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1. Introduction 
 

A structure can be damaged by different reasons, as by 

accidental overloads in excess of its designed strength, or 

by deterioration of its mechanical properties over time, or 

by environmental influence, reducing the structural stiffness 

at the damaged zone thus changing its static and dynamic 

behaviour, being the magnitude of the change a function of 

the severity and the location of the damage. Moreover, it is 

required that structures must in safety work during its 

service life, but damages instigate an earlier breakdown 

period on the structures. Therefore, it required regular 

costly inspections. So, the capability of identifying both 

location and severity of damages of faulted elements in a 

structural system is greatly needed under the present 

demands of constantly maintaining the safety of 

engineering structures.  

In most structures, in order to make an overall estimate 

of the damage, visual inspection and nondestructive 

evaluation (NDE) is relatively easy to perform, but in the 

case of foundations the main limitation of visual inspection 

and some of the traditional approaches is that they require 

access to potentially damaged regions, which may be 

dangerous or impossible. Probably for this reason and 

despite the importance of foundations, the specific literature 

on damage to foundations is limited (Karatzetzou and 

Pitilakis 2018). 
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For these reasons, it is important to develop methods 

based on structural parameters, by static or dynamic 

measurements, such as mass, stiffness, modulus of elasticity 

and in modal parameters, such as natural frequencies, modal 

forms and modal damping. Structural damage can be 

determined by methods that consider the changes in the 

static response of the structures, i.e. displacement variations 

and/or strain, (Caddemi and Morassi 2007), (Robles and 

Ortega 2011), (Abdo 2012), (Xiang et al. 2013), (Bernal 

2014), (Lozano-Galant et al. 2015), (Zhang et al. 2015), 

(Boumechra 2017), (Ercolani et al. 2017), (Erdenebat et al. 

2018), (Ercolani et al. 2018 a), or by dynamic methods, 

where modal parameters are analysed, such as frequencies 

and modal forms (Gounaris and Dimarogonas,1988), 

(Salawu 1997), (Doebling 1998), (Patil and Maiti 2005), 

(Ciambella et al. 2011), (Yang et al. 2013), (Homaei et al. 

2014), (Zhao et al. 2017), (Khalili and Vosoughi 2018), 

(Pedram et al. 2018), (Faye et al. 2018), (Ercolani et al. 

2018b). Depending on the analysed structure and the 

equipment availability to make the measurements in situ, 

one method, dynamic or static, could be more convenient 

than another, and in some cases, complementary (Jiang et 

al. 2004), (Schommer et al. 2017). Rytter (1993) classified 

damage detection in four levels: level 1 takes into account 

the existence of structural damage; level 2 is level 1 plus 

damage localization; in level 3 the quantification of damage 

severity is added, and level 4 is level 3 plus prediction of 

the structure’s remaining life. 

This paper deals with techniques for detection, 

localization and quantification of damage, using numerical 

models, solved with the finite elements method and Powers 

Series, using different parameters, static and dynamic, as 
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Abstract.  Foundations are a vital part of structures. Over time, the foundations can deteriorate due to unforeseen overloads and/or 

settlements, resulting in the appearance of cracks in the concrete. These cracks produce changes in the static and dynamic behavior 

of the affected foundation, which alter its load carrying capacity. In this work, non-destructive techniques of relative simplicity of 

application are presented for the detection, location, and quantification of damage, using numerical models, solved with the finite 

element method and Power Series. For this, two types of parameters are used: static (displacement and elastic curvature) and 

dynamics (natural frequencies). In the static analysis, the damage detection is done by means of a finite elements model representing 

a beam supported on an elastic foundation with a discrete crack that varies in length and location. With regard to dynamic analysis, 

the governing equations of the model are presented and a method based on Power Series is used to obtain the solution for a data set, 

which could be the Winkler coefficient, the location of the crack or the frequency. In order to validate the proposed methodologies, 

these techniques are applied to data obtained from laboratory tests. 
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the damage index. In the case of the static approach, two 

techniques are introduced. The first one is related to the 

variation of the flexibility of the damaged structure, relative 

to the undamaged one. The second technique is based on 

the elastic curvature variation, analysed using the finite 

differences method.  

It should be noted that, in order to perform on-site 

measurements, the concrete surface of the affected 

foundation must be exposed. In the particular case of the 

foundation beam that is analysed in this work, access is 

more direct if the columns and the foundation are part of 

subsoil, for example garages or deposit, simplifying the 

measurements (static or dynamic). 

Tests are performed on elastic foundation beams, 

adopting a ground reaction which varies linearly according 

to ground deformation. The techniques presented here allow 

for the assessment of foundation structures by means of 

non-destructive methods, in order to evaluate the Residual 

Load Capacity.  

In the case of the dynamic test, the assessment of 

location and depth of cracks by evaluation of natural 

frequencies in the damaged structural component has been 

widely used. One of the reasons for this tendency is the fact 

that frequencies are dynamic parameters which can be 

rather simply obtained through measurements. Their 

experimental determination for a given cracked element is 

relatively direct, this is due to the fact that the experimental 

determination of the natural frequencies can be from one 

single location, thus offering scope for the development of a 

fast and global NDE technique. Nevertheless, the inverse 

problem for determining crack parameters (location and 

depth) for a given set of measured frequencies is not as 

simple. To achieve significant results a suitable model and 

an efficient numerical technique must be used. 

A simple and widely accepted model is the 

representation of the decreased rigidity at the site of the 

crack through a rotational spring. In the direct problem, if 

the spring constant and location are known, the resolution 

of the algorithm results in the natural frequencies of the 

structural system. Within the discipline of Fracture 

Mechanics, equivalence can be determined for a certain 

type of problems, between the spring constant and the depth 

of the crack. In this way, if the crack depth is known the 

value for the equivalent spring constant can be obtained and 

vice versa.  

To locate and quantify cracks by a dynamic analysis, an 

indirect method is proposed, i.e. once the response is known 

the data of the crack are obtained. Firstly, the algorithm for 

solving the direct problem is stated and then, is used to 

formulate the inverse problem.  

Using dynamic measurements, the values of the first 

three natural frequencies are obtained. These values are 

entered as data in the algorithm developed to solve the 

inverse problem, that is, to predict the spring constant and 

the location of the crack. In the resolution of the inverse 

problem, the crack is always considered open and is 

modelled by a rotational spring, whose constant is an 

invariant. Then, using the equivalence from the Fracture 

Mechanics theory, the depth of damage can be obtained 

(Filipich and Rosales 2002).  

A simply supported beam of reinforced concrete, 

previously damaged, was tested in the laboratory. Through 

the comparison of the experimental results and those 

obtained by the proposed numerical model, the quality of 

the results was assessed. The resulting parameters values 

attained satisfactory precision. 
 

 

2. Detection, localization and quantification of 
damage through static methods 

 

As mentioned in the Introduction, a damaged structure 

has a lower relative rigidity than the undamaged structure. 

This is evidenced in the static response, by the vertical 

displacements and curvature of the elastica produced by the 

action of the acting loads. 

The vertical displacements and the curvature of the 

elastica of a structure are functions of the structural 

geometry, of the properties of the material and of the loads 

acting on it. In a numerical model, the damage can be 

simulated as a change in the properties of the material or as 

an alteration in the geometry. In this work, the damage is 

modelled as a discrete crack, which alters the geometry and, 

more specifically, the second moment of area of the affected 

cross-section. 

Models representative of the structure, consisting in a 

foundation beam supported by a Winkler-type elastic 

medium, were built with and without damage. They were 

analysed through software based on finite elements methods 

(Algor 23 2010). Values for vertical displacement and 

elastic curvature were obtained for different points. It must 

be noted that the values of vertical displacement may be 

obtained experimentally, either by in-situ measurement on 

the actual structure, or in a scaled physical model. 

A linear Winkler model is adopted in virtue of the type 

of soil adopted in this work, dense sand. This type of soil 

has low shear effect. If the soil had shear capacity, as in the 

case of rocks or gravels then other models should be 

adopted, for example, a Pasternak model. Moreover, the 

length to height ratio of the studied foundation is between 3 

and 6, range in which not considering the shear effects 

generates on flexion behaviour errors up to 10 % (Teodoru 

et al. 2006). These errors are considered acceptable in 

comparison to other simplifications that are usually 

assumed in a model, such as the case of considering 

reinforced concrete as a homogenous and isotropic material. 

 
2.1 Numerical modelling 
 

Fig. 1 shows the model used in this study, with its 

dimensions. It involves a foundation beam with a crack 

placed at distance x from the left end, and the plate with a 

crack at x1 from the left end. In these models, rectangular 

Plate - Shell elements were used with nodes at their 

vertices. with a density, in areas far from the crack, of 400 

elements/m2. In the nearby crack area, were used triangular 

elements with a mesh density of 12870 elements/m2. The 

change in stiffness due to damage was modelled by 

incorporating a discrete crack. 

Reinforced concrete was considered homogeneous, 

continuous and isotropic. The adopted properties correspond 
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to a high-strength concrete, with a characteristic 

compression strength of 40 MPa, E = 3.10 1010 N/m2; ν = 

0.15 and ρ = 2351 Kg/m3. The value of the total load 

applied in each column, located at the ends of the beam is 

Fv = 16333 N. The value for Ground Coefficient Reaction 

(k) is 9.8 107 N/m3, corresponding to a dense uniform sand 

(Maheshwari 2011). 

 

2.2 Assessment of the presence of damage by 
static methods 

 

To assess the presence of damage, a comparison was 

made between the values of the vertical displacements, 

corresponding to the structure with and without damage, 

using this variable as an index of the existence of damage. 

It is worth mentioning that no longitudinal truss was 

included in the crack, in order to decrease the software run 

time, which would have been increased five-fold. 

Nevertheless, with the purpose of verifying the magnitude 

of the error implied by this simplification, a model was built 

with a truss element included in the crack. The maximum 

difference detected in vertical displacement between models 

with and without truss was 0.02 %.  

 

2.2.1 Model with damage on the beam 
Fig. 2 shows the vertical displacements of a foundation 

beam, with damage at a fixed position, x = 1.5 m, where x 

is the coordinate on the longitudinal axis measured from the 

centre of the left support, as a function of the relative 

location of each point, for different relations a/h, where a is 

the depth of the damage and h is the total height of the 

beam. The measurement of the vertical displacements was 

made on the beam. In addition, the curve corresponding to 

the vertical displacements of the undamaged structure has 

been included in this graph. It should be mentioned that as 

the crack location is closer to the centre of the beam, the 

change of curvature in the graphics, that represent the 

vertical displacements versus the position, is more 

prominent. If the determination of the vertical 

displacements of a beam that has a crack is done on the 

plate, the corresponding graph is similar to that of Fig. 2, 

with smoother changes of slopes of the graphs, that is, the 

method loses sensitivity. 

 
 

 
Fig. 2 Vertical displacements with damage of varying 

severity, measured on the beam 
 

2.2.2 Model with damage on the plate 
When the crack is in the plate, the generated rigidity 

change is lower than if the crack is in the beam. Therefore, 

the changes in the curvatures are not very noticeable, 

making the detection of damage rather difficult in these 

cases. 
 

2.2.3 Model with damage on the beam and on the 
plate 

When cracks appear simultaneously on the beam and on 

the plate, this methodology does not allow the detection of 

cracks on the plate, regardless of whether the measurement 

is made on the beam or on the plate. It should be noted that 

when the measurement is made on the plate the technique 

loses sensitivity compared to the measurements made on the 

beam. 
 

2.3 Damage location 
 

Location of damage is performed after assessing its 

presence in the structure. Two methods are hereby 

presented:  

- Vertical displacement variation method, and 

- Elastic curvature method. 

Notice that both methods are fit for the analysis of static 

as well as dynamic behaviour. 
 

 

2.3.1 Vertical displacement variation method 
This method is based in the determination of the  
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Fig. 1 Model of a foundation beam with cracks on the beam and on the plate (length in meters) 
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Fig. 3 Vertical displacement variation with damage on the 

beam, measured on the beam 
 

 

difference between the vertical displacement of the intact 

structure and that of the damaged structure. This parameter, 

called vertical displacement variation (VDVi) is an index of 

variations in the structural rigidity, and is defined as:  

𝑉𝐷𝑉 = |𝑤𝑖𝑑 − 𝑤𝑖𝑢| (1) 

where wid is the vertical displacement of point i in the 

damaged structure and wiu is the displacement of the same 

point in the undamaged structure. If these data are available 

for several points of the structure, the generated plotting 

allows for an estimate of the location of the damage. If data 

are not available on vertical displacements of the 

undamaged structure, which is a frequent situation, an 

estimate may be made analytically or by means of 

numerical models. 
 

2.3.1.1 Model with damage on the beam 
Fig. 3 shows the variation of the vertical displacements, 

for each point of the mesh, for a foundation beam with 

damage on the beam, at x = 1.5 m. Four different crack 

depths are displayed, a/h = 0.2, a/h = 0.4, a/h = 0.6, and a/h 

= 0.8. It can be observed that the slope change of the 

vertical displacement occurs in coincidence with the 

damage and then, the sign of the curvature also varies. 

It is interesting to note that, as the depth of the damage 

increases, the change in the slope of these curves, 

coinciding with the location of the crack, is more 

noticeable. When vertical displacements are measured on 

the plate, the variations in the slopes are smaller. 
 

2.3.1.2 Model with damage on the plate 
Fig. 4 displays the variation of vertical displacements 

along the foundation beam, with damage on the plate at   
x = 2.5 m. Two crack depths are plotted, pd/hp = 0.4 and 
pd/hp = 0.6. It can be appreciated that as before, the slope 
changes are coincident with the damage location. Notice 
that vertical displacements were measured on the plate. It 
should be noted that as the damage is closer to the columns, 
the slope change is lower and the method loses sensitivity. 
Also, if displacements measurements are made on the beam, 
the method is not accurate. 

 

2.3.1.3 Model with damage on the beam and on 
the plate 

Fig. 5 shows the variation of the vertical displacement 

of a foundation beam, with damage in a fixed position in the  

 
Fig. 4 Vertical displacement variation with damage on the 

plate, measured on the plate 

 

 
Fig. 5 Vertical displacements variation with damage on the 

beam and on the plate, measured on the plate 

 

 

beam and in the plate, at x = 1 m and x = 3 m, respectively, 

as a function of the longitudinal axis of the foundation, for 

a/h = 0.2 and pd/hp = 0.8. The measurements were made on 

the plate. It can be noted that the curvature varies smoothly 

when the damage is on the beam, but it shows a sharp 

indentation when the damage is located on the plate. 

When measurements are made on the beam, only cracks 

on the beam can be located, whereas measuring on the plate 

allows for locating cracks on the beam and on the plate.  

 

2.3.2 Elastic curvature method 
The values of vertical displacements obtained for a 

certain point of the structure, either by experimental 

measurements or, as in this case, by developing a numerical 

simulation, can be used to obtain the curvature of the 

deformed structure through an approximation with central 

finite differences (Lu et al. 2002). In this way, the curvature 

is given by: 

𝑑2𝑤

𝑑𝑥2
=

𝑤𝑖+1−2𝑤 +  𝑤𝑖−1

𝑆2
          𝑖 = 2, … , 𝑛 − 1 (2) 

where s is the distance between two adjacent points (step), 

w is the displacement at a given point and n is the number 

of grid points. 

Of note, this method is independent of any information 

about the undamaged structure, an important advantage 

when such data is unavailable.  

For an undamaged structure, the plotting of the curve 

renders a smooth shape. The emergence of a peak or a 

disruption of shape indicates an abnormal variation in the  
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Fig. 6 Elastic curvature with damage on the beam, 

measured on the beam 

 

 
Fig. 7 Elastic curvature with damage on the beam, 

measured on the plate 

 

 

rigidity or flexibility at that precise position, induced by the 

damage. Thus, one or more damaged areas can be located 

using such measurements.  

Fig. 6 shows the elastic curvature as calculated 

according to Equ. (2), as a function of the longitudinal axis, 

for a foundation beam with damage at  x = 0.5 m, x = 1 m,  

x = 1.5 m, x = 2.0 m and a crack depth of a/h = 0.6. 

Fig.7 shows the variation in the elastic curvature 

calculated by Equ. (2), with the vertical displacements 

measured on the plate, as a function of the longitudinal axis, 

for a foundation beam damaged at  x = 0.5 m, x = 1.5 m,   

x = 2.0 m, with a crack depth of a/h = 0.6. 

From the observation of Figs. 6 and 7, it can be said that 

if the displacements are measured on the beam, the shifts in 

the curvature is more pronounced. 

 

2.4. Damage quantification 
 

Once the damage has been located through the 

techniques previously described here, the following step is 

to establish its magnitude. Although the damaged area could 

be visually detected, there is uncertainty as regards its 

magnitude in the interior of the structure. In order to 

address with this, it is necessary to make a numerical model 

of the structure with the damage simulated in the location 

determined visually, or located using the methodologies 

previously presented, or by the use of an experimental 

technique, for example, ultrasound techniques. 

In the analysis performed by this method, the selected 

mechanical parameter is the volumetric displacements 

(VD). This parameter is defined as the sum of the products  

 
Fig. 8 Volumetric displacements of a foundation beam as a 

function of location (x) and damage severity (a/h) 

 

 

of the vertical displacements at each point of the mesh di, 

times their influence volume, Vi: 

𝑉𝐷= ∑|δiVi|

n

i=1

 (3) 

where the Volume of Influence (Vi) is the volume whose 

gravity centre is the point at which displacement is 

measured. The length of the sides of this volume is half the 

distance between the two adjacent nodes, in each of the 

three directions. 

This parameter has the advantage of accounting for a 

greater volume of information, so if an error exists in any of 

the vertical displacement measurements, it would have less 

influence on the volumetric displacement.  

In order to quantify the damage, models with different 

locations and damage severities are numerically analysed, 

resulting in a three dimensional graph of the parameters: 

location (x), severity (a/h) and a third, volumetric 

displacement, linked to the mechanical behaviour of the 

damaged structure (Ortega et al. 1998; Robles et al. 2001). 

Then, using Fig. 8, with the location of damage (x), and 

with the calculated volumetric displacement, the value of 

(a/h), corresponding to the severity of damage is obtained. 

 

2.5. Experimental verification 
 

In order to validate the methodology of detection and 

location of damage presented, reinforced concrete beams, 

simply supported of the following dimensions: 0.08 m 

wide, 0.16 m high and 2.20 m total length, were tested in 

the Laboratory of Structural Models of the Department of 

Engineering, of the Universidad Nacional del Sur, 

Argentina. 

The reinforced concrete beams were built with 2 steel 

rods of 4.2 mm in diameter at the top and 2 with a diameter 

of 10 mm at the bottom and stirrups of 6 mm each 12 cm. A 

load was applied in the centre of the beam, by means of a 

hydraulic system capable of incrementing the load in stages 

of 1280 kg each, up to a total of 7070 kg. 

Vertical displacement was measured at every load stage, 

by means of 10 fleximeters, spaced every 15 cm along the 

beam. Measurements were made starting from the 

undamaged beam up to a fully cracked beam, including the 

different stages of damage, as displayed in Fig. 9 a and b. It  
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(a) General view 

 
(b) Cracked zone 

Fig. 9 Views of a beam test 
 

 

should be noted that the width and length of the cracks was 

measured at every load stage, using a scale graded with a 

precision of 0.5 mm. 

After measuring vertical displacements, the elastic 

curvature was calculated and plotted in Fig. 10. Comparing 

Fig. 10, with that existing in another work (Robles et al. 

2008), it can be seen that more peaks appear in the 

experimental graph than in the resulting graphs of the 

numerical model. This is due to the errors that are presented 

in the experimental determinations. On the other hand, the 

number of points measured is lower than the determinations 

made in the numerical model. However, the location of the 

crack is easily detectable, which indicates that this 

methodology is reliable and of practical application. 

It is to be noted that, in the first loading steps, the 

location of the crack cannot be clearly identified. Only after 

approximately half of the maximum load, the location of the 

crack can be identified. The trend of the graphs is similar to 

that shown in Fig. 10. 

The measurement of displacements in the working 

environment can be done by means of mechanical 

fleximeters, with a precision of a hundredth of a millimetre, 

or with electronic instrumentation such as LVDT, with a 

precision equal or exceeding that of the fleximeters. It is 

interesting to note that the accuracy of fleximeters is 

enough since, with the tenth of a millimetre, the variations 

of the displacements caused by the failures can already be 

detected. 

 
Fig. 10 Elastic curve of a beam with a 7070 kg load         

at its centre 

 

 
Fig. 11 Winkler foundation beam with an intermediate 

rotational spring, representing a section with a crack depth 

a 

 

 

3. Detection, localization and quantification of 
damage through dynamic methods 

 

For different reasons, for example, space to apply loads 

or inaccessibility of the studied part, cost and test time, 

dynamic methods are the most appropriate. For this reason, 

this section presents the detection, location and 

quantification of damage using the dynamic method, in 

particular, a solution to the inverse problem using a power 

series algorithm. 

 

3.1 Elastic foundation beam: Statement of the 
vibration problem 

 

The model shown in Fig. 11 was adopted, representing a 

beam resting on an elastic ground, with a Winkler type 

response, with a rigidity modulus kw kg/m3. To simulate the 

mechanical effect of the crack in the beam, a rotational 

spring is used, which represents the change in the flexibility 

in the damaged section. The spring is characterized, with an 

elastic constant k1, and the material of the structural 

element, by means of its density (ρ) and elasticity modulus 

(E). 

To generalize the problem, it can be assumed that the 

beam has two zones with different sections (F1 and F2), 

inertias (J1 and J2) and lengths (L1 and L2). In the case that 

is analysed, the sections and inertias remain constant. 

The equations that allow analyzing this problem of 

natural vibrations of the beam-spring system used here are: 

𝐸𝐼𝑣1
”“

  
+ �̅�𝜈1 + 𝜌𝐴�̈�1 = 0  

𝐸𝐼𝑣2
”“  + �̅�𝜈2 + 𝜌𝐴�̈�2 = 0 

(4) 
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where the point indicates the derivative with respect to the 

temporal variable. 

The non-dimensional equations that govern the natural 

vibrations of the beam spring system are: 

v1
”“-α1

4λ
2
v1=0;    v2

”“-(1-α1)4λ
2
v2=0 (5) 

where 

a1=L1/L; x is the spatial variable adimensionalized with 

L, x1 with L1; x2 with L2, 

v1=v(x1);  v2=v2(x2);  𝜆2 = Ω
2

− 𝜔; 

Ω
2

=
𝜌𝐴𝜔2𝐿𝑦

𝐸𝐼
;   𝜔 =

�̅�𝐿𝑦

𝐸𝐼
 

The boundary conditions and continuity conditions at     

x = L1; (α =1 and x2 =0) are: 

[𝜈1
´´(0)𝛿𝜈1

´ (0)] = 0  [𝜈1
´´´(0)𝛿𝜈1(0)] = 0 

[𝜈2
´´(0)𝛿𝜈2

´ (0)] = 0  [𝜈2
´´´(0)𝛿𝜈2(0)] = 0 

(6) 

𝜈2(0) =  𝜈1(1) 

 𝜈2
´ (0) =

(1 − 𝛼1)

𝑘𝛼1
2 [𝜈1

´´(1) + 𝑘𝛼1𝜈1
´´(1)] 

𝜈2
´´(0) =  

(1 − 𝛼1)2

𝛼1
2 𝜈1

´´(1) 

𝜈2
´´´(0) =

(1 − 𝛼1)3

𝛼1
2 𝜈1

´´´(1) 

(7) 

 
3.2 Solution of the direct problem using a power 

series algorithm 
 

Power Series are a widely known and used tool, in 

structural mechanics. Filipich and Rosales have used this 

tool in the solution of highly non-linear problems (Filipich 

and Rosales 2002, Filipich et al. 2004, Rosales and Filipich 

2003, Rosales et al. 2003).  

In the problem that is being treated in this research, the 

equations are linear and the advantage of this approach is its 

algebraic simplicity, with a fast convergence. Therefore, in 

the solution of these problems, it takes less computational 

time, an advantage that is relevant in the resolution of the 

inverse problem. 

The unknowns of the problem are the functions ν1(x1) 

and ν2(x2) which represent the mode shape in each zone 

of the beam. These functions are expanded in Power Series, 

as follows: 

𝜈1(𝑥) = ∑ 𝐴1𝑖𝑥1
𝑖

𝑀

𝑖=0

      𝜈2(𝑥) = ∑ 𝐴2𝑖𝑥2
𝑖

𝑀

𝑖=0

 (8) 

Once the Equ. (8) is replaced in the governing 

differential system Eqs. (5), the following recurrences 

equations are obtained: 

𝐴1(𝑖+4) =
𝛼4𝜆2𝐴1𝑖

𝜑4𝑖
      𝐴2(𝑖+4) =

(1−𝛼)4𝜆2𝐴2𝑖

𝜑4𝑖
 (9) 

where 𝜑𝑙𝑘 = (𝑘 + 𝑙)! ∕ 𝑘! , being k, l integers. The 

conditions of continuity lead to 

𝐴20 = ∑  𝐴1𝑖

𝑖=0

 

𝐴21 =
(1 − 𝛼)

𝑘𝛼2
 [∑ 𝜑2𝑖

𝑖=0

𝐴(𝑖+2)+𝑘𝛼 ∑ 𝜑𝑙𝑖𝐴1(𝑖+1)
] 

𝐴22 =
(1 − 𝛼)2

𝑘𝛼2
 [∑ 𝜑2𝑖

𝑖=0

𝐴1(𝑖+2)] 

𝐴23 =
(1 − 𝛼)3

6𝛼3
[∑ 𝜑3𝑖

𝑖=0

𝐴1(𝑖+3)] 

(10) 

In Eqs. (9) and (10), the unknowns are Aij with i =1, 2 

and j = 0, 1, 2, 3 and the eigenvalues 𝜆, and they are 

obtained by stating the external boundary corresponding to 

the particular case under study. In summary, having the 

position of the spring  𝛼  and its stiffness constant 𝑘1 =
𝑘𝑟𝐿1/𝐸𝐼1as input data, the eigenvalues 𝜆 of the problem 

can be obtained. This is the solution to the direct problem. 

Now, with (𝜆 and 𝛼) or (𝜆 and k) known, it is possible to 

obtain the parameters k or α, respectively. In this way, the 

inverse problem is solved. 

 
3.3 Inverse problem 
 

As stated above, the natural frequencies methods for 

crack detection have been widely used in the last decades. 

Crack detection can be considered as an inverse problem. 

The procedure is as follows:  

a) The measurement of the first three natural frequencies 

of the cracked, or presumably cracked, structural element is 

made.  

b) Each one of these frequencies is introduced as data in 

the algorithm.  

c) A k1 vs. α1 curve is obtained and subsequently plotted, 

for every frequency.   

d) The crossing point of all three curves gives the sought 

values. Due to the inevitable numerical errors and 

dispersion of the data, the intersection of the curves does 

not determine a point but a triangular area. The barycenter 

of this triangle is representative the position of the spring 

(equivalent to the crack) α1 and the stiffness k1 (directly 

related with the crack depth a). 

e) Once the barycenter is found, and consequently the 

values of α1 and k1, the size (depth) of the crack can be 

derived from a relation between the crack and the stiffness 

of the equivalent rotational spring (Ostachowicz and 

Krawczuk, 1991). It should be noted that the relationship 

was derived for the case of a clamped beam and here, it will 

be used approximately for the beam under study. 

𝑘1 =
𝐸𝑏ℎ2

72𝜋𝑓(𝑟∗)
 (11) 

being: r*=a/h and f(r*) = 0.6384r*2-1.035 r*3+3.7201 r*4 -

5.1773 r*5+7.5531 r*6-7.3324 r*7+2.4909 r*8 
 

3.4 Damage detection using natural frequencies 
obtained with a numerical model 

 

In order to verify the methodology, natural frequencies 
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obtained using a numerical method were used. In this 

section, an undamaged foundation beam was modeled, with 

the finite elements method, by means of ALGOR software 

(Algor 23 2010), resting on an elastic medium, measuring 

0.20 m in width; 0.30 m in height and 4.00 m in length. The 

adopted material was reinforced concrete with E = 

3.10x1010 [N/m2]; ν = 0.15 and ρ = 2351 [Kg/m3].   

In order to take into account the discrepancy between 

the 2D model, analyzed by the finite element method, and 

the Bernoulli beam model of the detection algorithm, the 

adjustment procedure was used (Nandwana and Maiti 

1997). The theoretical frequencies were calculated, for the 

undamaged foundation beam resting on an elastic medium 

(Blevins 1979), and a dimensionless factor was obtained 

(ratio of the theoretical frequencies and the frequencies 

calculated by means of the finite elements method) as 

shown below: 

𝑍𝑖 =
𝜆𝑖

𝑇

𝜆𝑖
𝑀 (12) 

In this case, the theoretical dimensionless frequencies 

for a foundation beam resting on an elastic medium 

are:  λ1
T
=23.16250,  λ2

T
=61.96350,  λ3

T
=121.05192 . On the 

other hand, the dimensionless frequencies of the undamaged 

beam, as calculated with the method of the finite elements, 

are: λ1
M

 = 22.73380,  λ2
M

 = 58.34810,  λ3
M

 = 109.08310. 

Hence, the values of the factor for the “zero setting” are 

in this case: Z1 = 1.01885, Z2 = 1.06196, Z3 = 1.10972 for 

each mode, respectively. 

Then, the same model with a discrete crack was built in 

finite elements, measuring 1 mm in width, with a 

sequentially altered length, for a crack positioned at a 

distance x of 1m from the supporting point, as a function of 

the crack depth. In each case, the first three natural 

frequencies (f M) were calculated. The dimensionless 

frequencies were calculated for each model (
M
1 ,

M
2 ,

M
3 ) 

multiplying the natural frequencies resulting from the finite 

elements method, times the value 2𝜋𝐿2√
𝜌𝐹

𝐸𝐽
= 0.316348, 

such as 𝜆𝑖
𝑀 = 2𝜋𝐿2√

𝜌𝐹

𝐸𝐽
  𝑓 =  0.316348𝑓 

The corrected dimensionless frequencies were 

introduced to a program built in a Matlab environment, 

taking into account the solution algorithm for the Inverse 

Problem, thus obtaining a curve k1 (spring stiffness) which 

is directly related with the crack depth as a function of α1 

(spring position, L1/L). 

 

3.4.1 Application cases 
 

   To validate the methodology four models of the beam 

study in section 3.4, with a crack positioned  at a distance  

x = 1.0 m from the supporting point, and crack’s depth of 

0.035 m (a/h=0.05), 0.07 m (a/h=0.1), 0.105 m (a/h=0.15) 

and 0.14 m (a/h=0.20) were analyzed. Fig. 12 displays the 

curve k1 as a function of α1 corresponding to the three 

frequencies input into the algorithm. In reference to the 

intersection of these curves, it should be noted that the three 

curves do not exactly intersect at a point, defining a small  

 
Fig. 12 Curves of k1 as a function of α1 for Model I 

 

Table 1 Location, crack depth and errors of analyzed beams 

Location* â** %Error εl Crack depth [m] %Error εa 

1.008 0.252 0.2 0.046 1.33 

1.083 0.270 2.0 0.098 0.66 

0.987 0.247 0.3 0.149 0.33 

0.960 0.240 1.1 0.223 7.66 

* Location: Distance from the right support in [m] 

** Location of the crack corresponding to the triangle 

barycenter 

 

 

area. The central point of this area gives the crack location. 

It is interesting to note that these curves are similar for the 

four models, changing only the coordinates of the k1 axis. 

For this reason, this figure is considered representative of 

all four models. 

From Fig. 12, it is determined the location of the crack 

at α1 = 0.252, indicating the crack is at a distance of 1.008 

m from the right support, with an error: 

휀𝑙 = |
𝐿1̂ − 𝐿1

𝐿
| = |

1.008 − 1.00

4
| . 100 = 0.2% (13) 

The hat on a variable indicates the detected value. 

After locating the crack and with the values of α and k1, 

the crack size (depth a1) is estimated by a relationship 

between it and the equivalent rotational spring stiffness as 

shown in Eq. (11). Solving this equation, a crack depth 

value of 0.046 m is obtained, with an error: 

휀𝑎 = |
�̂� − 𝑎

ℎ
| = |

0.046 − 0.050

0.3
| . 100 = 1.3% (14) 

The values of the four analyzed cases are displayed in 

Table 1. 
 

3.5 Experimental detection by means of resolution 
of the inverse problem 

 

In order to validate the dynamic methodology of 

detection and location of damage presented above, a 

reinforced concrete beam, simply supported, was tested in 

the Structural Model Laboratory of the UNS.  

To simulate the crack by means of a rotational spring 

and calculate its theoretical natural frequencies, the 

structural scheme indicated in Fig. 13 was adopted. 
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Fig. 13 Beam with a rotational spring of constant           

k1 in the midpoint of the spam 

 

 
Fig. 14 Instrumentation used to measure natural           

frequencies 

 

 

For calculating the theoretical frequencies, the 

homogenized section of the reinforced-concrete beam was 

found. This section measures 16.3 cm wide by 8 cm high 

and 199,5 cm length (L); the upper steel section is 0.6411 

cm2 (1 Ø 8 + 1 Ø 4.2), the same as the lower section. The 

parameters of the equivalent section are: beqh=1.9404 cm, 

Aeq=17.1941 cm2, Ieq= 99.2121 cm4. 

Ω𝑇 = 𝜔𝑇𝐿2√
𝜌𝐴𝑒𝑞

𝐸𝐼𝑒𝑞

 =  2𝜋𝑓𝑇𝐿2√
𝜌𝐴𝑒𝑞

𝐸𝐼𝑒𝑞

 (15) 

Replacing the data from the homogenized beam, the 

frequencies are calculated, with the following results: 

f1
T = π

2

Ω
1

T

= 42.206 Hz, f2
T = 4π

2

Ω
2

T

= 168.824 Hz, 

f3
T = 9π2Ω3

T = 379.856 Hz 

For the measurement of the frequencies, the interfase 

Vernier LabQuest TM was employed. The accelerometer 

“3-Axis”, 5g for an accelerations range of ±49 m/seg2 in 

three orthogonal axes, with a frequency response between 0 

and 100 Hz, was placed at a distance 0.25 L, measured from 

the support. The beam was excited dynamically with an 

impact hammer (Modal Hammer Meggitt, Model 2302) at a 

distance of 0.25 L, measured from the other support. The 

accelerometer is connected to a data acquisition system 

(Labquest Interface, 2008). The LOGGER PRO program 

(LOGGER PRO, 2008) was used to process the natural 

frequencies of vibration. Fig. 14 shows the instruments used 

for the test. 

With the gathered data a statistical analysis was 

performed, and the first three frequencies of the undamaged 

beam were found, with the following results: 

𝑓1𝑠 = 19.530 Hz,   𝑓2𝑠 = 121.090 Hz,   𝑓3𝑠 = 359.380 Hz 

 
Fig. 15 Curves k1 as a function of α1, for the             

experimentally tested beam 

 

 

Once the theoretical frequencies were calculated and the 

experimental frequencies, measured, the “zero setting” 

factors were calculated, which values in this case are:         

Z1 = 2.16, Z2 = 1.39 and Z3 = 1.06.  

In order to crack the beam, a concentrated load was 

gradually applied onto its centre, and the natural 

frequencies were measured with the procedure described 

above. The first three frequencies for the simply supported 

cracked beam were calculated, with the following results: 

𝑓1𝑓𝑐 = 15.60 Hz, 𝑓2𝑓𝑐 = 117.10 Hz,   𝑓3𝑓𝑐 = 316.40 Hz  

Once the frequencies were experimentally found, the 

previously calculated “zero setting” factors were applied, in 

order to obtain the corrected frequencies for the cracked 

beam. The values in this case are:  

𝑓1𝑓𝑐 = 33.78 𝐻𝑧, 𝑓2𝑓𝑐 = 163.39 𝐻𝑧, 𝑓3𝑓𝑐 = 334.44 𝐻𝑧. 

The corrected dimensionless frequencies were then 

obtained, with values of: 

Ω1 = 7.8987, Ω2 = 38.2068,  Ω3 = 78.2055. 

These frequencies were fed to a program in a Matlab 

environment, using the algorithm for solving the inverse 

problem in Matlab environment. A curve displaying the 

variation of k1 - spring stiffness was obtained, directly 

related to the crack depth as a function of α1 (spring 

location, L1/L). 

Fig. 15 depicts the curves for each frequency. It should 

be remembered that the three curves do not exactly intersect 

at a point, defining a small area. The central point of this 

area gives the crack location. For example, for the location 

of the crack at α1 = 0.561, reveals the crack is locate at 

1.00± 0.12 m from the supports, with an error: 

휀𝑙 = |
𝐿1̂ − 𝐿1

𝐿
| = |

1.12 − 1.00

1.995
| . 100 = 0.06% (16) 

Once the midpoint was located, and together with it, the 

values for α1 y k1, the depth of the crack was obtained by 

means of Equ. (11), at 2.53 cm. 

It should be noted that, due to the symmetry of the 

problem, two points are detected (0.439 and 0.561) with the 

same error. However, the present approach does not allow 

distinguishing which one is the appropriate. Thus, an 

additional means should be employed to select the proper 

detected point. 
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4. Conclusions 
 

With the aim of quantifying structural pathologies in 

reinforced concrete beam supported on an elastic Winkler 

type foundation, in this work two techniques were 

developed that used static parameters. We conclude that 

when vertical displacements measurements are made on the 

beam, only cracks on the beam can be located, whereas 

measuring on the plate allows for locating cracks on the 

beam and on the plate. It should be noted that, of the two 

studied static methods, the one based on the curvature of the 

elastic is more efficient in detecting damage than the 

approach using the vertical displacements.  

An application that used dynamic parameters for the 

detection, location and quantification of damage was 

presented, by means of the solution of the inverse problem. 

The results show a high level of accuracy, taking into 

account that reinforced-concrete elements do not exhibit as 

a rule, precisely located cracks, having a cracked area 

instead. 
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