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1. Introduction 
 

The development of mining at greater depths in the 

Earth, and the creation of tunnels for high -speed 

underground trains and other types of moving wheels, as 

well as taking into account safety under earthquakes and 

powerful underground explosions require study of the 

dynamics of such underground structures taking into 

account initial-state particularities, one of which is the 

inhomogeneous initial stresses in these structures caused by 

the Earth’s gravity. As usual, in related investigations, the 

underground structures are modelled as a hollow cylinder 

which is surrounded with an infinite elastic medium. In this 

model, the cylinder is the underground structure and the 

infinite elastic medium is the soil. Consequently, the 

corresponding investigations are made for the bi-material 

elastic system consisting of the hollow cylinder and the 

surrounding infinite elastic medium. At present, 

investigations accounting for the aforementioned 

inhomogeneous initial stresses are almost completely 

absent. Therefore, in this paper an attempt is made in this 

field relating to the study of the influence of the 

inhomogeneous initial stresses on the dispersion of the 

axisymmetric wave propagating in the “hollow cylinder +  
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surrounding elastic medium”. As detailed formulation of the 

problem will be considered in the next section, here we 

consider a brief review of related investigations.   

First of all, we note that up to now the dynamics of the 

“cylinder + surrounding elastic medium” system has been 

investigated from various points of view, one of which is 

the study of the response of this system to the moving load 

acting in the interior of the cylinder. Moreover, we note that 

almost all of these investigations have been made within the 

scope of the classical linear theory of elastodynamics. 

These studies include many works (Parnes 1969, 1980, 

Pozhuev 1980, Hasheminejad and Komedili 2009, Hussein 

et al. 2014, Yuan et al. 2017) and others listed therein. A 

detailed review of these works is given in recent papers 

(Akbarov and Mehdiyev 2018a, 2018b, 2018c, Akbarov et 

al. 2018, Ozisik et al. 2018) in which the dynamics of the 

moving and oscillating moving load acting in the interior of 

the cylinder surrounded with elastic medium are also 

investigated. In these recent works, not only the 

axisymmetric but also the non-axisymmetric 3D problems 

are studied within the scope of the three-dimensional exact 

equations and relations of elastodynamics (except the work 

by Akbarov and Mehdiyev 2018a). However, in this work 

(Akbarov and Mehdiyev 2018a), the corresponding 

axisymmetric moving load problem for the initially 

stretched or compressed “hollow cylinder + surrounding 

elastic medium” system was studied within the scope of the 

so-called 3D linearized theory of elastic waves in bodies 

with initial stresses. Under this study, it is assumed that the 
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initial stresses in the cylinder and in the surrounding 

medium, which appear as a result of the initial stretching or 

compressing of the system along the cylinder’s axis, are 

homogeneous. Besides all of the above, we note that up to 

now the corresponding problems for the hydro-elastic and 

hydro-viscoelastic systems have also been investigated and 

a review of these are given in the paper (Akbarov 2018).  

With this we restrict ourselves to reviewing 

investigations regarding the response of the “cylinder + 

surrounding elastic medium” system to the moving and 

oscillating moving load acting in the interior of the cylinder.  

Now we consider a brief review especially of the 

investigations regarding the dynamics of the wave 

propagation and dispersion in the system “hollow cylinder 

+ surrounding medium” as well as in the hollow cylinder 

with inhomogeneous initial stresses. We begin this review 

with the paper (Abdulkadirov 1981) which studied the 

axisymmetric wave dispersion in the hollow cylinder which 

is surrounded by an elastic medium within the framework 

of linear elastodynamics. Concrete numerical results are 

presented and discussed for the cases where the modulus of 

elasticity of the cylinder material is greater than that of the 

surrounding medium. 

The paper (Parnes 1981) deals with the study of the 

dispersion of axisymmetric waves in the “rod + embedded 

medium” and under this study the equation of motion of the 

rod is written within the framework of the Bernoulli 

hypothesis, however, the motion of the surrounding medium 

is written within the scope of the exact equations of 

elastodynamics.  

In the paper (Akbarov and Guliev 2010) the 

axisymmetric wave propagation in the initially stressed 

“solid cylinder + surrounding medium” is investigated 

within the scope of the 3D linearized theory of elastic 

waves in initially stressed bodies. Note that under this 

investigation it is assumed that the initial stresses in the 

system are homogenous and are caused by the stretching or 

compressing forces acting at infinity in the cylinder’s 

central axis direction. The materials of the cylinder and 

surrounding medium are taken as compressible and highly 

elastic, the elasticity relations of which are described with 

the harmonic potential (John 1960). These and many other 

related results on wave propagation in bi-material elastic 

systems are detailed in the monograph (Akbarov 2015). 

Note that all the investigations which are considered in this 

monograph have been made by utilizing the 3D linearized 

theory of elastic waves in bodies with initial stresses, the 

basic equations and relations of which are described in the 

monographs (Eringen and Suhubi 1975, Guz 1986a, 1986b, 

1999, 2004) and others listed therein. Moreover, note that 

the corresponding investigations related to tubes and plates 

are reviewed and analyzed in the papers (Li et al. 2017, 

Negin 2018) and in many other ones listed in therein.   

We recall that in all the investigations indicated above it 

was assumed that the initial stresses in the investigated 

objects are homogeneous. There are a few works, namely 

the works (Engin and Suhibi, 1978, Shearer et al. 2013, Wu 

et al. 2018 and Akbarov and Bagirov, 2019). In the first 

three of these, axisymmetric wave propagation in the 

hollow cylinder made of incompressible highly elastic 

material with inhomogeneous initial stresses, which appear 

as a result of the internal and external hydrostatic pressures 

acting on the internal and external surfaces of the cylinder, 

is studied. Note that in the papers (Engin and Erdogan 1978, 

Shearer et al. 2013) dispersion of torsional waves is 

investigated and the elasticity relations for the cylinder’s 

material is described through the Mooney–Rivlin strain 

energy function. Moreover, note that in the paper (Engin 

and Suhibi 1978) for the solution to the corresponding 

mathematical problem, the variational method is employed, 

however, in the paper (Shearer et al. 2013) the Liouville–

Green method is employed.   
The paper (Wu et al. 2018) indicated above, studies the 

longitudinal axisymmetric wave propagation in a hollow 
cylinder made of an incompressible highly elastic 
functionally graded material, the elasticity relations of 
which are also written through the Mooney–Rivlin strain 
energy function. In this work, the initial stresses in the 
cylinder are taken as determined in the papers (Batra and 
Bahrami 2009, Chen et al. 2017). For the solution to the 
linearized wave propagation equations, the state-space 
formalism for these equations is employed with the 
approximate laminate or multi-layer technique. 

The paper (Akbarov and Bagirov 2019) makes the first 

attempt to study the axisymmetric longitudinal wave 

dispersion in the bi-layered hollow cylinder with 

inhomogeneous initial stresses caused by the internal and 

external hydrostatic pressures. Under these studies, it is 

assumed that the materials of the constituents are 

sufficiently rigid and that the initial stress state is 

determined within the scope of the classical linear theory of 

elasticity. However, the wave propagation in the bi-layered 

hollow cylinder under consideration is described by 

utilizing the three-dimensional linearized theory of elastic 

waves in initially stressed bodies. Concrete numerical 

results are presented for concrete selected materials and it is 

established that the inhomogeneity of the initial stresses can 

influence the character of the dispersion curves not only in 

the quantitative, but also in the qualitative sense.  

That is all that relates to wave propagation in the hollow 

cylinder with inhomogeneous initial stresses. Taking into 

account the great significance and necessity of such 

investigations in the sense of the safety and security of 

underground structures under seismic and geodynamical 

action, in the present work, an attempt is made to 

investigate the influence of the inhomogeneous initial 

stresses on the dispersion of the axisymmetric wave 

propagation on the “hollow cylinder + surrounding 

medium”. It is assumed that the inhomogeneous initial 

stresses appear as a result of the initial loading (i.e. the 

loading which acts before the wave propagation) of the 

surrounding elastic medium with the radial compression 

forces acting at infinity. Note that these inhomogeneous 

initial stresses caused by the initial loading can be a model 

for taking into account the inhomogeneous initial stresses 

appearing around the underground structures as a result of 

the Earth’s gravity. For the solution of the corresponding 

mathematical problem, the discrete-analytical solution 

method is employed. Numerical results on the influence of 

the inhomogeneous initial stresses on the dispersion curves 

are presented and discussed. 
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Fig. 1 The sketch of the “hollow cylinder + surrounding 

medium” system and the forces causing the initial 

stresses 
 

 

2. Formulation of the problem 
 

Consider the system consisting of the hollow cylinder 

with h thickness and R radius of the internal circle of the 

cross section and surrounding elastic medium, a sketch of 

which is shown in Fig. 1. The position of the points of this 

system we determine through the Lagrange coordinates in 

the cylindrical coordinate system Orθz which is associated 

with the central axis of the cylinder. We suppose that the 

materials of the cylinder and surrounding elastic medium 

are homogeneous, isotropic and linear elastic.  

Below we use the upper index (2) (upper index (1)) for 

indicating the values related to the cylinder (to the 

surrounding elastic medium). 

Assume that in the initial state at infinity, the static 

radial compressional axisymmetric forces with intensity p 

act on the surrounding medium and as a result of this action 

the initial stress state appears in the constituents of the 

system. Moreover, assume that the materials of the 

constituents of the system are sufficiently rigid and the 

initial stress state can be determined within the scope of the 

classical linear theory of elasticity. Denoting the values 

related to the initial stress state by the additional upper 

index “0”, we can write the following expressions for these 

stresses 
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where λ(n) and μ(n) are the Lame constants and v(n) is 

Poisson’s ratio of the n−th material. The unknown constants 

B(1), A(2) and B(2) are determined from the following system 

of algebraic equations 
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Note that the equations in (2) are obtained from 

satisfaction of the boundary and contact conditions which 

relate to determination of the initial stress state, and the 

notation used in (1) and (2) is conventional.  

In this way, the initial state in the system “hollow 

cylinder + surrounding elastic medium” is determined 

completely through the relations given in (1) and (2). It is 

required to investigate how these initial stresses affect the 

dispersion of the axisymmetric longitudinal waves in the bi-

material infinite elastic system under consideration. 

Namely, this investigation is the subject of the present paper 

and will be made within the scope of the 3D linearized 

theory of elastic waves in bodies with initial stresses. Thus, 

according to (Guz 2004, Eringen and Suhubi 1975, Akbarov 

2015) and others listed therein, the equations of motion and 

the elasticity relations of this theory for the case under 

consideration are obtained as follows.  

The equations of motion 
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(4) 

The elasticity and strain-displacement relations 
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The foregoing equations (3)-(6) are the complete system 

of field equations within the framework of which the 

present investigations are made.  

Consider also the corresponding boundary and contact 

conditions which must be added to these equations. These 

conditions are 
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This completes the mathematical formulation of the 

problem. 
 

 

3. Solution method  
 

We use the discrete-analytical method to investigate the 

problem under consideration because it is impossible to 

obtain an analytical solution to this system of equations in 

the classical sense due to variability in the coefficients of 

the equations (3) and (4). According to the discrete-

analytical method, the cylinder and surrounding elastic 

medium are divided into a certain number of sublayers 

within each of which the initial stresses determined through 

the expressions (1) and (2) are taken as constant, the values 

of which are determined through the expressions (1) and (2) 

by replacing r with rm, where rm is the middle radius of the 

sublayer's cross section. After this replacement, the attempt 

is made to obtain the analytical solution to the system of 

equations (3)-(6) and if it succeeds, then the discrete-

analytical method also succeeds. Under satisfaction of the 

boundary conditions in (7), it is assumed that between the 

sublayers there exist perfect contact conditions.  

Thus, we realize the above-described procedure.  

 

3.1 Dividing regions into a certain number of sub-
regions and contact conditions between these sub-
regions 

 

We divide the region [R, R+h] which is occupied by the 

hollow cylinder into the N2 number of sub-regions 

[R+(n2−1)h/N2], (R+n2h/N2)], where n2=1,2,…N2. Moreover, 

we divide the region [R+h, ∞] occupied by the surrounding 

elastic medium into the N1 number of finite sub-regions 

[R+h+(RM−R−h)(n1-1)N1), R+h+(RM−R−h)n1N1] and infinite 

sub-regions [RM, ∞], where n1=1,2,…N1 and the numbers N2 

and N1, and the value for RM are determined in the solution 

procedure from the convergence requirement of the 

numerical results.  

Thus, according to the foregoing discussions, the 

inhomogeneous initial stresses determined through the 

expressions (1) and (2) in each sub-region are taken as 

constants, the values of which are defined by the following 

relations: 
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and in the infinite sub-region [RM, ∞] also occupied by 

the surrounding medium 
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Using the upper index notation (2)n2  (the upper index 

(1)n1) for the values related to the hollow cylinder 

(surrounding medium) and the upper index notation (1)∞ 

for the values related to the infinite sub-region [RM, ∞] we 

formulate the contact conditions between the sub-regions 

and corresponding boundary conditions. Thus, taking the 

boundary condition in (7) and the assumption of perfect 

contact conditions between the sub-regions into 

consideration we can write the following relations:  
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where H = RM −R−h. 

This completes the consideration of the formulation of 

the contact conditions between the sub-regions and 

boundary conditions for the values related to the face sub-

regions.  

 

3.2 Solution procedure to the system of equations 
(3)-(6)  

 

Now we consider the equations which are obtained from 

the equations (3)-(6) within the scope of the foregoing 

assumptions. Under this consideration, we will take into 

account that the expressions in (5) and (6) remain valid in 

each sub-region as are, and under mathematical 

transformations, the upper indices (1) and (2) in these 

expressions are replaced with the upper indices (1)n1, (2)n2 

and (1)∞, respectively. 

Thus, taking the relations (8)-(10) into consideration, we 

obtain the following equations of motion from the equations 

(3) and (4).  
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Note that by replacing the upper index (1)ni with the 

upper index (1)∞, we can write the corresponding system of 

equations for the infinite sub-region [RM, ∞]. However, here 

we do not consider separately these equations for this 

infinite sub-region because these solutions can be obtained 

automatically from the solution to the equations in (12) 

taking the last condition in (11) into consideration. 

Thus, the equations in (12) with the equations in (5) and 

(6) comprise the complete system of equations with respect 

to the sought values. We attempt to solve this system of 

equations by the use of the classical Lame decomposition 

(see, for instance, the monograph (Eringen and Suhubi 

1975) which for the case under consideration can be 

presented as follows: 
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Substituting the expression into the equations (5), (6) 

and (12), and doing some cumbersome mathematical 

manipulations, it is established that the potentials 𝛷(𝑖)𝑛𝑖  

and 𝛹(𝑖)𝑛𝑖 must satisfy the following equations. 
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As can be predicted, in the cases where 𝜎𝑧𝑧
(𝑖)0(𝑟𝑛𝑖

) = 0, 

𝜎𝑟𝑟
(𝑖)0(𝑟𝑛𝑖

) = 0 and 𝜎𝜃𝜃
(𝑖)0(𝑟𝑛𝑖

) = 0 , the equations in (14) 

coincide with the corresponding ones in classical 

elastodynamics (see, for instance Eringen and Suhubi 

1975).  

Thus, as it is considered that the guided wave 

propagates along the Oz axis, all the sought quantities can 

be presented with multiplying cos(kz−ωt) (for the 

functions 𝛷(𝑖)𝑛𝑖, 𝑢𝑟
(𝑖)𝑛𝑖, 𝜎𝑟𝑟

(𝑖)𝑛𝑖 , 𝜎𝜃𝜃

(𝑖)𝑛𝑖 and 𝜎𝑧𝑧
(𝑖)𝑛𝑖) and with 

multiplying sin(kz−ωt) (for the functions 𝛹(𝑖)𝑛𝑖 , 𝑢𝑧
(𝑖)𝑛𝑖 and 

𝜎𝑟𝑧
(𝑖)𝑛𝑖 ). Taking this into consideration and denoting the 

amplitudes of these quantities with the same symbols, we 

obtain the following equations for the amplitudes of the 

potentials 𝛷(𝑖)𝑛𝑖  and 𝛹(𝑖)𝑛𝑖.   
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(15) 

To simplify the equations in (15) we introduce the 

following notation: 
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3.3 Solution to the equations in (15) 
 

Using the notation (16), we can rewrite the equations in 

(15) as follows 
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We represent the equations in (17) in the following 

form: 

   
2
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y
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According to (Watson 1966), using the substitution  

(1 )/2
1( ).y x y x−=  (19) 

the following Bessel equation for the function y1(x) is 

obtained from the equation (18): 
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Thus, according to (19) and (20), the following 

expressions and equations can be written:  
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from which we obtain the following expressions for the 

functions 𝛷(𝑖)𝑛𝑖  and 𝛹(𝑖)𝑛𝑖. 
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where Jδ(x) and Iδ(x) (Yδ(x) and Kδ(x)) are the Bessel and 

modified Bessel functions of the first (second) kind.   

 

3.4 The expressions for the displacements and 
stresses and construction of the dispersion equation 

 

Thus, using the expressions (21)-(27) we determine 

completely the exact analytical solution to the equations in 

(15), and substituting this solution into the foregoing 

relations, we determine the expressions for the amplitude of 

the displacements and stresses which enter the contact and 

boundary conditions. These expressions are given in 

Appendix A with formulae in (A1).  

Substituting these expressions into the contact and 

boundary conditions in (11) we obtain the system of 

homogeneous linear algebraic equations with respect to the 

unknown constants 𝐴1

(𝑖)𝑛𝑖 , 𝐴2

(𝑖)𝑛𝑖 , 𝐵1

(𝑖)𝑛𝑖 , 𝐵2

(𝑖)𝑛𝑖 , 𝐴2
(𝑖)∞

 

and 𝐵2
(1)∞

where i =1,2, n1=1,2,…N1 and n2=1,2,…N2. 

Equating to zero the determinant of the coefficient matrix of 

these equations we obtain the following dispersion 

equation: 

(1) (1) (2)det( ( , , / , , / )) 0,nma c kR p h R   =

1 2; 1,2,...,4( ) 2.n m N N= + +  
(28) 

As the explicit expressions of the components of the 

matrix {anm} can be easily determined from the formulae 

(A1) given in Appendix A, here we do not give these 

expressions.  

This completes the consideration of the solution method 

and obtaining the dispersion equation. Note that the method 

used in the present paper was also used in the papers 
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(Akbarov et al. 2017, 2018 and Akbarov 2006), the results 

of which are also detailed in the monograph by Akbarov 

(2015) 
 

 

4. Numerical results and discussions 
 

In the present section we consider the numerical results, 
i.e. the dispersion curves constructed as a result of the 
solution of the dispersion equation (28). This solution is 
made numerically with employing the well-known “bi-
section” method, the PC programs for this calculation 
having been constructed by the authors of the paper. Testing 
of these programs will be made with comparison of the 
present results obtained in certain particular cases with the 
corresponding results obtained by other researchers. 

Under obtaining and discussing of the numerical results 
for characterization of the magnitude of the initial stresses 
we will use the ratio p/μ(1) and we intend to consider only 
the first two lower dispersion modes. Despite this intent, as 
will be shown below, additional dispersion curves which 
appear due to the inhomogeneity of the initial stresses are 
obtained.  

Numerical results, which will be discussed below, are 

obtained for the following two cases for the values of the 

mechanical constants of the constituents of the bi-material 

elastic system under consideration.   

Case 1: (1) (2) 0.05,E E =  (1) (2) 0.01,  =    

(1) (2) 0.25. = =       
(29) 

Case 2: (1) (2) 0.35,E E =  (1) (2) 0.1,  =    

(1) (2) 0.25. = =        
(30) 

Note that these materials were also selected for 

consideration in the paper (Abdulkadirov 1981). However, 

in that paper in Case 2 the case was considered where full 

slipping conditions are satisfied on the interface between 

the cylinder and surrounding medium.   

Therefore, below, comparison of the present results with 

the corresponding ones obtained in the paper (Abdulkadirov 

1981) will be made only for Case 1.  

Moreover, note that all the results which will be 

discussed below are obtained in the case where N1=15 and 

N2=30, and RM is selected as 5R, i.e. RM =5R. The validity 

of such selection of the number of sub-regions and the 

convergence of the numeric results with respect to these 

numbers will be considered after analysis of the dispersion 

curves obtained in the foregoing three (29)-(30) cases and 

under this analysis, we consider separately the dispersion 

curves obtained in these cases.    
 

4.1 Dispersion curves obtained for Case 1 
 

Thus, we consider the graphs given in Fig. 2 which 
illustrate the dispersion curves for the “first” mode obtained 
in Case 1 under h/R = 0.15 (Fig. 2a), 0.25 (Fig. 2b) and 0.5 
(Fig. 2c). Here, under “first” mode we understand the 
dispersion curves which are near the dispersion curves 
related to the corresponding first mode obtained in the case 
where p/μ(1) = 0.00 which are drawn with dashed lines in the 
figures. Note that the considered curves are obtained for 
various values of p/μ(1), namely, for the values p/μ(1) = 

0.0001; 0.0003; 0.0005; 0.0007 and 0.001.  

Analysis of the graphs given in Fig. 2 shows that the 

character of the influence of the inhomogeneous initial 

stresses on the dispersion curves depends not only on the 

values of the ratio p/μ(1) but also on the values of the ratio 

h/R. This is because in the case where h/R = 0.5, the 

dispersion curves obtained for all values of p/μ(1) are similar 

to those which are obtained in the case where p/μ(1) =0. 

Consequently, in the case where h/R = 0.5 in Case 1, the 

influence of the inhomogeneous initial stresses on the 

dispersion curves has only quantitative character and, 

according to the zoomed parts Z1, Z2, Z3, Z4 and Z5, there 

exists such a value of the dimensionless wavenumber kR 

(denote it by 𝑘𝑅1
∗) before which (after which) the initial 

stresses cause to increase (to decrease) the wave 

propagation velocity.  

Note that in the paper by Abdulkadirov (1981), this case 

was also considered, i.e. the case where h/R = 0.5. 

Comparison of the dispersion curve constructed under p/μ(1) 

=0 and illustrated in Fig. 2c with the dashed line, with the 

corresponding one obtained in that paper, shows that the 

present curve coincides with it completely. Moreover, note 

that in the present paper, the results obtained for the case 

where p/μ(1) = 0.00 are calculated with the same PC 

programs which are also used for calculating the results 

related to the cases where p/μ(1) > 0. Thus, we can conclude 

the validity of the PC programs used in the present 

investigation. Unfortunately, we have not found any related 

results of other authors to compare with the present results.   

Thus, the main conclusion which follows from the 

results given in Fig. 2c is the following: in Case 1 under h/R 

= 0.5 the influence of the inhomogeneous initial stresses on 

the dispersion curves has only quantitative character. 

However, the results given in Fig. 2a and Fig. 2b show that 

in the cases where h/R = 0.15 and h/R = 0.25 this 

conclusion is violated in the relatively greater values of 

p/μ(1). In other words, in the cases where p/μ(1) ≥ 0.0003 

under h/R = 0.15 and in the cases where p/μ(1) ≥ 0.0007 

under h/R = 0.25 this conclusion is violated and in these 

cases the inhomogeneous initial stresses on the 

dispersioncurves have not only quantitative but also 

qualitative character. Thus, in these cases, new types of 

dispersion curves are obtained, each of which has some 

branches. The first branch appears before a certain value of 

𝑘𝑅 (denote it by (𝑘𝑅)1
"  under which 𝑑(𝑐/𝑐2

(2)
)/d(kR)=∞, 

however, the second branch appears after a certain value of 

𝑘𝑅(denote it by (𝑘𝑅)2
" (>(𝑘𝑅)1

" )) under which the relation 

𝑑(𝑐/𝑐2
(2)

)/d(kR)=∞ also takes place and the values of 

(𝑘𝑅)1
"  (of (𝑘𝑅)2

" ) decrease (increase) with |p/μ(1)|. 

Consequently, in the frequency interval (𝜔𝑅)1
" /𝑐2 <

𝜔𝑅/𝑐2 <  (𝜔𝑅)2
" /𝑐2   is the band gap interval, where 

(𝜔𝑅)1
"  and (𝜔𝑅)2

"  are wave frequencies under 𝑘𝑅 =
(𝑘𝑅)1

"  and𝑘𝑅 = (𝑘𝑅)2
" , respectively. 

Analyses of the zoomed parts Z1–Z5 in Figs. 2a and 2b 
allow us to conclude that before a certain value of kR 
(denote it by (kR)*) the initial stresses cause to increase the 
wave propagation velocity, however, in the cases where 
kR>(kR)*, the initial stresses cause to decrease significantly 
the wave propagation velocity for all the selected values of 
p/μ(1). 
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(a) 

 
(b) 

 
(c) 

Fig. 2 Dispersion curves for the first modes in Case 1 

under h/R = 0.15 (a), 0.25 (b) and 0.50 (c) 

 

 

Also, we consider the dispersion curves related to the 

second mode and illustrated in Fig. 3 which are constructed 

for the cases where h/R = 0.15 (Fig. 3a), 0.25 (Fig. 3b) and 

0.5 (Fig. 3c). It follows from the zoomed parts in these  

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Dispersion curves for the second modes in Case 1 

under h/R = 0.15 (a), 0.25 (b) and 0.50 (c) 
 

figures that the initial stresses cause to decrease the wave 

propagation velocity for all the considered values of the 

dimensionless wavenumber kR. Moreover, it follows from 

the results that the magnitude of the “decrease” increases 
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with p/μ(1) and with the decrease of h/R. Consequently, in 

the second mode, the influence of the initial inhomogeneous 

stresses on the dispersion curves has only quantitative 

character. 

Finally, note that the dashed line in Fig. 3c which relates 

to the case where p/μ(1) = 0.00 coincides completely with 

that obtained in the paper by Abdulkadirov (1981) and this 

statement again illustrates the validity of the PC programs 

and algorithm used in the present investigation. 

This completes the results related to Case 1 (29).  
 

4.2 Dispersion curves obtained for Case 2 
 

The dispersion curves related to this case are given in 

Fig. 4 and these curves are constructed in the cases where 

h/R = 0.15 (Fig. 4a), 0.25 (Fig. 4b) and 0.50 (Fig. 4c). Note, 

unlike the previous case in Fig. 4, the dispersion curves 

related to the first and second modes are given together. 

Thus, we analyze these dispersion curves and begin this 

analysis with the ones given in Fig. 4a for the first mode, 

according to which, before a certain value of the ratio p/μ(1) 

these curves in the qualitative sense are similar to those 

obtained in the case where p/μ(1) = 0.00. However, after this 

“certain” value of p/μ(1) (i.e. for the case under 

consideration under p/μ(1) ≥ 0.0007) the character of the 

dispersion curves changes and as in the previous case, the 

band gap for the wave frequencies appears. Moreover, 

according to the zoomed parts Z1–Z4 in Fig. 4a, before the 

zoomed part Z3 (to say more precisely, the cases where 

𝑘𝑅 < (𝑘𝑅)1
∗ , and (𝑘𝑅)1

∗ , is in the zoomed part Z3), the 

existence of the initial stresses causes to decrease the wave 

propagation velocity, however, in the cases where (𝑘𝑅)1
∗ <

𝑘𝑅 < (𝑘𝑅)2
∗ , where (𝑘𝑅)2

∗  is between the zoomed parts Z3 

and Z4, the initial stresses cause to increase the wave 

propagation velocity. According to both the zoomed part Z4 

and direct observation of the dispersion curves, it can be 

concluded that in the cases where kR > (𝑘𝑅)2
∗ , the wave 

propagation velocity decreases again as a result of the 

existence of the initial stresses and the magnitude of this 

“decrease” grows with p/μ(1). It follows from the analysis of 

the zoomed parts Z1–Z7 in Fig. 4b and the zoomed parts 

Z1–Z10 in Fig. 4c that the character of the initial stresses on 

the dispersion curves obtained under h/R = 0.25 (Fig. 4b) 

and 0.50 (Fig. 4c) is similar to that which is described 

above for the case where h/R = 0.15 However, in the latter 

two cases, unlike the case where h/R = 0.15, in all the 

considered values of p/μ(1), the influence of the initial 

stresses on the dispersion curves has qualitative character. 

At the same time, under h/R = 0.5 and p/μ(1) ≥ 0.0005, as a 

result of the initial stresses, new additional dispersion 

curves appear which are illustrated in Fig. 5. 

Besides all of these, it follows from the zoomed parts 

Z5–Z7 in Fig. 4a, Z8–Z11 in Fig. 4b and Z11–Z14 in Fig. 

4c that in Case 2 for all the selected values of the problem 

parameters, the initial stresses cause to decrease the wave 

propagation velocity in the second mode.   
 

4.3 Convergence of the numerical results 
 

We consider the convergence of the numerical results 

with respect to the numbers N1, N2 and RM/R, the meaning 

 
(a) 

 

(a)  

 
(c) 

Fig. 4 Dispersion curves obtained in Case 2 under h/R = 

0.15 (a), 0.25 (b) and 0.50 (c) 
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Fig. 5 Additional dispersion curves obtained in Case 2 

under h/R = 0.50 

 

 

of which is given in sub-section 3.1. First we assume that 

RM/R = 5 and examine the dispersion curves obtained in 

Case 1 for various values of the numbers N1 and N2 under 

h/R = 0.25 and h/R = 0.001. These dispersion curves are 

given in Fig. 6 for the first (Fig. 6a) and second (Fig. 6b) 

modes and it follows from these curves that an increase in 

the values of the numbers N1 and N2 (especially in the 

values of the number N2) causes to change the dispersion 

curves related to the first mode not only qualitatively but 

also quantitatively. However, the dispersion curves related 

to the second mode move slightly downward with the 

aforementioned numbers and under this movement the 

curves conserve their initial form. At the same time, it 

follows from these curves that the influence of the increase 

of the numbers N1 and N2 on the dispersion curves decays 

significantly after certain values. The presented results and 

others which are not given here, allow us to conclude that it 

is sufficient to take N2 =30 and N1 =15 in order to obtain 

numerical results with 10−3 − 10−4 accuracy. 
Now we consider the results given in Fig. 7 which 

illustrate the convergence of the numerical results obtained 

for the first (Fig. 7a) and second (Fig. 7b) modes with 

respect to the number RM. Note that these results are also 

obtained in Case 1 under N2 =30 N1 =15, h/R = 0.25 and 

p/μ(1) = 0.001 It follows from the comparison of the results 

obtained for various values of RM, that for obtaining 

numerical results with 10−3 − 10−4 accuracy, it is sufficient 

to take RM/R = 5. 

 

 

5. Conclusions 
 

Thus, the present paper studies the influence of the 

inhomogeneous initial (or residual) stresses in the “hollow 

cylinder + surrounding medium” system on the propagation 

of the axisymmetric longitudinal waves in this system. It is 

assumed that the inhomogeneous initial stresses are caused 

by the uniformly distributed normal compressional forces  

 

(a) 

 

(b) 

Fig. 6 Convergence of the numerical results obtained in 

Case 1 for the first (a) and second (b) modes with respect 

to the numbers N1 and N2 

 
 

acting at infinity and in this manner the inhomogeneous 

initial stresses around the underground structures caused by 

the Earth’s gravity are modelled. The wave propagation in 

the system is considered within the scope of the three-

dimensional linearized theory of elastic waves in bodies 

with initial stresses. The discrete analytical solution method 

is developed for the solution to the formulated problem and 

the dispersion equation, which is solved numerically, is 

obtained. 
As a result of this solution, the dispersion curves related 

to the first and second modes are constructed and the 

influence of the initial stresses on these curves under 
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(a) 

 

(b) 

Fig. 7 Convergence of the numerical results obtained in 

Case 1 for the first (a) and second (b) modes with respect 

to the ratio RM/R 

 

 

various values of the mechanical and geometrical 

parameters of the constituents of the system is analyzed. 

According to these analyses, the following concrete 

conclusions can be drawn: 

• The inhomogeneous initial stresses under 

consideration not only qualitatively but also quantitatively 

change the character of the dispersion curves obtained for 

the “first modes”. Under the “first modes” dispersion curves 

are those which are near to the dispersion curve which is 

obtained under absence of the initial stresses (i.e. the 

classical dispersion curve for the first mode) or the 

dispersion curve where the wave propagation velocity is 

less than that on the classical dispersion curve of the first 

mode; 

• The character of the influence of the inhomogeneous 

initial stresses on the wave propagation velocity depends on 

the dimensionless wavenumber kR, nevertheless, it can be 

concluded that, in general, the inhomogeneous 

compressional initial stresses cause to decrease the wave 

propagation velocity; 

• Under relatively great values of the intensity of the 

forces which cause the inhomogeneous initial stresses, the 

band gap appears for the wave frequencies related to the 

“first modes”; 

• As a result of the inhomogeneous initial stresses, 

additional dispersion curves may appear, the wave 

propagation velocity on which is less than that on the 

classical dispersion curve for the first mode; 

• The influence of the inhomogeneous initial stresses 

under consideration on the dispersion curves related to the 

second mode has only qualitative character and this 

influence causes to decrease the wave propagation velocity. 

The magnitude of this “decrease” increases with the 

absolute values of the compressional forces in the initial 

state;  

• The character of the influence of the inhomogeneous 

initial stresses on the dispersion curves related to the “first 

modes” depends significantly of the ratio h/R, where h is 

the cylinder’s thickness and R is the internal radius of the 

cylinder’s cross section. Especially in relatively small 

values of this ratio, the influence of the inhomogeneous 

initial stresses on the dispersion curves becomes more 

complicated.   

Note that more concrete conclusions regarding the 

studied problem can be found in the text of the paper and 

the solution method developed herein allows the authors to 

investigate many other problems on wave dispersion in the 

elements of construction with inhomogeneous initial 

stresses. The obtained results can be used in underground 

structural engineering as oriented theoretical benchmark 

information on the influence of the inhomogeneous initial 

stresses on the wave dispersion in underground structures. 
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Appendix A 
 

Here we give the explicit expressions for amplitude of 

the sought values and the notation used in writing these 

expressions is described in the text with the relations given 

in (16) and (27).  
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