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1. Introduction 
 

The pre-twisted beam, also known as a naturally twisted 
beam, presents an initially twisted shape in the natural state. 
Pre-twisted beams are widely used as structural elements. 
The blades of propellers, turbines and fans and drill bits are 
usually modelled as pre-twisted beams. Pre-twisted thin-
walled members are being increasingly used in the 
construction of steel structure buildings and bridges. Based 
on the change rule of the pre-twisted angle along the beam 
axis, the pre-twisted beam can be divided into two cases 
(Zupan and Saje 2004): 1) Linear pre-twisted beam; 2) 
Non-linear pre-twisted beam. 

Based on the shape feature, the pre-twisted beam can be 
defined as the nth order pre-twisted beam when the pre-
twisted angle ω is in the range of ((n−1),n), (n=1,2,…),  
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as shown in Fig.1. Since a pre-twisted beam with small pre-
twisted angle is dominant in application of civil engineering 
structures, the first order pre-twisted beam will be discussed 
in this paper, i.e. pre-twisted angle is in the range of (0, 
0.5π]. 

The early literature mainly focused on stress analysis of 
pre-twisted rod. Berdichevskii et al. (1985) investigated 
thestress state of a pre-twisted rod, and showed that the 
spatial problem can be successfully reduced to a Neumann-
type problem for a certain system of second-order elliptic 
equations in the cross-section. The research of pre-twisted 
rod was decomposed into two independent problems, one 
bending and one extension-torsion.  

Recent research is focused on studying the vibration 
performance of pre-twisted blades and beams by using 
different techniques. A carefully selected sample of the 
relevant literature are as follows: Yoo et al. (2001) used a 
modeling method for the vibration analysis of rotating pre-
twisted blades with a concentrated mass. Banerjee (2001, 
2004) developed an exact dynamic stiffness method to 
predict the natural frequencies of a pre-twisted beam. Choi 
et al. (2007) studied bending vibration control of the pre-
twisted rotating composite thin-walled beam based on a 
single cell composite beam. Sinha et al. (2011) derived the 
governing partial differential equation of motion for the 
transverse deflection of a rotating pre-twisted plate by using 
the thin shell theory. Chen et al. (2019) presented a new 
dynamic model based on the shell theory to investigate the 
vibration behavior of a rotating composite laminated blade 
with a pre-twisted angle. Yao et al. (2019) established a 
rotating pre-twisted cylindrical shell model with a  
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presetting angle to investigate nonlinear dynamic responses 
of the aero-engine compressor blade. Based on the first-
order shear deformation theory and the isotropic 
constitutive law, nonlinear partial differential governing 
equations are derived by using the Hamilton principle. 
Zhang et al. (2019) presented an investigation to reveal the 
primary resonance of a rotating pre-twisted blade subject to 
a flapwise natural frequency gas excitation under thermal 
gradient in the presence of 2:1 internal resonance.  
The amplitude-frequency relationships are examined with 
the focus on the effects of thermal gradient, pre-
deformation amplitude, rotating speed, gas pressure and 
damping coefficients. The post-buckling and coupled bi-
directional transverse-longitudinal free vibration behavior 
of post-buckled rotating pre-twisted functionally graded 
(FG) microbeams in thermal environment are presented 
(Shenas et al. 2017, 2019). Adair et al. (2018) made 
vibration analysis of a uniform pre-twisted rotating Euler–
Bernoulli beam using the modified Adomian decomposition 
method. Bahaadini, R. and Saidi, A. R. (2019) carried aero-
thermoelastic flutter analysis of pre-twisted thin-walled 
rotating blades reinforced with functionally graded carbon 
nanotubes. Oh, Y et al. (2018) considered the coupling 
effects of stretching, bending, and torsion to analyze a 
rotating pre-twisted blade. Lee, J. Y. (2016) considered the 
Effect of Rotary Inertia Using the Transfer matrix method 
to develop a vibration analysis for the Pre-twisted Beam. 
Mohanty et al. (2015) analyzed the vibration and dynamic 
stability of pre-twisted thick cantilever beam made of 
functionally graded material. Wang et al. (2018) made a 
three-dimensional vibration analysis of curved and twisted 
beams with irregular shapes of cross-sections by sub-
parametric quadrature element method. 

The finite element technique has also been applied by 
many investigators, mostly for the vibration analysis of 
beams of uniform cross-section. All these investigations 
differ from one another in the nodal degrees of freedom 
taken for deriving the element stiffness and mass matrices. 
Chen and Keer (1993) studied the transverse vibration 
problems of a rotating twisted Timoshenko beam under 
axial loading and spinning about its axial axis, and 
investigated the effects of the twist angle, rotational speed, 
and axial force on natural frequencies by the finite element 
method. Nabi and Ganesan (1996) analyzed the vibration 
characteristics of pre-twisted metal matrix composite blades 
by using beam and plate theories. A beam element with 
eight degrees of freedom per node has been developed with 
torsion-flexure, flexure-flexure and shear-flexure couplings, 
which are encountered in twisted composite beams. A 
triangular plate element was used for the composite material 
to model the beam as a plate structure. Rao and Gupta 

(2001) derived the stiffness and mass matrices of a rotating 
twisted and tapered Timoshenko beam element, and  

 

 

calculated the first four natural frequencies and mode 
shapes in the bending–bending mode for cantilever beams.  

However, only a few works have been reported in the 
existing literature on finite element formulation of pre-
twisted beam based on coupled displacement fields 
(Tabarrok and Farshad 1988, Chen et al. 2014, Chen et al. 
2016, Huang et al. 2019, 2017). The common finite element 
method to handle the static and dynamic problems of the 
pre-twisted beam is based on infinite approach strategy 
(ANSYS Inc. 2016). However, the polynomial displacement 
functions based on traditional straight beam do not correctly 
reflect the fact that the strain is zero when rigid motion 
occurs. Moreover, the fact that bending displacements are 
coupled with each other due to the naturally twisted angle ω 
will further cause new discretization error. Therefore, in the 
present study, two new finite element models based on the 
coupling bending displacements and displacement general 
solution of pre-twisted Euler-Bernoulli beam are developed. 

 

 

2. The stiffness of pre-twisted Euler-Bernoulli beam 
element 

 

2.1 The displacement functions 
 

The following assumptions are adopted based on the 
traditional straight Euler-Bernoulli beam: 
(1) The cross-section shape is unchanged; 
(2) Only shear deformation is considered by constraining 

torsion and ignoring shear deformation for the lateral 
load; 

(3) The deformation is small and linear elastic; 
(4) The coupling effects between the various deformations 

are not considered. 
In the local coordinate system G_ξηz, the Euler-

Bernoulli beam element is two nodes with twelve degrees 
of freedom, as shown in Fig. 2. The element length is l, and 
the parameter k denotes the pre-twisted angle rate ( 

d
/

d
k l

z


= =

). Each node has six displacement vectors, 

namely, u, v, w, φξ, φη and φz respectively. Each node has 
also six force vectors, namely, Qξ, Qη, N, Mξ, Mη and Mz, 
respectively. The axial displacement w uses a Lagrange 
interpolation function of two nodes, regardless of the effect 
of biaxial bending displacement. The bending displacement 
u and v use the cubic polynomial interpolation function. The 
torsional angular displacement also uses the two-node  

Lagrange interpolation function. The specific expression is 

as follows 
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Fig.1 the beam model with different pre-twisted angle 
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Fig. 2 The node displacements of pre-twisted Euler-

Bernoulli beam 
 
 

where the parameters ai, bi (i=0,1,2,3), ci and di (i=0,1) 

are undetermined coefficients, respectively. 

According to the assumption (2) and literature (Banerjee 

2004, Chen et al. 2014, Chen et al. 2016), the equation 

relating linear displacement and angle displacement is as 

the follows 

d d
 , 
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(2) 

The displacement interpolation functions can then be 

expressed as the following 
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Introducing the boundary conditions 
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the equation (3) can be further expressed into matrix 

form, as follows 

u N ue= 
 (5) 

where the displacement vector is: u=[u v w φξ, φη φz]T. 

The nodal displacement is  

1 1 1 1 1 1 2 2 2 2 2 2u
T

e z zu v w u v w         =    

The shape function matrix N is as follows 

where 
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2.2 The element stiffness matrix 
 

According to the assumption (4), the axial tensile strain 

energy of the pre-twisted Euler-Bernoulli beam is as 

follows 
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where EA is axial stiffness. Introducing the shape 

function, the equation (6) can be expressed as 
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(7) 

Similarly, the strain energy caused by torsion of the pre-

twisted Euler-Bernoulli beam is 

6 6

0

d d1
d

2 d d
u u

Tl

T

t e eU GJ z
z z

   
=     

   


N N

 

(8) 

where GJ is the shear stiffness. According to the 

assumption (2) and the equations of axial strain caused by 

biaxial bending (Banerjee 2004, Chen et al. 2014, Chen et 

al. 2016), as follows 

'
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(10) 

The biaxial bending strain energy of the pre-twisted 

Euler-Bernoulli beam is: 
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Introducing the shape function, the biaxial bending 

strain energy is 
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(12) 

where EIξ and EIη are the flexural stiffness in the local 

coordinate system G_ξηz. According to equations (7), (8) 
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and (12), the element stiffness matrix of a pre-twisted 

Euler-Bernoulli beam in the local coordinate is as follows 
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(13) 

The specific expression of pre-twisted Euler-Bernoulli 

beam can be seen in appendix A. If the pre-twisted angle 

rate k is assumed to be zero (k=0), then the element stiffness 

matrix is the same as the traditional straight beam; i.e., the 

pre-twisted beam will be degenerated to a traditional 

straight beam. 

 

 

3. A new stiffness matrix model based on 
displacement general solution 

 

3.1 The displacement functions 
 

The pre-twisted Euler-Bernoulli beam element model, 

whose length is l and the pre-twisted angle rate is k, is 

studied in the local coordinate system G_ξηz, as shown in 

Fig.3. When the node is i, the displacements are ui, vi, wi, 

φξi, φηi and φzi, respectively. The displacements are ui+1, vi+1, 

wi+1, φξi+1, φηi+1, φzi+1 when node is i+1, respectively. 

Assuming the pre-twisted element is constant strain 

element, the general displacement solution of the pre-

twisted Euler-Bernoulli beam is used as the displacement 

interpolation functions (Yu and Ma 2002), as follows 
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which is the coordinate transformation matrix. [U0], 

[φ0], [K] and [ɛ] are undetermined constant strain vectors, 

respectively; [R] is the dual-antisymmetric matrix 

generated by the vector [R]=[Z]−[Zi]; [Zi] represents 

position vector [Z] when z=zi, namely [Zi]=[Z]z=zi. 

When z is equal to zi, the equation (14) can be simplified 

to the following 
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where [Ui]=[U]z=zi, [i]=[]z=zi, [Ai]=[A]z=zi. 

When z is equal to zi+1, the equation (14) can be 

simplified to the following 

 

Fig. 3 the element of pre-twisted Euler-Bernoulli beam 
 

 

1

1

1 1

1

1 1[ ] [ ] [ ] [ ] [ ][ ] [ ]

[ ] [ ]d

[ ][ ] [ ]d [ ] [ ] [ ]d

i

i

i

i i

i
i i

T T T

i i i i R i i

z
T

z

z z
T T

R R
z z

A U A U A

A z

A K z A K z





+

+

+ +

+

+ + − + 

=

+  − 



 

 (16) 

1

1 1[ ] [ ] [ ] [ ] [ ] [ ]d
i

i

z
T T T

i i i i
z

A A A K z 
+

+ + − = 
 

(17) 

 where [ Ω𝑅𝑖+1
] is the dual-antisymmetric matrix 

generated by the vector [Ri+1]=[Zi+1]−[Zi]. 

The constant strain matrix [K] is obtained by the 

equation (17), as follows 
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Substituting (18) into (16), the following equation (19) 

can be obtained 
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The constant strain matrix [] is obtained by substituting 

(18) into (19), as 
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Similarly, equation (18) can be expressed by node 

displacements as 
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+

−

= − 
 

23[ ] [0]T =
 

( )1
1

24 1[ ] [ ] d [ ]
i

i

z
T T

i
z

T A z A
+

−

+= 
                                              

The total constant strain matrix is by the equations (20) 

and (21) 

 
1

1

[ ]

[ ]

[ ]

[ ]

i

i

i

i

U

T
UK





+

+

 
 

   =     
 
   

(22) 

where

 

11 12 13 14

21 22 23 24

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ]

T T T T
T

T T T T

 
=  
  . 

The displacement function can be obtained by 

substituting equation (22) into equation (14), as follows 

 
1

1

[ ]

[ ][ ]

[ ][ ]

[ ]

i

i

i

i

U

U
N

U







+

+

 
 

   =     
 
   

(23) 

where the shape function is 

11 12 13 14

21 22 23 24

[ ] [ ] [ ] [ ]
[ ]

[ ] [ ] [ ] [ ]

N N N N
N

N N N N

 
=  
   

(24) 

where 

( )11 11[ ] [ ] [ ] [ ] [ ] d
i

z
T T

i
z

N A A T A z= + 
 

( ) 12 12 22[ ] [ ] [ ][ ] [ ] [ ] d [ ] [ ][ ] d [ ] [ ] d
i i i

z z z
T T T T

R i R R
z z z

N A A T A z T A z A z= −  + +  −   

13 13[ ] [ ][ ] [ ] d
i

z
T

z
N A T A z= 

 

( ) 14 14 24[ ] [ ] [ ] [ ] d [ ] [ ][ ] d [ ] [ ] d
i i i

z z z
T T T

R R
z z z

N A T A z T A z A z= +  −   

21[ ] [0]N =
 

22 22[ ] [ ][ ] [ ] d
i

z
T

z
N A T A z= 

 

23[ ] [0]N =
 

24 24[ ] [ ][ ] [ ] d
i

z
T

z
N A T A z= 

 
 

3.2 The element stiffness matrix 
 

The strain energy per unit length of pre-twisted Euler-

Bernoulli beam under small deformation conditions is as 

follows 

1
( )d d

2
z z z z z z

A

           = + +
 

(25) 

Based on the strain relations of the pre-twisted Euler-

Bernoulli beam (Banerjee 2004, Chen et al. 2014, Chen et 

al. 2016) 

'

'

' '

'

'

' ( ) ( )

z z

z z

z

u kv

v ku

w k k

 

 

   

  

  

      

 = − + − −


= + + +


= − + + −  

(26) 

and considering the following relations between internal 

force and stress (Chen et al. 2016) 

 

d d

z z z

z

A

z

M

M

M

 





 

  



  − 
   

=   
   −  



 

(27) 

substituting equation (26) and (27) into (25), the strain 

energy can be obtained 

1 1
[ ] [ ] [ ] [ ]

2 2

T TN K M = +
 

(28) 

where 

  




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 
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 
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 
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 
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 

N

N Q

Q





 
 

=  
 
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 
zM

M M
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=  
 
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'

'

'

w
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 

 

 =


= − + −
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'

'

'

z z

k k
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k

  

  

 

 



 = −


= +

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Based on equivalent constitutive equation of the pre-

twisted beam, the strain energy can be expressed as 

1 1
[ ] [ ][ ] [ ] [ ][ ]

2 2

T TB K D K  = +
 

(29) 

where 

   

0 0 0 0

0 0 ,  D 0 0

0 0 0 0

EA GJ

B GA EI

GA EI





  
  

= =   
       

The total potential energy of the pre-twisted beam 

element based on energy principle is as follows 

1 1

1
i+1 i+1

i i

T

z zT T T

z z

d [U] [p]d

[ ] [m]d [U] [p] [ ] [m]

i i

i i

i

i

z z

z z

z

z

z z

z 

+ +

+

 =  −

− − −

 


 (30) 

where [p], [m], [p̅], [m̅] represent the linear distribution 

load vector, distribution moment load vector, node 

concentrated load vector and node concentrated moment 

vector, respectively. Equation (30) can be expressed as the 

following by substituting equation (22), (23) and (29) into 

(30) 

d d

z

z

A

z

N

Q

Q

 

 



  



   
   

=   
   
   


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Based on the principle of minimum potential energy, the 

stiffness and equivalent node load matrix are obtained as 

[ ]
[ ] [ ] [ ]

[ ]

e T

i

B
k l T T

D

 
=  

   

(32) 

1

1 [p] [p]
[ ] [ ] d

[m] [m]

i

i

i

i

z

z
e T

z

z

R N z

+

+
  

= −   
    


 

(33) 

 

 

4. The example analysis and discussion 
 

The analysis model for our example is a cantilever 

beam, whose length l is 6000mm; the cross-section is 

rectangular (Fig. 4): the height h is 500mm, the width is 

200mm. The pre-twisted angle ω is 0.5π. The steel elastic 

modulus E is 2.0×105 Mpa and Poisson’s ratio is 0.3. The 

concentrated force P is 50kN, and the self-weight of beam is 

not considered in this case. The load vectors in this example 

are [p]=[m]=[m̅]= (0,0,0)T and, [p̅]=(0,−50e3,0)T. 

 
4.1 The effect of element size of using ANSYS 

model 
 

Based on the infinite approach method and ANSYS 

software, the finite element model is established. The 

element type is Beam188 (Fig.5), the warping degree of 

freedom is ignored (K1=0, Unrestrained), and a cubic form 

shape function is used (K3=3). As the beam188 is a 

Timoshenko beam element and to compare with above 

Euler-Bernoulli beam model, this paper amplifies the 

original shear stiffness (GA=7.692e9) through 

multiplication by the coefficient 105 (Fig.6). 

The cubic form shape function chosen means that the 

analysis result is precise when considering the classic 

straight beam (ω=0). However, this method using the 

infinite approach has obvious rotation discretization errors 

when pre-twisted angle is not equal to zero (Fig.7), and 

more elements must be used to decrease this discretization 

error. Based on displacement results of the end of the beam 

(Fig.8), the deviation of displacement is very small and 

almost zero when number of elements n is greater than 20 

for this analysis case. 

 

50P KN=

G





X

Y

O

 

Fig. 4 The geometric parameter with rectangular cross 

section 
 

 

Fig. 5 The beam188 element type options 
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(31) 

 

Fig. 6 The amplification of shear stiffness 
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(a) the linear displacement comparison at the end of beam 

 

(b) the rotation displacement comparison at the end of beam 

Fig. 8 
 
 

4.2 The effect of element size of the proposed 
Euler-Bernoulli model 

 

For further testing the effect of element size on results, 

the different element sizes of the proposed Euler-Bernoulli 

model will be used to validate this model; namely, the 

cantilever beam is divided into 1,2,5,20,50,100 equal parts, 

respectively. The displacement comparison results at the 

end of the beam are as shown in Fig.9, which also indicate 

that the deviation of displacement is very small and almost 

zero when the number of element n is greater than 20. 

 

 

(a) the linear displacement comparison at the end of beam 

 

(b) the rotation displacement comparison at the end of beam 

Fig. 9 
 
 

4.3 The effect of element size of the proposed 
model based on displacement general solution 

 

The cantilever beam is divided into 1,2,5,20,50,100 
equal parts. The displacement comparison results at the end 
of beam are as shown in Fig.10, which also indicates that 
the deviation of displacement is very small and almost zero 
when number of element n is greater than 20. 

 

4.4 The comparison of displacement results 
 

The displacement comparisons among the proposed 

Euler-Bernoulli model, the new numerical model based on  

the number of element

n=1 n=2 n=5 n=20 n=50 n=100

 

Fig. 7 The rotation discretization error (ω = 0.5π) 
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 (a) the linear displacement comparison at the end of beam 

 

(b) the rotation displacement comparison at the end of beam 

Fig. 10 

 

 

displacement general solution, and ANSYS are as follows 

(Fig.11), where the number of elements used is 50. 

The trends of displacement change are almost same 

among the proposed Euler-Bernoulli model, the new 

numerical model based on displacement general solution 

and the ANSYS model. Moreover, the results between the 

proposed Euler-Bernoulli model and the new numerical 

model based on displacement general solution are very 

close, and the curves are almost identical. The lateral 

displacements couple with each other; namely, the lateral 

linear displacement Uy and rotation displacement Roty will 

arise because of the existence of pre-twisted angle , as 

shown in Fig.11.  

The deviation comparisons among these models are as 

follows. The deviations of Rotx and Roty are very small 

and less than 0.05% between the Euler-Bernoulli and 

proposed numerical model based on the displacement 

general solution, and the deviations of Ux and Uy are also 

small and less than 5%, except for the approximately the 

1/6 areas the constraint end of the cantilever beam. Since 

the pre-twisted angle changes sharply from zero to ω/n = 

0.5π/ 50, the changes of deviation in this area are very large, 

but become smaller and smaller when farther away from the 

end of cantilever beam, as shown in Fig.12(a). 

 

 (a) the linear displacements comparison 

 

(b) the rotation displacements comparison 

Fig. 11 
 

 

The deviations between the Euler-Bernoulli and ANSYS 

model are larger than the above comparisons between the 

Euler-Bernoulli and proposed numerical model based on 

displacement general solution. The method by Beam188 

element based on infinite approach to evaluate displacement 

is shown to be inaccurate (Fig.12b).  

To further investigate the deviation error between the 

Euler-Bernoulli and ANSYS model, the comparison 

analysis by using different section sizes (200x200, 

200x300, 200x400, and 200x500, respectively) are 

conducted. The results indicate that the displacement 

deviations will be smaller and smaller as the flexural 

stiffness along two main axis directions become closer and 

closer, as shown in Fig.13. This again indicates that the 

nature of the method based on infinite approach is just a 

decomposition of moment of inertia between the two main 

axial directions, and the nonlinear coupled effect is not 

considered. 
 

4.5 The model further verification when pre-twisted 

angle is greater than   
 
To further verify the efficiency of the proposed model 

when pre-twisted angle is greater than π, the same case 

model in Fig.4 is also adopted, and only change the pre-

twisted angle ω, as shown in Fig.14.  
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(a) the displacement deviation between ANSYS and the 

proposed numerical model based on general solution 

 
(b) the displacement deviation between Euler-Bernoulli 

and ANSYS model 

Fig. 12 
 

 

 

The comparison results are developed, as shown in 

Fig.15. The proposed models in current work are still right 

when the pre-twisted angle ω is greater than π. The trends 

of displacement change are almost same among the 

proposed Euler-Bernoulli model, the new numerical model 

based on displacement general solution and the ANSYS 

 

(a) the displacement Ux deviation comparison 

 

(b) the displacement Roty deviation comparison 

Fig. 13 

 

model. Moreover, the results between the proposed Euler-

Bernoulli model and the new numerical model based on 

displacement general solution are very close, and the curves 

are almost identical. 

 

 

 

(a) the pre-twisted angle ω is equal to π (b) the pre-twisted angle ω is equal to 2π 

Fig. 14 
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(a) the linear displacements Ux and Uy comparison with 

pre-twisted angle π 

 
(b) the linear displacements Ux and Uy comparison with 

pre-twisted angle 2π 

Fig. 15 
 
 

5. Parametric analysis 
 

5.1 The effect of pre-twisted angle on deflections 
 

The effect of pre-twisted angle ω on the deflections has 

been investigated (Fig.16) and it is shown that the 

displacement Ux corresponding to the main axis Gη 

increased gradually with increasing of the pre-twisted angle, 

and the displacement Uy corresponding to the secondary 

axis Gξ is also increased. The equivalent stiffness is also 

shown to be decreased along main axis direction as the 

increment of pre-twisted angle, and then the displacement is 

increased when the pre-twisted angle changes in the range 

of [0, 0.5π]. The displacements along main axis and 

secondary axis direction are coupled to each other because 

of the existence of pre-twisted angle. The coupling effect 

will become stronger, and the lateral displacement Uy will 

also be increased with the increasing of pre-twisted angle. 

 
5.2 The effect of flexural stiffness ratio on 

deflections 
 

The flexural stiffness ratio of pre-twisted beam with 

isotropic material is introduced as follows 

 

(a) the linear displacement comparison 

 

(b) the rotation displacement comparison 

Fig. 16 
 

 

1
I

I





 = 

 

(34) 

Using the above example in the 4 section and assuming 

that the flexural stiffness EIξ along secondary axis Gξ 

direction remains unchanged, the effect of the parameter μ 

on deflections has been investigated by changing the 

flexural stiffness ratio μ from 1 to 4 (Fig.17). The results 

show that the displacements Ux and Roty decreased 

corresponding to main axis Gη, while the displacements Uy 

and Rotx increased corresponding to secondary axis Gξ 

with the increasing of flexural stiffness ratio μ. The 

coupling effect of the pre-twisted beam becomes stronger 

between the strong axis and secondary axis as the flexural 

stiffness ratio μ increased. 

 

 

6. Conclusions 
 

1. Based on finite element method of the traditional 

straight Euler-Bernoulli beam, and using the coupled 

relations of pre-twisted Euler-Bernoulli beam between 

linear and angular displacements, the shape functions and 

stiffness matrix are deduced. 

2. Based on the displacement general solution of a pre- 
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(a) the linear displacement comparison 

 
(b) the rotation displacement comparison 

Fig. 17 

 

 

twisted Euler-Bernoulli beam, the shape functions and 

stiffness matrix are deduced, and the precise finite element 

model is proposed. 

3. By comparison with ANSYS solution by using 

Beam188 element based on infinite approach method, the 

results shows that the proposed models are available for 

pre-twisted Euler-Bernoulli beam and provide more 

accurate finite element models. 

4. The effects of pre-twisted angle and flexural stiffness 

ratio on deflections have been investigated. The 

displacements along main axis and secondary axis 

directions are coupled to each other because of the 

existence of the pre-twisted angle. The equivalent flexural 

stiffness decreased along main axis direction as the 

increment of pre-twisted angle when the pre-twisted angle 

changes in the range of [0, 0.5π]. 
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The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam 

 

Appendix A：The stiffness matrix of pre-twisted 

Euler-Bernoulli beam 
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