
model the individual behaviours of the structure under 
different environmental variability.  

Recent trends in SHM are towards the application of 

statistical signal processing techniques to diagnose damage 

(Sohn and Farrar 2001, Carden and Brownjohn 2008). Such 

methods rely on the signatures obtained from the recorded 
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vibration, strain or other data to extract features that change 

with the onset of damage. These features can then be 

discriminated in a pattern classification framework. Time-

series models provide a robust way to capture the dynamic 

properties of structures, and their residuals can be 

effectively utilized as features for damage detection. The 

AR-ARX or ARMA models are useful not only in the 

univariate case but can also be applied to damage detection 

in multivariate time series, such as those generated by 

sensor networks. Further, it is rather more comfortable to 

handle environmental variability in these time series 

models, as the method of constructing “lookup table” of 

measured data can be used to enumerate normal behaviour 

under a range of environmental and operational conditions. 

The model residuals of the reference model that most 

closely resembles the new observations are then used to 

evaluate the health of the structure. A considerable amount 

of research (Yu and Zhu 2015, Lakshmi and Rao 2014, 

Zheng and Mita 2008, Lakshmi and Rao 2015, Lakshmi and 

Rao 2016, Cheng et al. 2017, Tang et al. 2018) is reported 

in developing various damage diagnostic techniques using 

time series models. Majority of them use AR-ARX models 

or ARMA models for damage diagnostics. Most of these 

time series models are used for detecting the time instant of 

damage and also possibly the spatial location of the 

damage. However, these techniques have not been further 

exploited to estimate the extent of the damage.  

In this paper, a technique to estimate the extent of 

damage by combining time series models with a new 

variant of differential search optimization technique is 

presented. In the literature, inverse problems related to the 

quantification of damage are often solved using 

unconstrained optimization problems during structural 

parameter estimation or damage assessment. Now, it is 

formulated as a multi-constrained optimization problem in 

order to improve the robustness of the identification process 

with modeling errors and also with the measured 

acceleration time history signals contaminated with noise. 

In this paper, the vibration responses are modeled with 

ARMAX time series model. However, the same technique 

can be used even with other time series models like AR-

ARX and ARMA.  

In this paper, first, the basic mathematical structure of 

the ARMAX model is presented, followed by the damage 

detection process. As the details related to ARMAX models 

are already reported in the literature, they are discussed very 

briefly for the sake of completion.  This is followed by the 

formulation of the objective function and constraints for 

optimization. The basic differential search algorithm and a 

new variant of differential search algorithm with substantial 

enhancements proposed in this paper are presented in the 

next section. Numerical simulation studies have been 

carried out by solving three numerical examples to 

demonstrate the effectiveness of the proposed technique 

while dealing with noise contaminated signals and also with 

modeling errors. 
 

 

2. ARMAX model and damage index 
 

The ARMAX model is preferred in this paper because it 

includes the dynamics of the disturbance also, unlike the 

other time series models. An ARMAX process of a healthy 

acceleration time history data, x(t) is given below. 
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where ε  is the prediction error between the measured 

signal and the signal from the prediction model, nk is the 

time delay, equal to 1. αi, βi and δi, are the parameters of 

AR, exogenous input(u) and MA models with p, q and b as 

their orders respectively. While fitting an ARMAX model, 

to the acceleration time history data from a sensor node, the 

input series, u, is the acceleration time history signals of 

adjacent sensor nodes. 

A damage index, which is based on the distances of 

ARMAX models of the pristine and current data is 

evaluated, to detect the presence and spatial location of the 

damage. The distance measure between the two-time series 

models is considered to be correlated with the position and 

severity of the damage. To measure the distance, the 

cepstral distance, which is the weighted Euclidean distance 

between the power cepstrum of ARMAX models of the two 

subsets is used.  

Balsamo et al. 2014, highlight the features of cepstral 

coefficients for feature extraction. The procedures followed 

in extracting the cepstral features are grossly contrast to the 

methods generally used in SHM. The extraction of cepstral 

features is through digital signal processing techniques and 

do not require system identification techniques or defined 

optimal modal parameters, which are generally arrived 

using computationally intensive procedures. As cepstral 

coefficients are evaluated from the logarithm of the 

spectrum of response time histories from a structure, they 

are strongly related to the features of the properties of the 

structure. Unlike AR coefficients, the number of cepstral 

coefficients considered does not alter the results of damage 

diagnosis and therefore seen as a more reliable feature.   

The mathematical formulations of the cepstral distance 

based damage index are already reported in the literature 

and are presented briefly in Appendix - A, for the sake of 

completeness. This cepstral distance measure evaluated 

from Eqn. (A5) is used for damage localization and is 

calculated for all the sensor nodes independently. Once the 

damage index (cepstral distance) of the subset for all the 

sensor nodes are obtained, the spatial location of damage 

can be identified. The cepstral distance increases with the 

increase in the difference between any two signals 

considered for investigation. Therefore, the value of the 

higher damage index at a sensor node is considered to be an 

indication of the presence of damage near that node on the 

structure. The time instant of damage can be calculated 

from the subset index number of the current dataset. 

Therefore, the damage index based on the cepstral distance 

between the current and reference (baseline) data can act as 

a good localization metric as it clearly reflects the change in 

the dynamic state of the structure near each measured 

sensor node without any spatial correlation. 
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3. Quantification of damage 
 

Once the spatial damage is identified using the cepstral 

distance between the ARMAX models constructed using the 

current and the pristine measured acceleration time history 

data, the multi-constrained optimization problem, to 

quantify the damage extent, is performed. As mentioned 

earlier, damage detection is based on the premise that 

damage in the structure will cause changes in stiffness. 

Accordingly, the stiffness reduction factors (β) are 

considered as design variables.  

The structural damage is modeled at the parametric 

element-level, by expressing the stiffness matrix of the 

damaged jth element as 

β  d u

j j jK K=  (2) 

where βj∈[0,1] refers to the reduction in the stiffness 

matrix of the jth element,  u

jK , refers to the stiffness matrix of 

the jth element before the damage. The global stiffness 

matrix can be written as 

1
Α
eln

j
j

K K
=

=  (3) 

where A is the assembly operator used in assembling the 

contribution of the total elements, nel, in the finite element 

method. The cost function based on the AR parameters of 

ARMAX time series models is given by: 
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Where _AR d  and _AR s  are the AR parameters of 

ARMAX models fitted to the measured acceleration data 

and simulated acceleration data with a trial set of reduction 

factors of the elements respectively and p is the AR order 

determined by partial autocorrelation functions. 

The cost function specified in the Eqn. (4) may not be 

sufficient for a better convergence and to obtain the optimal 

solution in the presence of environmental variability and 

measurement noise another cost function which is based on 

principal component analysis using Singular value 

decomposition (Lakshmi and Rao 2014) of the dataset is 

proposed as below. 
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where PC_d is the  principal component of measured 

acceleration data, PC_s is the principal component of 

simulated acceleration data, SV_d is the singular values of 

principal component for measured data, SV_s is the  

singular values of principal component for simulated data, 

and ‘n’ is the number of principal components. 

The final cost function (i.e., objective function) used in 

the present work is based on the time series parameters and 

the principal components, given as: 

     1 2Cost Function min F F= +  (6) 
 

Since it is proposed to formulate the optimization 

problem as a multi-constrained optimization problem, both 

cepstral distance between ARMAX models and the 

principal angle between the subspaces are used as 

constraints. The details related to principal angle between 

the subspace spanned by the measured responses and 

analytical responses with the stiffness coefficients of a 

typical solution provided by meta-heuristic algorithm 

during optimization are given in Appendix-A. A newly 

proposed variant of the differential search algorithm for 

solving the proposed multi-constrained optimization 

problem is used. 
 
 

4. Differential Search Algorithm (DSA) 
 

Once the spatial location of the damage is identified using 

the cepstral distance of ARMAX models, the extent of damage 

(i.e. quantification of damage) at the identified locations is 

assessed, by using inverse computational algorithms. However, 

recently, this class of inverse problems is being popularly 

solved using meta-heuristic algorithms by formulating the 

associated inverse problem as an optimization problem. In the 

present work, a similar procedure is followed. The present 

inverse optimization problem requires the measured time 

history responses from the structure of interest in order to 

arrive at the severity of the damage. Field measurements 

obtained will obviously be corrupted by noise. Hence, the 

optimization algorithm employed should exhibit less 

sensitivity to measurement noise. Further, the optimization 

problem associated with damage quantification is extremely 

complex, multi-modal and nonlinear, hence there is a need to 

carefully select the suitable meta-heuristic algorithm for this 

kind of problems.  Further, to incorporate in the SHM 

scheme, apart from finding the globally optimal solution, the 

algorithm should also have the capability of faster 

convergence.  

Several meta-heuristic algorithms are reported in the 

literature and the majority of them are applied to solve inverse 

problems. However, the majority of meta-heuristic algorithms 

have several parameters to adjust so that the convergence 

characteristics can be improved by balancing the 

diversification and intensification process. In this paper, a 

vastly improved version of differential search algorithm 

originally proposed by Civivioglu (2012) is used. Differential 

search is a much recent one among the algorithms proposed, 

based on swarm intelligence and reported to be effective in 

dealing with multimodal optimization problems. Apart from 

this, unlike many meta-heuristic algorithms, the differential 

search has few parameters to adjust for optimal performance. 

Further, it is reported that the differential search converges 

faster than several other recent swarm intelligence algorithms 

(Liu et al. 2015).  However, there are still some shortcomings 

in the classical differential search algorithm. This algorithm is 

built with extremely good diversification mechanism. 

However, intensification mechanism is rather weak.  This 

lack of effective exploitative mechanism may lead to slow 

convergence in some complex optimization problems at later 
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stages. It is proposed to improve the intensification mechanism 

in the basic differential search algorithm by augmenting with a 

neighborhood search algorithm. It is known very well that in 

general, meta-heuristic algorithms cannot outperform the 

specialized neighborhood search algorithms. Nevertheless, the 

neighborhood search methods face initialization problem most 

of the cases. Precisely, the local optimizer performs based on 

the function of the initial solution. Therefore, combining a 

meta-heuristic algorithm with an efficient neighborhood search 

algorithm is expected to provide a much better solution for the 

reason that the good initial solutions for the neighborhood 

search algorithm are provided by the meta-heuristic algorithms 

for further exploration.  

Hence in this paper, a vastly improved meta-heuristic 

algorithm by augmenting with adaptive features, augmenting 

with a powerful neighborhood search algorithm and also with a 

dynamic exchange of information is presented. The proposed 

features enhance the intensification mechanism of the 

algorithm and thereby strike a good balance between 

intensification and diversification. This will result in faster 

convergence and also provide a globally optimal solution. 

First, the basic DSA algorithm will be presented followed by 

the improvements made in the proposed algorithm. 
 

4.1 Basic DSA 
 

Similar to any other optimization algorithm based on 

stochastic search, DS algorithm, made up of random solutions 

of the respective problem, corresponds to an artificial 

superorganism migrating to the global optimum solution of the 

problem. This algorithm is developed by drawing inspiration 

from the seasonal migration of living organisms in search of 

ideal sources for food. Since the quality and quantity of food 

will obviously vary from season to season, due to the 

periodical climatic changes, this migration takes place 

throughout the year and move from poor region to suitable and 

efficient habitat where capacity and diversity of natural sources 

are high.  A large number of migrating living organisms 

constitute the superorganism.  The differential search 

algorithm simulates the Brownian-like random-walk 

movement to describe the search mechanism during migration.  

The artificial superorganism (consists of a population of 

generated random solutions), during the migration process, 

explores the randomly selected positions (places) for their 

suitability for temporary settlement.  If a suitable temporary 

stopover position is found during the migration by the 

members of the artificial-superorganism (i.e. artificial-

organisms) immediately migrates to the new position and 

continue their migration process from this newly discovered 

position. The migration process of the superorganism will 

continue from the current position.  The basic steps involved 

in differential search algorithms are:  

In DSA, each of the artificial organisms represents a 

possible solution Vi = (vi1,vi2,vi3,…..,viD) (i=1, N) where N 

signifies the number of artificial organisms in the 

superorganism and D depends on the number of design 

variables to define the specific optimization problem on hand. 

Initially, all the solutions (artificial organisms) are generated 

randomly. Accordingly, the initial position of each artificial 

organism can be defined by using upper and lower limits of 

each design variable of the optimization problem on hand 

ij j j jv =Lower+rand * (Upper -Lower )  (7) 

where Upperj and Lowerj are the user-defined upper and 

lower bounds of the jth design variable.  

The search mechanism for finding the stopover sites at the 

areas in between the artificial-organisms follows the 

Brownian-like random walk model. In order to discover the 

new stopover site, the individuals are chosen to randomly 

(artificial organisms) move towards the targets of the donor. 

The order of the number of the elements in the set is randomly 

changed each time through random shuffling. The positional 

change (i.e., stopover position) of the artificial organisms is 

controlled by a value ‘scale’. Accordingly, the stopover vectors 

(St) for each artificial organism are computed as 

ikSt = V + . (V -V )ik dk ikscale  (8) 

where d is the donor, d∈[1,2,…N] are randomly chosen 

integers obtained using the random_shuffling function and d ≠ 

i. It must be mentioned here that the value of scale is produced 

by a gamma random number generator (i.e., randg) controlled 

by a uniform distribution random number generator (i.e., rand) 

in the range of 0 and 1.  

The stopover site is controlled to remain in the determined 

search space range. In DS algorithm, the stopover site found by 

the search process is evaluated and if the newly discovered 

stopover site of an artificial organism has better quality than 

the current sources of that artificial-organism, it goes to that 

stopover site. The stopover position (site) can be calculated by 

the artificial organisms of the superorganism and can be 

determined as 

ij 

ij

ij

St    if  R(i,j)=0;
St

 v    if  R(i,j)=1;

g

g

g


= 


 
(9) 

where j=[1,2,…D]; R(i, j) is an integer number either 0 or 

1. ijSt g  is the trial vector of the ith particle in the jth 

dimension at the gth generation. While the artificial organisms 

of a superorganism change site, that respective superorganism 

continues its movement towards the global optimum. The new 

population (i.e., g=g+1) is chosen between the stopover site 

population and the artificial-organism population using the 

following selection process. 

i i1

i

i i
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ig
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f
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 (10) 

It should be mentioned here that the differential search 

algorithm may simultaneously use more than one individual 

unlike other stochastic algorithms like differential evolution 

(DE) or Artificial Bee Colony (ABC) algorithm. Similarly, 

DSA has no inclination to correctly move towards the best 

possible solution to the problem which is in contrast to the 

behavior of DE, ABC or particle swarm optimization (PSO) 

algorithm. In view of this, DSA is more adaptive towards 

finding multi-modal solutions 
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4.2 Adaptive DSA 
 

The differential search algorithm is reported to have a 

better capability in terms of exploring search spaces when 

compared to other population-based meta-heuristic 

algorithms especially while dealing with multi-modal 

optimization problems. However, there are still some 

limitations in the classical DS algorithm.  Even though the 

DSA is built with better exploration capabilities, it is rather 

weak in the exploitation of the solution.  In view of this, 

the convergence rate is rather slow in some instances. Major 

attributes of any successful meta-heuristic algorithms are 

strong exploitation and exploration capabilities and striking 

a good balance between them in order to accelerate the 

convergence rate and at the same time preventing the 

algorithm from premature convergence. Hence the majority 

of the efforts in algorithmic research are devoted to 

enhancing the exploitation capability while simultaneously 

building up good exploration capability in order to 

accelerate convergence rate and avoid premature 

convergence. In the initial stages, of execution, the 

algorithm should exhibit high diversification capability in 

order to explore the search space vigorously and at the later 

stages i.e. near convergence, the intensification capability 

should be high with low or marginal diversification for 

faster convergence to the optimal solution. 

The control parameters play an important role in all the 

meta-heuristic algorithms to improve the convergence rate 

and also preventing premature convergence. One of the 

major advantages of DSA is that there are only two control 

parameters i.e., p1 and p2 in the DSA algorithm, unlike 

many popular meta-heuristic algorithms. Earlier 

investigations on these control parameters indicate that they 

depend on the complexity and also the particularity of the 

problem on hand. In the majority of the cases, these two 

parameters P1 and P2 are set to (0.3*rand) to obtain good 

results. However, in the present work, it is proposed to 

adjust the values of these two control parameters 

dynamically during the search process based on the 

feedback on the improvements in the fitness values (rather 

convergence rate). These adaptive features built into the 

proposed algorithm certainly enhances the convergence rate 

of the solution, by ensuring a good balance between 

exploitation and exploration. 

 

4.3 Hybrid adaptive differential Search algorithm 
(HADS algorithm) 

 
The exploitation capability of the classical differential 

search algorithm is rather weak and it requires 

strengthening. Keeping this in view, it is proposed to 

augment the adaptive differential search algorithm with a 

local search algorithm in order to substantially enhance the 

exploitation capabilities. It should be mentioned here that 

the meta-heuristic algorithms including the present 

differential search cannot compete with a promising local 

search algorithm (Rao and Lakshmi 2011) in obtaining an 

optimal solution without converging to local optima. 

However, the major limitation of the local search algorithms 

lies in the selection of the good initial point in the search 

space i.e., initialization problem.  Hence the performance 

of these local search algorithm is always a function of the 

initial solution to which it is applied.  The exemplary 

capabilities of these local search algorithms can be 

exploited, by feeding good potential initial points identified 

using meta-heuristic algorithms to exploit the search space 

and provide improved solutions. The resulting hybrid 

algorithms (i.e., a meta-heuristic algorithm combining with 

local search algorithm) will obviously exhibit superior 

convergence capabilities. Keeping this in view the proposed 

adaptive DSA is combined with a popular non-gradient 

based local search algorithm called Nelder-Mead (NM) 

algorithm shown in Figure 1. Alternatively, Hooke and 

Jeeves algorithm (Hooke and Jeeves 1961) in the place of 

the Nelder-Mead algorithm is used, to investigate the 

comparative performances of these popular local search 

algorithms.  The flowchart of Hooke and Jeeves algorithm 

is given in Figure 2.  The flowchart of the resulting hybrid 

adaptive differential search algorithm given in Figure 3 

details the computational procedure associated with it. 

Hybridizing with a local search algorithm will enhance 

drastically the exploration capabilities(Johnson and 

McGeoch 1997). However, it may take away the balance 

between exploitation and exploration and thereby effects 

the performance of the algorithm and its efficiencies. More 

focus on the exploitation due to the augmentation of local 

search requires the exploration to be limited to only a part 

of the search space. This may result in an increased 

probability of getting trapped in local optima. Keeping this 

in view, the convergence characteristics of the HADS 

algorithm are further improved by formulating a new 

version of the differential search algorithm with 

dynamically changing subpopulations. The details of the 

proposed hybrid adaptive differential search algorithm with 

dynamically changing subpopulations are presented in the 

next sub-section. 
 

4.4 Hybrid adaptive differential search with multi 
superorganisms 

 
The classical differential search algorithm basically 

works with single superorganism. There is sufficient 

evidence in the literature to indicate that meta-heuristic 

algorithms with models comprising of multiple small 

populations perform better than a single population model 

(Johnson and McGeoch 1997). Island models developed for 

evolutionary computing techniques is also another example 

of successful implementation of multi-population models 

which are generally found superior to their single 

population counterparts (Rao and Lakshmi 2012). Inspired 

by these facts, a new differential search algorithm with 

multiple superorganisms, each with a small number of 

organisms is proposed, in order to maintain faster 

convergence while maintaining larger diversity during the 

search. Since the organisms in each sub-superorganism 

dynamically migrate to other sub-superorganism, the 

proposed algorithm is termed as a differential search 

algorithm with dynamic superorganisms.  In the proposed 

algorithm, the randomly generated artificial organisms at 

the initial stage are grouped into small sized sub-

superorganism, with each consisting of an equal smaller 

number of artificial organisms. Each sub-superorganism 
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uses its own artificial organisms to migrate to new stopover 

sites using the search process associated with the hybrid 

adaptive differential search explained in the earlier section 

using their own best historical information.  Since the 

number of artificial organisms is small in number, the 

solution is likely to converge to a local optimum. In order to 

avoid this premature convergence, the information needs to 

be exchanged across sub-superorganisms. It is also 

mandatory to maintain higher diversity in the sub-

superorganisms while exchanging information. To ensure 

this, a neighborhood structure for the artificial organisms in 

each sub-superorganism, which changes dynamically, is 

proposed through a shuffling schedule. Accordingly, the 

population is shuffled after ‘m’ generations, defined by the 

user, and the process of migration to the next stopover site 

is continued in the pursuit of reaching the optimal solution. 

Exchange of information of each sub-superorganism 

during the previous regrouping period ‘m’ takes place after 

every ‘m’ trials. The search process in each artificial 
 

 

 

superorganism is carried out using the proposed hybrid 

adaptive differential search algorithm shown in Figure 3. 

However, different control parameters are used at the start 

in each sub-superorganism which may change adaptively 

during the search process.  The parallel search involved in 

the proposed multi sub-superorganism model with a 

dynamic exchange of information across sub 

superorganisms accelerates the search process towards an 

optimal solution. It should be mentioned here that the 

exploration capabilities are significantly enhanced in the 

proposed algorithm through parallel search and dynamic 

exchange of information among the sub superorganisms. 

The exploitation capabilities are also significantly enhanced 

by augmenting with an effective local search algorithm like 

the Nelder-Mead algorithm. The complete details related to 

the computational procedure associated with the proposed 

hybrid adaptive differential search with multiple sub 

superorganisms is presented in the flowchart shown in 

Figure 4. 

 

Fig. 1 Nelder-Mead algorithm 
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In order to accelerate the convergence rate further and 

also to improve the accuracy of the parameter identification 

process, it is attempted to shrink the search space during the 

course of execution of the proposed algorithm. Shrinking 

the search space has been successfully used in several 

earlier investigations (Chakraborty and Dutta 2005, Rao and 

Lakshmi 2012). In the present work also, it is proposed to 

shrink the search space based on the history of best 

solutions obtained in the earlier evolutions.  The procedure 

outlined earlier in Jayalakshmi et al. (2018) is adopted. 

 

 

5. Complete damage diagnostic procedure 
 

The proposed damage diagnosis involves the processes 

of (i) Damage detection (ii) Damage quantification at  

 

 

identified locations using DHADS optimization algorithm. 

The step by step process is as given below: 

In the damage detection phase, the time instant and the 

spatial location of damage are identified using time series 

analysis of ARMAX models.   

i.  Formation of pristine data: The baseline data (X(t)) 

is basically the acceleration time history data generated 

when the structure is in its healthy state under varying 

environmental and operational conditions and also 

measured at different times. This pristine data is partitioned 

into a convenient number of smaller subsets and it forms a 

huge collection of samples 

ii. Construction of the ARMAX model with pristine 

data: For each subset, the data is fitted to the ARMAX 

model using Eqn. (1). 

iii. Formation of current data: The current data 

 

Fig. 2 Hooke and Jeeves Algorithm 

2 (k)
i ix' x' s e= −

(k)
i ix' x' s e= +

(k)
i ix' x' s e= +

1i i= +

1k k= +

1i=

i n1i i= +

i n

END

1k k= +
1i=

    

Initialize

e, 

 1 (k, i ) (k)
i ix' x s e−= +

Yes

Yes

Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

 0  (k, n) (k, )F(x ) F(x )

1 0 12   (k , ) (k, n) (k , n)x x x+ −= −

 1 1

1

  

              

(k ) (k) (k, n) (k , n)
i i i is s s

for

ign(

a

x

,

x

ll n

)

i

+ −

=

= −

 1 (k, i ) (k)
i ix' x s e−= +

 1    (k, n) (k , n)F(x ) F(x )−

 1 0 1

1 1

  

  

(k , ) (k , n)

(k ) (k)
i i

x x

s s ; i , n

+ −

+

=

= =

 1   (k, i )F(x') F(x )−

 2 (k)
i ix' x' s e= −

 1   (k, i )F(x') F(x )−

 1   (k, i )F(x') F(x )−

  (k, i)x x'=

  (k, i)x x'=

 1   (k, i )F(x') F(x )−

 1 0 1  (k , ) (k , n)x x+ −=

 1 1

2

1

  

           

  

  

(k, n) (k , n) (k)
i i i

for all

|x x

i ,

|

n

|s |−

=

− 

 ε

1

 

 

 

 

  

 

(k)
i

f

|s |

or all i , n=



 1 0 0  (k , ) (k, )x x+ =

ε - Tolerance limit

1 ρ

1

  

   

 

  

(k)k
i

( )
i * |s |

for all i , n

s +

=

=

695



 

Lakshmi K and Rama Mohan Rao A 

 

subsets (Y(t)) is created from the acceleration data from the 

unknown state of the structure (i.e., healthy or damaged 

state). 

iv. Fitting ARMAX model to current data: 

Employing the new current time series, (y(t)), collected 

from the system of the unknown structural condition, the 

ARMAX model is constructed as 

1 1

1

y( ) α y( ) β ( )

δ ε( ) ε( )

p q

i i
i i

b

i
i

t t i u t nk i

t i t

= =

=

= − + − − 

+ − +
 (11) 

v. Normalisation: This is carried out to ensure that 

every subset of the current data is paired with a subset of a 

baseline (pristine) data, such that they possess closely 

similar conditions of unmeasured variability, if not the 

same. Here, the AR coefficients of the ARMAX models are 

used for this purpose. Every subset of the current data, y(t) 

is matched with any one of the subsets of the baseline data, 

x(t) using the ‘p’ lagged AR coefficients,  , of their 

ARMAX models, on the basis of their correlation values. 

( )
2

1

p
j j

x y
j

Difference  
=

= −  (12) 

vi. Evaluation of Damage Index: The damage index 

using Cepstral distance (Eqn. A5) between the ARMAX 

models of current and the matched pristine data is evaluated 

for each sensor node. The magnitude of the cepstral 

distance increases with the presence of damage and 

therefore, the sensor node which is located near the damage, 

shows the largest magnitude of the cepstral distance 

measure when compared to other sensors. Thus the location 

of the damage is identified precisely. 

vii. Detection of the extent of the damage: Based on 

the identified location of damage in step (vi), the extent of 

damage is estimated, by solving the multi-constrained 

optimization problem using the newly developed Dynamic 

Hybrid Adaptive differential Search (DHADS) algorithm. 

The cost function is given in Eqn. 6 with constraints as the 

cepstral distance of ARMAX models and the subspace 

angle spanned by the measured and the simulated 

responses. The stiffness reduction factors corresponding to 

elements, identified with damage are considered as design 

variables.  Alternatively, stiffness reduction factors 

corresponding to all the elements can be used as design 

variables in order to robustly identify the spatial location 

and damage extent using the proposed constraint 

optimization formulation. The upper and lower limits of 

design variables are considered as 0.1 and 2.0 respectively. 

The complete process of damage diagnosis including the 

design variables, cost function, and the constraints are 

shown in Figure 5. 
 

5.1 Damage diagnosis with limited instrumentation 
 
Data-driven algorithms like time series models can be 

effectively exploited using dense sensor networks which 

provide high-resolution information of the structure. 

However, due to cost and accessibility issues, the number of 

sensors placed on the structures will be restricted. The 

minimum number of sensors that are to be placed on the 

structure should always be higher than the number of modes 

being excited. Once the number of sensors is selected, it is 

necessary to identify the optimal locations on the structure, 

in order to capture the complete dynamics of the system 

with least redundancy from the measured time history 

responses. In view of this, for a successful Structural Health 

Monitoring System, the placement of the sensors at critical 

spatial locations on the targeted structure is the crucial 

issue.  

The optimal sensor placement methods are based on the 

mode shapes of the pretext finite element model (FEM). 

The aim of these methods is to optimize the sensor locations 

to extract the desired number of modes and other important 

parameters like structural damping, dynamic forces acting 

on the structure are not accounted for.  In this paper, the 

efforts are directed towards obtaining the optimal sensor 

locations considering the input excitation force as well as 

damping apart from the other dynamic characteristics of the 

structure. The principal component analysis is employed for 

this purpose and the formulations closely follow the 

Effective Independence approach (Kammer, 2005, ARM 

Rao and Ananda Kumar, 2008). The basic difference lies in 

using principal components instead of mode shapes to 

account for input excitation location and damping. 

Principal Component Analysis (PCA) is a multivariable 

analysis technique, which provides arguments to reduce the 

original complex data set to a lower dimension. Also, some 

of the hidden and simplified structure/patterns that often 

underlie it are revealed by PCA. PCA aims to find out the 

important dynamic characteristics and redundant noise 

components in the system (Worden and Farrar, 2007). From 

the dynamic time history response, principal components 

can be computed by performing the singular value 

decomposition (SVD) on the measured dynamic time 

history response from the sensors placed spatially across the 

structure. Using the SVD, the dynamic time history 

response data A (Nxn matrix of data, with n data points at N 

different spatial locations on the structure), can be 

decomposed as 

TA U V=   (13) 

where the matrix U of size NXN  are the principal 

components(PCs), V of size nxn is the principal coordinate 

matrix and Σ  of size, N X n is a diagonal matrix, in which 

the singular values are arranged in the decreasing order of 

their magnitude. Each of the singular value present in the 

diagonal of the matrix Σ  represents the energy present in 

the corresponding mode. The first few singular values based 

on energy criteria corresponding to 99% of total energy 

(Feeny and Liang 2003) are generally used to characterize 

the structural system. 

In contrast to effective independence method (Efi), 

where mode shapes are used to obtain the optimal sensor 

locations, in the present work, principal components are 

used for the following reasons. Optimal sensor placement 

technique (i.e., Efi) based on mode shapes, represent the 
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Fig. 3 Hybrid adaptive Differential search (HADS) algorithm 
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Fig. 4 Dynamic hybrid adaptive differential search (DHADS) algorithm 
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dynamic characteristics like mass and stiffness of the 

structural system and therefore cannot consider the damping 

as well as loading present on the structural system. On the 

other hand, principal components are constructed from the 

structural dynamic time history responses and so they 

effectively represent all the dynamic characteristics of the 

system i.e., mass, stiffness, damping, dynamic load on the 

structure and the spatial location of the structure at which 

the dynamic load is acting, etc. Hence the PCA based sensor 

placement algorithm (PEfi) chooses the dynamically 

sensitive spatial locations on the structure for placement of 

the sensors. It is ensured that all the dynamic information 

present in the system is captured, as the important dynamic 

information lies in the principal directions, chosen based on 

the energy criteria.  Accordingly, the Fisher information 

matrix with principal components can be defined as 

Q = U WUT

c c c  (14) 

where cU is the dominant principal components 

partitioned to the candidate sensor set,  and W usually 

termed as weighting matrix and it is the inverse of the noise 

covariance matrix. In the present work, the weighting 

matrix,W , is chosen as the identity matrix. An appropriate 

norm of the Fisher Information matrix is maximized in 

order to obtain the best state estimate.  In the present work, 

the determinant of the Fisher information matrix is chosen 

as a norm for maximization. The same procedure of 

classical EfI is followed in the present optimal sensor 

placement technique using principal components (PEfI) to 

truncate the sensor positions. The contribution of each 

candidate sensor node is examined and the sensor position 

which has the least contribution to the determinant of the 

information matrix is chosen for truncation. This truncation 

is carried out in an iterative fashion similar to EfI until the 

desired targeted number of sensors is reached. 
 
 

6. Numerical studies 
 

Numerical experiments are conducted on examples of a 

simply supported beam, 15-storey framed structure and 12- 

 

 

bay steel truss to validate the proposed technique. The 

results of the studies show the robustness of the algorithm 

to detect the time instance, the location and the extent of 

damage irrespective of the presence of noise and variability. 

 

6.1 Simply supported beam 
 
A simply supported beam is considered as the first 

numerical example with a span of 6 meters, discretized into 

20 elements. The dimensions, the material and geometrical 

properties of the beam are shown in Figure 6. 

The external loading simulated is the random load in the 

form of Gaussian white noise. Under the conditions of 

simulated random loads and varying environmental 

conditions, Newmark’s time integration scheme is used to 

compute the acceleration time-history response for every 

node with a sampling speed of 2000Hz. This simulates the 

data collected on a bridge girder on several time instants 

with varied operational (i.e., traffic levels& wind) loads. In 

addition to that, baseline datasets are generated with a range 

of temperatures from -15 to 50 degree centigrade. 

The robustness of the structural damage diagnostic 

techniques to the effect of measurement noise is one of the 

important issues in real situations of SHM. Therefore, to 

investigate the effect of measurement noise on the 

robustness of the proposed approach, the computed time 

history measurements are contaminated with white 

Gaussian noise with zero mean statistics. A Gaussian 

random component is added to the noise-free acceleration 

time-history response to obtain the noisy sequences as 

follows: 

ξ σ( )p noisem Nx x x= +  (15) 

Where ξp is the level of noise in percentage, Nnoise is the 

standard normal distribution, σ(x)  is the standard 

deviation of the measured (computed) time-history 

response, uncorrupted with noise. In the present numerical 

studies, the random noise levels are varied by 5%, 8%, and 

10%. 

The generated baseline data is divided into 80 subsets of  

 

Fig. 5 Flowchart of the proposed damage diagnostic technique 
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1000 samples each and are contaminated with varying 

intensities of noise to perfectly simulate the measurement 

noise. The current data is generated in such a way that the 

structure is considered to be healthy for the specified initial 

period of time and beyond that, it encountered the damage. 

Element stiffnesses of a few elements of the FE model are 

reduced to simulate hypothetical damage scenarios for 

diagnosis. Single damage is simulated into simply 

supported beam girder after obtaining 20,000 samples of 

current data (i.e. after 10 sec), by reducing the stiffness of 

element 8 by 12% and multiple damages are simulated in 

elements 6 and 12 by 10% and 15% respectively. 

Now, the damage diagnosis is carried out through the 

steps described in section 5.0 using the cepstral distance of 

two ARMAX models as a damage index. The normalized 

cepstral distance based damage index calculated for the 

single and multiple damages are shown in Figure 7. From 

the above-said figure, it is clear that the cepstral distance of 

ARMAX models is a good indicator of the spatial location 

of the damage. The damage index is not only capable of 

handling the operational variability and measurement noise 

efficiently, but also indicating the spatial location of damage 

robustly. 

Once the spatial location is identified, the DHADS 

algorithm is employed to identify the quantity of damage. 

The design variables are the stiffness reduction factors 

corresponding to the elements which are identified by 

ARMAX models as shown in Figure 7. However, to 

demonstrate the effectiveness of the proposed DHADS 

algorithm, all the elements are considered as design  

 

 

variables ignoring the identification of spatial locations by 

ARMAX models. Accordingly, the number of design 

variables (i.e. stiffness reduction factors of the elements) are 

considered as 20. The upper and lower limits of design 

variables are considered as 0.1 to 2.0 respectively in order 

to widen the search space.  The cost function shown in 

Eqn. (6) is used in the formulated optimization problem 

using the variants of differential search algorithm described 

in section 4. 

The following strategies during the optimization process 

in order to improve the convergence characteristics as well 

as the robustness of the proposed variants of the meta-

heuristic algorithm are employed. 

The optimization algorithm is started initially, as an 

unconstrained optimization problem and after few 

iterations, when the design variables converge, the cepstral 

distance and subspace angle of two datasets (i.e., the 

measured responses and numerically simulated responses) 

are employed as constraints. The imposition of the 

constraints after the initial few iterations will reduce the 

computational cost overheads and also helps the otherwise 

multimodal optimization problem converging towards the 

true solution under uncertainties associated with 

measurement noise and also modeling errors. 

As mentioned earlier, a wider search space is used, by 

setting the upper and lower limits of the design variables 

(i.e., element stiffness coefficients) as 0.1 and 2.0. 

However, these upper limits and lower limits of the design 

variables are changed dynamically making use of the 

feedback from the previous iterations, during the execution 

 

Fig. 6 Simply supported beam 
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of the optimization algorithm. This dynamic reduction of 

search space during the execution of optimization algorithm 

is not new in the context for meta-heuristic algorithms and 

it is reported to be very effective in improving the accuracy 

of the converged solution, robustness and also substantially 

improves the computational performance (Rao et al. 2004). 

Hence it is proposed to adopt the similar concept of 

dynamic resetting of the search space. Initially, the 

proposed variants of the DS algorithms are executed with 

the present wider search space for the design variables. 

After the initially chosen random design variables are 

settled down, i.e. after few iterations say after every 15 

iterations, the search space is reset based on the feedback 

from the solutions obtained from the previous fifteen 

iterations. The upper and lower limits are chosen by 

considering the weighted mean of the converged design 

variables during the past fifteen iterations and also the 

weighted variance. The new upper and lower limits are now 

set by considering the upper limit of each design variable as 

‘weighted mean value of the design variable + Five times 

the weighted variance of the design variable’. Similarly, the 

lower limit of the design variable is set as ‘weighted mean 

value of the design variable - five times the weighted 

variance of the design variable’.  The weighting function 

to arrive at the weighted mean and variance is taken as the 

ratio of fitness of each converged solution to the best 

fitness. This resetting of the upper and lower limits of the 

search space is carried out dynamically all through the 

optimization process for proposed variants of the DS 

algorithm. 

The stiffness reduction factors identified with 10% of 

measurement noise using the three variants of differential 

search algorithm i.e. the conventional, two hybrid adaptive 

versions, and finally two algorithms with multi 

superorganisms with dynamic interaction i.e. DHADS 

algorithm is compared with the actual system parameters 

and the results are presented in Table 1.  It can be observed 

from the results furnished in Table 1 that the stiffness 

reduction factors obtained using the proposed DHADS 

meta-heuristic algorithms are comparing very well with the 

true values. It can also be noted from the studies presented 

in Table 1 that the Nelder-Mead algorithm performs 

consistently well as a local search algorithm in hybrid DS 

and DHADS implementations when compared to Hook-

Jeeves algorithm.  The convergence characteristics of the 

three different implementations of differential search 

algorithm (i.e., CDS, HADS-NM and DHADS-NM) are 

evaluated and the best solution obtained in each evolution is 

shown in Figure 8.  A careful look at Figure 8 indicates 

clearly that the proposed DHADS algorithm provides an 

optimal solution with faster convergence rate. Further, the 

DHADS algorithm converges in the least number of 

evolutions thus making it the fastest among all the 

algorithms compared in this paper. 

The DHADS algorithm is a stochastic optimization 

algorithm and so there is no assurance that the final 

solutions arrived in every execution is the same. In view of 

this, the concept of practical reliability (PR) is used to 

assure the consistency of the proposed meta-heuristic 

algorithms. Practical reliability is defined as the percentage  
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of converged solutions obtained using the DHADS 

stochastic algorithm with the exact stiffness and damping 

coefficients. However, a variation of 0.01 in the values of 

the exact solutions obtained is ignored. The evaluation of 

the practical reliability is performed by executing the 

stochastic algorithm for 30 different instances and by 

calculating the ratio of the maximum number of converged 

solutions that satisfy the above requirement to the number 

of independent executions of the algorithm. The practical 

reliability obtained for this example for the conventional 

differential search, hybrid differential search, HADS and 

proposed DHADS are found to be 0.89, 0.95, 0.99 

respectively.   

In order to measure the efficiency of the proposed 

algorithm, another measure which is the normalised price 

(NP) of each run(Jayalakshmi et al 2018), is used in the 

present numerical experiments. The definition of price is 

formulated as the total number of function evaluations per 

complete execution of the proposed algorithm. The ratio of 

the mean price of the 30 executions of the proposed meta-

heuristic algorithms to the practical reliability is defined as 

the normalised price. The normalised price of the 

conventional differential search, hybrid differential search, 

and DHADS algorithm are found to be 6375, 5850 and 

3375 respectively.  It can be concluded from the studies 

presented in Table 1 that the consistency coupled with faster 

convergence makes the proposed DHADS algorithm highly 

suitable for complex optimisation problems associated with 

structural system identification or damage quantification. It 

is also found to be highly immune to the measurement 

noise. The identification of the parameters is performed 

with an assumption that the mass matrix is exact. 

Nevertheless, in many instances, the precise values of the 

mass of each element are difficult to obtain. In view of this 

practical reason, it is assumed that the element mass is not 

known precisely and only known in the form of a normal 

distribution. Two case studies, where the mass matrix is 

assumed as known apriori and also the element mass as a 

normally distributed variable is considered for the 

investigation. The uncertainty in the values of the element  
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mass is simulated by considering them as normally 

distributed which are centered on the correct value with a 

7% standard deviation of the corrected value. 

To demonstrate the efficiency of the proposed algorithm 

to identify the stiffness parameter when the mass values 

follow the normal distribution, 12% damage is introduced 

in the 8th element and the acceleration data is generated. 

Using this generated data, the stiffness parameters are 

obtained for all the elements. The maximum, average errors 

in the identification of stiffness reduction factors of all 

elements in the beam are shown in Table 2. From the Table 

2, it can be observed that the errors in the identification 

stiffness reduction factors with imprecise values of element 

masses (i.e. assumed to be known as the normal 

distribution) are marginally higher than those of the 

precisely known masses. These errors are due to the 

imprecise knowledge of the element mass. Nevertheless, 

such small error magnitudes indicate that the uncertainties 

associated with the mass of the structure have less influence 

on the identification of the stiffness reduction factors. 

In order to test and verify the effectiveness of the 

proposed multi-constrained optimization model for 

identification of system parameters, the investigations are 

carried out, using all the proposed variants of DS algorithms 

without considering the two constraints (i.e., treating it as 

unconstrained optimization problem). The error  in 

identification using precise values of elemental mass and 

with imprecise values of elemental mass is shown in Table 

3. It can be observed from the results given in Table 3 that 

errors in the estimation of system parameters are 

consistently higher with the unconstrained optimization 

problem. Further, the errors in the estimation of system  

 

 

parameters with imprecise values of elemental mass (i.e. 

mass assumed in the form of normal distribution) are found 

to be much higher. Apart from this, the number of function 

evaluations are consistently increased while using 

unconstrained optimization by about 24%. Hence it can be 

concluded from this investigation that using the two 

constraints in the proposed formulation increases the 

computational efficiency as well as the accuracy in the 

estimation of the system parameters. 

In order to investigate the effectiveness of the proposed 

damage diagnostic technique, with limited instrumentation, 

15, 10 and 7 numbers of sensors, optimally located using 

proposed PEfi algorithm discussed in the earlier section, are 

used. The damage index plots using ARMAX model are 

shown in Figure 9, considering 15, 10 and 7 sensors 

separately.  It can be observed that the ARMAX model is 

able to locate the spatial location of multiple damages 

accurately. 

Similarly, the damage localization is also carried out 

with limited instrumentation considering 15, 10 and 7 

sensors with exactly known element mass and imprecisely 

known element mass, for varying noise levels in Table 4. It 

can be observed that the identification results are reasonably 

accurate, even with higher levels of noise.  The average 

error works out to be, 1.11%, 2.44% and 2.80% when it is 

assumed that the element masses are precisely known for 

15,10 and 7 sensors respectively with 10 percent noise. 

Similarly, the average errors are found to be 1.86%, 1.23% 

and 3.41%, with 15,10 and 7 sensors respectively, when 

mass assumed to be known as a normal distribution. The 

studies are carried out only using DHADS-NM algorithm 

using multi-constraint formulations. 

Table 1 Damage distribution of simply supported beam with damage in element 8 (12%) computed using variants of 

differential search (DS) algorithm with 10% measurement noise-multi constraint optimization 

Element number 1 2 3 4 5 6 7 8 9 10 

True stiffness  parameters 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.880 1.000 1.000 

Identified values Using conventional 

DSA(CDSA) 
0.969 1.093 0.969 1.083 1.054 0.988 1.045 0.918 1.067 0.992 

Identified values Using HADS-NM 0.977 0.982 0.977 1.094 0.966 1.018 1.098 0.872 1.044 1.056 

Identified values using HADS –HJ 0.969 1.018 0.979 1.102 1.071 1.091 0.991 0.912 0.912 0.919 

Identified values  using DHADS –NM 0.996 1.009 1.008 0.996 1.008 0.996 0.994 0.879 1.007 0.997 

Identified values  using DHADS-HJ 1.021 1.074 0.982 0.904 1.034 1.021 0.992 0.904 1.044 0.992 

Element number 11 12 13 14 15 16 17 18 19 20 

True stiffness  parameters 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Identified values Using conventional 

DS(CDS) 
0.964 0.988 1.043 1.067 0.967 0.984 0.982 0.991 0.932 0.962 

Identified values Using HADS-NM 0.992 1.012 0.969 1.019 0.978 0.976 1.013 1.044 0.982 1.021 

Identified values using HADS –HJ 0.943 0.985 0.978 1.102 1.049 1.009 0.989 0.947 1.014 0.992 

Identified values  using DHADS –NM 0.997 1.006 0.993 1.008 0.997 1.011 1.004 0.995 1.010 1.007 

Identified values  using DHADS-HJ 1.043 0.984 0.982 0.996 0.982 1.043 1.024 0.969 1.113 1.061 

NM- Nelder Mead algorithm; HJ- Hooke & Jeeves algorithm 
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6.2 Fifteen storey framed structure 
 

The 15-DOF framed structure which is idealized as a 

shear building model and shown in Figure 10, is the second 

numerical example. The frame is subjected to a lateral 

random excitation on the top-most storey. The mass of each 

floor is assumed as 1500 kg and the stiffness of each floor is 

considered as 5000 kN/m. The acceleration data generated 

by Newmark’s time integration algorithm is corrupted by 

the addition of varying percentages (5%, 8%, and 10%) of 

Gaussian white noise as shown in Eqn. (15). The first six 

natural frequencies are 2.69Hz, 7.52 Hz, 12.26 Hz, 

17.40Hz, 21.87 Hz and 26.06Hz respectively. Single 

damage is hypothetically simulated in the 3rd storey by 

reducing its stiffness by 15% assuming that the damage is 

set-in after 6 seconds with a sampling rate of 2000. The  

 

 

damage diagnosis is carried out through the steps described 

in section 5.0 using the damage index of the cepstral 

distance of ARMAX models. The cepstral distance of 

ARMAX models are evaluated and are shown in Figure 

11(a). Similarly, multiple damages at 5th and 12th storey 

are simulated by reducing the stiffness by 16 percent of 

those original stiffness values.  

The cepstral distance of ARMAX models related to the 

multiple damage case is evaluated for every sensor data and 

the magnitudes are shown in Figure 11(b) for the two levels 

of damage. Figure 11 clearly shows the location of single 

damage and also the multiple damages and therefore it is 

clear the cepstral distance index is a good indicator of the 

spatial location of the damage. 

The damage distribution of the single and multiple 

damage cases are evaluated using the DHADS algorithm  

Table 2 Error in the identification of stiffness parameters of the simply supported beam and with varied noise values  using 

the variants of differential search implementations-multi constraint optimization 

Name of the 

Algorithm 
Noise-free 5% Noise 8% Noise 10% Noise 

 Max. Error Avg. Error Max. Error Avg. Error Max. Error Avg. Error Max. Error Avg. Error 

With element masses are known precisely 

CDSA 0.0144 0.0031 0.0196 0.0063 0.0207 0.0064 0.0213 0.0074 

HADS-NM 0.0092 0.0024 0.0144 0.0052 0.0159 0.0057 0.0175 0.0063 

HADS-HJ 0.0123 0.0026 0.0162 0.0067 0.0166 0.0061 0.0173 0.0082 

DHADS-NM 0.0031 0.0004 0.0127 0.0044 0.0147 0.0049 0.0157 0.0057 

DHADS-HJ 0.0041 0.0006 0.0142 0.0061 0.0165 0.0069 0.0147 0.0072 

With element masses are known in the form of a normal distribution 

CDS 0.0253 0.0142 0.0266 0.0158 0.0215 0.0067 0.0222 0.0078 

HADS-NM 0.0147 0.0065 0.0157 0.0068 0.0165 0.0059 0.0182 0.0066 

HADS-HJ 0.0211 0.0083 0.0229 0.0086 0.0176 0.0069 0.0179 0.0086 

DHADS-NM 0.0095 0.0044 0.0097 0.0046 0.0158 0.0051 0.0164 0.0062 

DHADS-HJ 0.0091 0.0067 0.0109 0.0070 0.0161 0.0074 0.0174 0.0075 

 

Table 3 Error in the identification of stiffness parameters of the simply supported beam and with varied noise values using 

different differential search implementations as an unconstrained optimization problem 

Name of the 

Algorithm 
Noise-free 5% Noise 8% Noise 10% Noise 

 Max. Error Avg. Error Max. Error Avg. Error Max. Error Avg. Error Max. Error Avg. Error 

With element masses are known precisely 

CDS 0.0267 0.0065 0.0244 0.0076 0.0238 0.0078 0.02622 0.0115 

HADS-NM 0.0226 0.0053 0.0279 0.0073 0.0185 0.0072 0.02124 0.0083 

HADS-HJ 0.0245 0.0053 0.0227 0.0075 0.0237 0.0072 0.02117 0.0091 

DHADS-NM 0.0147 0.0025 0.0155 0.0049 0.0195 0.0065 0.01819 0.0074 

DHADS-HJ 0.0153 0.0027 0.0218 0.0084 0.0188 0.0097 0.01832 0.0088 

With element masses are known in the form of a normal distribution 

CDS 0.0319 0.0194 0.0331 0.0194 0.0284 0.0088 0.0277 0.0102 

HADS-NM 0.0288 0.0088 0.0206 0.0077 0.0213 0.0072 0.0228 0.0081 

HADS-HJ 0.0272 0.0113 0.0282 0.0107 0.0217 0.0085 0.0228 0.0111 

DHADS-NM 0.0158 0.0057 0.0167 0.0069 0.0204 0.0067 0.0249 0.0184 

DHADS-HJ 0.0171 0.0081 0.0145 0.0087 0.0253 0.0095 0.0227 0.0191 
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and the percentage of remaining stiffness identified by 

DHADS is shown in Table 5 for single and multiple damage 

case with 10% measurement noise. From Table 5, it can be 

clearly seen that the DHADS algorithm is efficient in 

identifying the parameters from the noisy signal. It can also 

be observed from the studies presented in Table 5 that the 

Nelder-mead algorithm performs consistently better as a 

local search algorithm when compared to Hooke and Jeeves 

algorithm. Similar to the first numerical example, the 

robustness of the technique to the modeling errors and the 

measurement noise is investigated and the values are shown 

in Table.6. From the table, it can be seen that the DHADS- 

 

 

NM algorithm records the minimum average errors for 

varying noise levels irrespective of the knowledge of the 

element masses values. 
In order to investigate the effectiveness of the proposed 

damage diagnostic technique, with limited instrumentation, 
the acceleration time-history measurements from 6 
optimally located sensors, are used. The damage index plots 
using ARMAX model are shown in Figure 12, considering 
6 optimally placed sensors for single damage at 3rd storey 
and multiple damages at 5th and 12 th storeys. From figure 
12, it can be seen that the cepstral distance of ARMAX 
model is a good indicator of the location of damage even 
with the reduced sensor set. 
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(a) Single Damage scenario with 15 optimal sensors (b) Multiple Damage scenario with 15 optimal sensors 
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(c) Single Damage scenario with 10 optimal sensors (d) Multiple Damage scenario with 10 optimal sensors 
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(e) Single Damage scenario with 7 optimal sensors (f) Multiple Damage scenario with 7 optimal sensors 

Fig. 9 Results of the numerical studies using simply supported beam with limited sensors 

NOTE: The optimal sensor locations are shown in the X-axis of Figure 9(a)-9(f) and the corresponding original loca

tions with a full set of sensors are shown within the parenthesis. 
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(a: acceleration time history; K: storey stiffness; S: storey ) 

Fig. 10 Framed structure with 15-storey 

 

 
Similarly, the damage localization is also carried out 

with limited instrumentation for cases of exactly known 
element mass and imprecisely known element mass, for 
varying noise levels. The studies are carried out only using 
DHADS-NM algorithm using multi-constraint 
formulations. The error in the identification of stiffness 
parameters is shown in Table 7. It can be observed that the 
average error varies from 0.89% and 2.86% when it is 
assumed that the element masses are precisely known. 
Similarly, the average error varies from 0.98% to 2.98% 
when the mass is assumed to be known as a normal 
distribution. It is clear from the studies that the proposed 
technique is able to locate and quantify the damage even 
with limited measurements. 

 

00 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

li
s

e
d

 C
e

p
s

tr
a

l 
D

is
ta

n
c

e

Sensor Number

0 2 4 6 8 10

 

 
(a) Damage(15%) at 3rd storey 
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(b) Damage(16%) at 5th and 12th storey 

Fig. 11 Location of damage in the 15-storey shear buil

ding model using normalized cepstral distance 
 

6.3 Twelve bay truss structure 
 

The third numerical study is a truss bridge with twelve 

bays and simply supported ends as shown in Figure 13. The  

Table 4 Error in the identification of stiffness parameters of the simply supported beam with limited instrumentation and with 

varied noise values using DHADS-NM with multi-constraint optimization formulations 

Number of 

Sensors 
Sensor locations Noise levels 

With element masses are 

known precisely 

With element masses are 

known in the form of a 

normal distribution 

Max. Error Avg. Error Max Error Avg. Error 

15 
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16] 

0% 0.00134 0.00132 0.00952 0.06930 

5% 0.01213 0.00975 0.01298 0.01085 

8% 0.01341 0.00997 0.01482 0.01136 

10% 0.01429 0.01114 0.02146 0.01854 

10 
[2, 5, 6,   8,  9, 10, 11, 

14, 15, 16] 

0% 0.01229 0.00103 0.01639 0.01082 

5% 0.01888 0.00241 0.02149 0.01988 

8% 0.02121 0.01643 0.02917 0.02349 

10% 0.03123 0.02448 0.03458 0.01225 

7 [2, 5, 6,9,10,11,15] 

0% 0.01643 0.01034 0.02104 0.01037 

5% 0.02178 0.01315 0.02914 0.02149 

8% 0.03049 0.01979 0.03656 0.02286 

10% 0.04130 0.02801 0.04880 0.03414 
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members of the truss, both the horizontal and the vertical, 

are of 0.0016m2 as cross‐sectional area and of 1m long. The 

truss is simulated to be supported by a pin joint and roller 

arrangement. The elastic modulus of the material and the 

mass density are, 200 GPa and 7.85×103 kg /m3 

respectively. The Rayleigh damping coefficients   are 

0.1523 and 4.6503 x 10‐5 respectively. The external load is 

applied at nodes 11, 13 and 15 in the form of random 

excitation. The FE analysis of the model is used to extract 

the first few natural frequencies as 1.562, 5.172, 6.939, 

11.986 and 17.727 Hz respectively. 

The truss bridge is subjected to random loads. The 

acceleration data from the nodes(i.e. Node nos. 

3,5,7,9,11,13,15,17,19,21,23), in the lower part of the truss, 

is computed from Newmark time-integration scheme, and 

white Gaussian noise is added in the form of a percentage 

of noise as shown in Eqn.(15). Two damage scenarios of 

12% and 14% are simulated in the members of the 5th bay 

by reducing their stiffness values correspondingly.  

The proposed damage diagnostic technique is employed  

 

 

to identify the location of damage using the cepstral 

distance of the ARMAX models and are shown in Figure 

14. From Figure 14, it can be clearly seen that the damage is 

located in the 5th bay and the members of that bay possess 

reduced stiffness values. Once the location of the damaged 

bay is identified, the damage distribution is identified using 

the DHADS algorithm. 

The percentage of remaining stiffness obtained using the 

multi-population DHADS for 5% measurement noise is 

shown in Table 8. The values shown in Table 8, clearly, 

indicate the efficiency and the robustness of the proposed 

DHADS algorithm to identify the stiffness values in the 

truss bays in the presence of the measurement noise. It can 

also be observed from the results presented in Table 8 that 

the performance of the Nelder-Mead algorithm as local 

search algorithm in hybrid DS and DHADS algorithms is 

found to be superior when compared to Hooke and Jeeves 

algorithm.  

The maximum and average errors of stiffness parameter 

identification of the conventional and the versions of DS 

Table 5 True and identified parameters for 15- storey shear building, with single (15% damage at the 3rd storey) and multiple 

(16% damage at 5th and 12th storey) damage scenarios with 10% measurement noise 

Storey number 1 2 3 4 5 6 7 8 

True stiffness parameters 1.000 1.000 1.000 1.000 0.840 1.000 1.000 1.000 

Identified values using CDSA 1.049 0.967 1.023 1.042 0.912 0.944 0.958 1.021 

Identified values using HADS-NM 0.988 1.011 1.014 0.989 0.928 1.016 0.987 0.989 

Identified values using HADS –HJ 1.013 1.041 0.968 0.944 1.011 1.022 0.962 0.966 

Identified values  using DHADS –NM 1.008 1.004 0.852 1.008 0.841 1.008 1.010 0.998 

Identified values  using DHADS-HJ 1.018 1.013 1.016 0.982 0.937 1.012 1.028 0.998 

Storey number 9 10 11 12 13 14 15  

True stiffness parameters 1.000 1.000 1.000 0.840 1.000 1.000 1.000  

Identified values Using CDSA 0.969 0.988 1.017 0.929 0.944 1.021 1.020  

Identified values Using HADS-NM 1.009 1.012 0.989 0.924 1.017 0.984 1.011  

Identified values using HADS –HJ 1.036 0.967 1.027 0.921 1.032 0.947 0.988  

Identified values  using DHADS –NM 1.008 1.011 1.004 0.841 1.007 0.993 0.996  

Identified values  using DHADS-HJ 1.013 1.021 1.017 0.911 0.994 1.009 0.967  
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(a) Damage(15%) at 3rd storey (b) Damage(16%) at 5th and 12th storey 

Fig. 12 Location of damage with limited sensors in the 15-storey shear building model using normalized cepstral distance 

NOTE: The optimal sensor locations are shown in the X-axis of Figure 11(a)-11(b) and the corresponding original locations 

with a full set of sensors are shown within the parenthesis. 
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Fig. 14 Location of damage in 12-bay steel truss using 

normalised Cepstral distances of ARMAX models 

 

 

 

 

under the effect of measurement noise and the variations in 

the mass of the elements are shown in Table 9 for this 

example. It can be seen clearly from Table 9, that the 

proposed DHADS-NM algorithm exhibits the lowest 

average error in identification of the stiffness parameters 

when compared the other techniques considered for the 

study. 

In order to investigate the effectiveness of the proposed 

damage diagnostic technique, with limited instrumentation, 

7 and 5 numbers of optimally located sensors are used. The 

damage index plots using ARMAX model are shown in 

Figure 15, considering 7 and 5 numbers of optimally placed 

sensors. The damage localization is also carried out with 

limited instrumentation considering 7 and 5 optimally 

placed sensors with exactly known element mass and 

imprecisely known element mass, for varying noise levels. 

The identification results are shown in Table 10, from  

Table 6 Error in the identification of stiffness parameters of the 15 storey shear building with varying noise levels and 

modeling errors 

Name of the 

Algorithm 
Noise-free 5% Noise 8% Noise 10% Noise 

 Max. Error Avg. Error Max. Error Avg. Error Max. Error Avg. Error Max. Error Avg. Error 

With element masses are known precisely 

CDS 0.0129 0.003 0.019 0.0058 0.021 0.007 0.0196 0.0069 

HADS-NM 0.0082 0.0021 0.0128 0.00463 0.0141 0.0051 0.0156 0.00561 

HADS-HJ 0.0109 0.0029 0.0148 0.00595 0.0147 0.0054 0.0154 0.00728 

DHADS-NM 0.0026 0.0003 0.0108 0.00375 0.0125 0.0042 0.01336 0.00485 

DHADS-HJ 0.0034 0.0005 0.0119 0.00513 0.0138 0.0058 0.01234 0.00605 

With element masses are known in the form of a normal distribution 

CDS 0.0228 0.0128 0.0240 0.01426 0.0194 0.0061 0.02003 0.00704 

HADS-NM 0.0131 0.0058 0.0140 0.00606 0.0147 0.0054 0.0164 0.00584 

HADS-HJ 0.0189 0.0074 0.0203 0.007641 0.0159 0.0061 0.01589 0.00763 

DHADS-NM 0.0081 0.0038 0.0091 0.003916 0.0135 0.0043 0.01396 0.00528 

DHADS-HJ 0.0076 0.0056 0.0099 0.00588 0.0135 0.0079 0.01462 0.0063 

 

Fig. 13 12-bay steel truss bridge 

Table 7 Error in the identification of stiffness parameters of 15 storey framed structure with limited instrumentation and with 

varied noise values using DHADS-NM with multi constraint optimization formulations 

Number of Sensors Sensor locations Noise levels 

With element masses are known 

precisely 

With element masses are known in 

the form of a normal distribution 

Max. Error Avg. Error Max Error Avg. Error 

6 [3, 4, 5, 6, 14, 15] 

0% 0.0147 0.0089 0.0162 0.0098 

5% 0.0201 0.0101 0.0222 0.0113 

8% 0.0245 0.0198 0.0271 0.0211 

10% 0.0307 0.0286 0.0339 0.0298 
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which it can be observed that the maximum average error in 

identification of the parameters with 10% noise level is 

2.79%.  From the results, it can be clearly found, that the 

proposed ARMAX based technique to locate and DHADS-

NM technique to quantify the damage, perform well even 

with the limited sensor arrangements on the structure.  
 

 

5. Conclusions 
 

In this paper, a damage diagnostic technique to quantify 

the extent of the damage for structural health monitoring of 

civil engineering structures using time series models is 

presented. Even though damage diagnostic techniques using 

time series models are presented earlier to identify the exact 

time instant and the precise location, quantifying the 

damage using the time series model is not reported widely. 

The time instant and the location of damage are identified 

using the damage index, which works basically on the 

distance between two ARMAX models using Cepstrum 

concept. The subsequent process of evaluating the intensity  

 

 

of damage at the identified locations is considered as an 

inverse identification problem, which is a multi-modal 

complex problem to solve.   

 In view of this, in this paper, the inverse problem 

associated with damage quantification is formulated for the 

first time as a multi-constraint optimization technique in 

order to improve the robustness and also the convergence 

characteristics. The inverse problem on hand is usually a 

multimodal optimization problem if it is free from 

constraints due to varying levels of measurement noise and 

also modeling errors. In view of this, two constraints in the 

form of the cepstral distance between ARMAX models and 

also the subspace angle spanned by the measured responses 

of the structure after damage and the numerically simulated 

responses are imposed in the proposed optimization 

algorithm, in order to drive the otherwise multimodal 

optimization problem to converge to the true solution. The 

proposed variant of DS algorithm, built with hybrid and 

adaptive features, multiple small superorganisms is found to 

be faster and effective to solve the complex optimization 

problem associated with the identification of system  
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(a) with 7 optimal sensor locations (b) with 5 optimal sensor locations 

Fig. 15 Damage location in 12-bay steel truss using normalised Cepstral distances of ARMAX models 

NOTE: The optimal sensor locations are shown in the X-axis of Figure 15(a)-15(b) and the corresponding original Bay 

numbers with a full set of sensors are shown within the brackets. 

Table 8 Damage distribution of 12- bay truss computed with 12% damage at 5th bay using the variants of DSA algorithms 

with 5% measurement noise - multi constraint optimization 

Bay number 1 2 3 4 5 6 7 8 9 10 11 12 

True stiffness parameters 1.000 1.000 1.000 0.93 0.880 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Identified values Using co

nventional CDSA 
1.016 0.965 1.021 0.884 0.831 0.984 1.009 0.992 0.921 1.014 0.923 0.963 

Identified values Using H

ADS-NM 
1.011 0.986 0.984 0.918 0.924 1.023 0.998 1.014 0.957 0.954 1.023 0.989 

Identified values using H

ADS –HJ 
1.018 0.944 0.969 0.892 0.856 1.036 1.014 0.967 0.914 1.021 1.018 1.011 

Identified values  using D

HADS –NM 
0.997 1.011 0.994 0.941 0.879 1.008 0.995 1.009 0.992 1.007 1.009 0.998 

Identified values  using D

HADS-HJ 
0.967 0.936 1.021 0.912 0.981 1.032 0.935 1.019 0.961 1.008 1.004 0.989 

NM- Nelder Mead algorithm; HJ- Hooke & Jeeves algorithm 
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parameters. The proposed technique uses the measured 

acceleration time history corrupted with measurement noise 

and also the system with the known imprecise values of 

mass. The adaptive variation of search space suggested in 

the proposed algorithm helps in improving the converge 

characteristics. 

A simply supported beam is used for numerical 

simulation studies by considering the varied loads, 

temperature variability and measurement noise. Studies 

presented in this paper clearly indicate that the exact time 

instant of damage and also multiple spatial locations of 

damage are robustly identified by the proposed algorithm, 

even with environmental variability, practical measurement 

noise levels and even with modeling errors.  Apart from 

the above, the proposed algorithm is also validated using a 

15-storey shear building model and a 12-bay steel truss with 

their recordings contaminated with varying levels of 

measurement noise and also with modeling errors. 

The studies presented in this paper clearly suggest the 

following: 

 

 

•  The cepstral distance measure is an efficient 

indicator of the spatial location of damage, even with 

limited measurements.  

•  The multi-constraint optimization technique using 

DHADS, proposed in this paper to evaluate the intensity of 

damage, is found to be faster in convergence and its 

superior performance is evident from the measures such as 

practical reliability and normalized price.   

•  The hybrid algorithms integrating with an efficient 

local search algorithm improve the convergence 

characteristics 

•  The Nelder-Mead algorithm seems to be more 

effective when compared to Hooke and Jeeves algorithm as 

a local search algorithm. 
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APPENDIX-A 
 

 

A.1 Cepstral distance between ARMAX models 
 

The power cepstrum is the logarithm of the power 

spectrum ( )P z , subjected to inverse Fourier transform 

(Oppenheim and Schafer 1975): 

( ) 2 1log log{σ H( )H(z )}

( ) k

k Z

P z z

cc k z

−

−



=

= 
 

(A1) 

Where cc(k) are the cepstrum coefficients, σ2 is the variance 

of the white noise process possessing zero-mean and H(z) is 

the transfer function of the system. An ARMAX process is 

represented as follows: 

( )   ( )  

( )  

1 1

1

k

x

A q x k B q u k n

C q e k

− −

−

= −

+
 

(A2) 

In Z domain, the transfer function of the system’s 

ARMAX process can be represented in the following form 

(Dosiek and Pierre 2013): 

1 1( ) [ ( ) ( ) ( ) ( )]H Z A Z B Z A Z C Z− −=
 

(A3) 

Where 

 1 1
( ) ( ) ;

( )
A q adj A q

A q

− =  

1

1( ) Ι a

a

n

nA q A q A q− −= + + + is the AR polynomial 

matrix; 
1

0 1( ) nb

nbB q B B q B q− −= + + +  is the input 

polynomial matrix and 
1

1( ) Ι c

c

n

nC q C q C q−−= + + +  

is the MA polynomial matrix with orders na, nb and nc 

respectively.  

A close look at the second part of the transfer function 

shows the AR and MA components of the system. If these 

components are in terms of poles α(i) and zeros β(i), the 

transfer function resembles that of a stable, minimum 

ARMA process in the Z-domain as 

0 1

0 1

(1 ( ) )( )
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= −

− −
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−
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 (A4) 

Therefore, now, for any two ARMAX models AM1, and 

AM2, with the corresponding cepstrum coefficients cc1(n) 

and cc2(n), the cepstral distance becomes: 

22

1 2 1 2
1

( , ) ( ) ( )
n

d AM AM n cc n cc n


=

= −
 

(A5) 

where cc(n) are the coefficients of the cepstrum given in 

terms of poles and zeros 
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1
( ) ( )
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log , 0
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 (A6) 

 

 

A.2 Subspace angle 

 

Angles between Subspaces 

One way to compare hyperplane is to use the concept of 

angles between the two subspaces. This concept allows 

quantifying the spatial coherence between two time-history 

blocks of an oscillating system. Let 𝐴 ∈ ℝ𝑛𝑠𝑥𝑝and 𝐵 ∈
ℝ𝑛𝑠𝑥𝑝 each with linearly independent columns. The 

principal angles between two subspaces are a generalization 

of an angle between two vectors, and their number is equal 

to the dimension of the smallest subspace. An algorithm for 

the computation of principal angles proposed by Bjorck and 

Golub (1973) using QR factorization and singular value 

decomposition can be used for this purpose. First, a QR 

factorization allows computing the orthonormal bases of A 

and B. 

        Q  

         Q  

s

s

n xp

A A A

n xq

B B B

A Q R

B Q R

= 

= 
 

(A7) 

Thus, the singular values of 𝑄𝐴
𝑇Q𝐵 define the q cosines 

of the principal angles θi between A and B. 

( )   Diag(cos(θ ))

 i=1, ....q  

T

A B iSVD Q Q →

 

(A8) 

The largest angle allows quantifying how the subspaces 

A and B are globally different. The responses of the 

subspaces between measured data (i.e. from the structure 

with identified location of damage) and the analytically 

simulated response, for evaluating the damage distribution 

are compared by computing the principal angles. 
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