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1. Introduction 
 

Steel tubular sections are one of the most aesthetic, 

versatile and efficient forms for structural members. Many 

of the impressive structures in the world today would not 

exist without tubular sections. Steel tubular sections have 

large second moment of inertia which leads to high bending 

and torsion strength compared with their light weight. 

However, it is not without limitations. Having thin walls 

that are sensitive to the imperfections may cause overall 

buckling or elephant foot buckling which is elastic-plastic 

local instability near the tube ends in the shape of an 

outward bulge. The theoretical elastic buckling load is 

fictitious because of the existence of imperfections and 

nonlinearities in real structures. Ostapenko and Grimm 

(1980) reported that initial geometric imperfection in steel  
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tubular columns may exist in different forms such as out-of-

roundness, out-of-straightness and dents. Ohga et al. (2001) 

introduced the buckling mode shapes of thin-walled steel 

compression members as initial imperfections in finite 

element stability analysis to investigate the nonlinear 

behavior of these members. Not only do geometric 

imperfections exist, but also material imperfections often 

exist in the steel in form of point, line, plan and volume 

defects (El-kholy et al. 2014). Filling the steel tubes with 

concrete (Dundu 2012) or less weight and more ductile 

materials such as steel foam (Moradi and Arwade 2014) 

increases the load capacity and delays both the overall 

buckling and the local buckling (partial hoop bulges). 

Strengthening the existing tubular steel columns is the 

challenge. Fiber-reinforced polymer (FRP) is used 

nowadays to strengthen steel hollow members instead of 

attaching bulky and heavy steel plates. FRP composites 

have several merits such as high strength to weight ratio, 

resistance to corrosion, flexibility of following curved 

surfaces, and orientability in a specific direction unlike steel 

plates. FRP composites are used to strengthen not only 

tubular members subjected to axial compression but also 

those subjected to transverse loads (Narmashiri and 

Mehramiz 2016). 

The research efforts for strengthening steel compression 

members against elephant foot local buckling gained 

 
 
 

Finite element simulation for steel tubular members 

strengthened with FRP under compression 
 

Ahmed M. El-Kholy1, Sherif A. Mourad2a,  

Ayman A. Shaheen1b and Yomna A. Mohamed1c 
 

1Department of Civil Engineering, Faculty of Engineering, Fayoum University, Kiman Fares, El-Fayoum, 63541, Egypt 
2Department of Structural Engineering, Faculty of Engineering, Cairo University, Giza, 12613, Egypt 

 
(Received February 15, 2019, Revised May 29, 2019, Accepted July 17, 2019) 
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momentum during the past decade. Batikha et al. (2009) 

presented theoretical study for innovative strengthening of 

pinned and fixed steel compression cylinders with small 

strips of FRP composites in the critical location to eliminate 

the elephant foot buckling. Teng and Hu (2007) 

strengthened three steel cylinders with glass fiber reinforced 

polymers (GFRP), and tested a reference tube and the 

strengthened tubes under axial compression to study the 

elephant foot buckling behavior. They presented finite 

element analysis (FEA) using Abaqus software to 

investigate the structural behavior of the studied tubes. 

Chen et al. (2006) presented theoretical study for attaching 

light ring stiffeners at the critical height on the cylindrical 

wall as a simple remedy to increase the elephant foot 

capacity of the tubular steel silos and tanks. Nishino and 

Furkawa (2004) strengthened five tubular steel beam-

columns with carbon fiber reinforced polymers composites 

(CFRP) with prescribed length at both ends of the tube, and 

tested the six tubes (one bare and five strengthened) under 

cyclic loading. The strengthened cylinders showed higher 

deformation capacity besides the elimination of elephant 

foot buckling. Shaat and Fam (2006) tested twenty-seven 

short hollow square steel columns (3 bare and 24 CFRP-

strengthened) under axial compression to demonstrate the 

local buckling mode, FRP delamination and FRP rupture. 

Ghaemdoust et al. (2016) reported noticeable elephant foot 

buckling for square hollow short columns, local buckling 

(outward and inward deformations) for deficient columns, 

and strength recovery for deficient members strengthened 

with CFRP through testing and simulating thirteen 

specimens. 
For the efforts in investigating the overall buckling 

behavior of tubular steel compression members, the 
following research papers are summarized. Gao et al. 
(2013) tested five tubular steel long columns (slenderness 
ratio λ = 80) with unmeasured imperfections (out-of-
straightness and minor misalignment in loading) under 
compression. The monitored overall buckling behavior was 
followed by local buckling and CFRP delamination at the 
mid-height of the compressive side of the tubes. Bukovska 
and Karmazinova (2012) investigated experimentally and 
numerically the overall buckling resistance of eighteen 
tubular steel columns (six intact steel tubes and twelve 
filled by concrete) with λ=54. They measured the real 
geometry of the eighteen tubes using geodetic methods. 
Avcar (2014) investigated theoretically and numerically 
(FEA) the overall buckling of pinned and fixed steel 
columns with circular, square and rectangular cross sections 
under axial compression. Shaat and Fam (2006) tested one 
bare and four CFRP-strengthened square steel columns with 
different measured out-of-straightness values and constant 
λ=68. They reported overall buckling behavior followed by 
local buckling at compression face, and monitored the axial 
strain on the compression and tension faces. Shahraki et al. 
(2018) reported experimentally and numerically noticeable 
overall buckling for fourteen deficient steel square hollow 
compression members (λ=70 and 160) strengthened with 
either CFRP or steel plates, and concluded that CFRP shows 
better performance (compared with steel plates) in 
recovering the member strength. 

This paper presents rigorous nonlinear FEA for ten 

tubular steel members (three bare references and seven 

FRP-strengthened tubes) under axial compression. These 

ten tubes were tested by the two research papers that will be 

reviewed in next section. The presented research 

demonstrates the FEA power in describing the elephant foot 

buckling and the overall buckling besides introducing 

interpretations for the experimental observations.  
 

 

2. Review of the tested tubes used in the modeling  
 

Two experimental studies were employed in this paper 

to verify the presented FEA. The employed experimental 

studies were conducted by Teng and Hu (2007), and Gao et 

al. (2013) to investigate the elephant foot and the overall 

buckling modes, respectively, of tubular steel compression 

members. The slenderness ratio of the overall buckling 

specimens was 80 which is approximately 10 times that of 

the elephant foot specimens (yielding governs the failure of 

the specimens with small λ). These ratios are consistent 

with the elastic buckling theory and the code assumptions.    

Table 1 lists the steel material properties whereas Table 2 

summaries the FRP properties, number of layers and 

orientation for both experimental studies. In both studies, 

the epoxy resin was used to bond the fibers together and to 

the steel surface. 

In the elephant foot buckling experimental study, Teng 

and Hu (2007) tested four steel tubes (one intact and three 

strengthened) with dimensions (height×diameter×thickness) 

of 450×165×4.2 mm under axial compression. For the three 

strengthened specimens, GFRP (1, 2 and 3 layers) was 

wrapped in hoop direction to provide significant 

confinement against the elephant foot buckling. The 

overlapping length between the two sheet ends was 150 

mm. Teng and Hu (2007) reported that GFRP-strengthened 

steel tubes expressed great ductile behavior unlike the bare 

steel tube. GFRP rupture was obvious at outward buckled 

locations near the ends of the tubes wrapped with one and 

two layers unlike that wrapped with three layers where 

inward buckling dominates the tube failure. Another 

preliminary observation was that the outward buckling is 

increasingly restrained and the inward buckling deformation 

is increasingly magnified with adding new GFRP layers. 

In the overall buckling experimental study, Gao et al. 

(2013) tested two bare and five strengthened tubes 

(2400×88.9×4 mm) under compression loading. For the 

strengthened tubes, CFRP (2, 4, 6 and 8 layers) was bonded 

in longitudinal direction above a primary GFRP layer to 

increase the tube stiffness and resist overall buckling. Gao 

et al. (2013) monitored overall buckling failure for the 

tested specimens followed by local buckling at maximum 

compression zone and delamination of CFRP. The authors 

think that the CFRP failure occurs because that the 

compressive strength of FRP composites is about half of its 

tensile strength (Vogler and Kyriakides 2001).  
 

 

Table 1 Steel properties 

Experimental study 

Young’s 

modulus 

(GPa) 

Yield 

stress 

(MPa) 

Ultimate 

stress 

(MPa) 

Elephant foot buckling 201 333.6 370 

Overall buckling 210 355 490 
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3. Simulations plan 
 

Fig. 1 shows the simulations tree. Ten nonlinear large-

deformations three-dimensional (3D) FEA were performed 

to simulate the two considered buckling modes. Four 

simulations were conducted to investigate the elephant foot 

buckling. The four simulations include a bare tube and three 

GFRP-strengthened tubes with 1, 2 and 3 layers. The finite 

element results were compared with the experimental 

results of Teng and Hu (2007). Two out-of-straightness 

values (eo= 0.5 and 2.4 mm) were investigated through 

three simulations (a bare tube and two CFRP-strengthened 

tubes with 2 and 4 layers) for each studied eo. The finite 

element results of eo=0.5 mm and eo=2.4 mm were 

compared with the experimental and numerical (finite 

segment method) results, respectively, of Gao et al. (2013). 

It is worth mentioning that the exact eo value of tested tubes 

is not known, and therefore eo=0.5 mm is an assumption 

and not simulating the real tested specimens accurately. 
 

 

4. Finite element analysis (FEA) 
 

ANSYS 14 software (ANSYS, Inc. 2011) has been used 

to perform 3D nonlinear FEA analysis for the reviewed 

experiments in section 2 in order to simulate the two studied 

buckling modes. 

 

4.1 Element type and material 
 

The steel tubes were modelled using two shell element 

al ternat ives ;  4-nodes (SHELL181) and 8-nodes 

(SHELL281) as shown in Figs. 2-a and 2-b, respectively. 

Both elements are suitable for large strain nonlinear 

analysis of thin to moderately thick shell structures. Each 

 

 

 

node has six degrees of freedom (three translations and 

three rotations). Membrane option reduces the degree of 

freedom to three translations at node and neglects the 

bending stiffness. Although all applied forces are in-plane, 

the imperfections and buckling shapes are out-of-plane. 

Therefore, membrane option was not activated in order to 

provide reliable general analysis. Although SHELL281 is 

more suitable for curved shells similar to the studied tubes, 

performed simulations (for each considered buckling mode) 

have shown approximately identical results for both 

elements (SHELL181 and SHELL281). Therefore 

SHELL181 was recommended to save the computation 

time. It is very important to activate the full integration with 

incompatible modes option and not to use the default option 

of reduced integration with hourglass control for all the 

presented simulations. SHELL181 uses the method of 

incompatible modes by adding bubble type shape functions 

to the formulation that gives specific form of SHELL181 

with much better bending performance. The full integration 

(2×2 quadrature) must be used when including the 

incompatible modes in the analysis. In order to highlight the 

importance of this option, all the simulations were repeated 

with reduced integration instead of the current choice. The 

results were very poor representation for the inward 

buckling in elephant foot simulations, and there was 

divergence of the solution in few simulations unlike the 

presented research in this paper. Elasto-plastic material was 

defined for simulating the steel. Young’s modulus was set 

according to Table 1 whereas poisson’s ratio was set to 0.3. 

The plasticity parameters will be introduced in section 4.5. 

BEAM188 element (Fig. 2-c) was used to simulate the 

FRP for both the studied buckling modes (refer to Figs. 3-

4). The beam axis will coincide with the 0º direction of 

FRP. This means that the minor stiffness of 90º direction 

Table 2 FRP properties 

Experimetal study FRP type 
Thickness 

(mm) 

Young’s 

modulus (GPa) 

Ultimate 

stress (MPa) 

Ultimate 

strain (%) 
Direction 

Number of 

layers 

Elephant foot 

buckling 
GFRP 0.17 80.1 1825.5 2.28 Hoop 1,2,3 

Overall buckling GFRP 0.353 28 500 2.0 Vertical 1 

CFRP 0.165 230 3000 1.5 Vertical 2,4,6,8 

 
Fig. 1 The simulations tree 

Simulations Plan 

elephant foot buckling simulations 

▪ tube dimensions 450×165×4.2 mm   

▪ slenderness ration λ=8 

▪ imperfection: out-of-roundness, wo=0.01 mm 

▪ FRP: GFRP (Table 2) 

▪ comparison with: experimental results 

overall buckling simulations 

▪ tube dimensions 2400×88.9×4 mm   

▪ slenderness ration λ=80 

▪ imperfection: out-of-straightness, eo 

▪ FRP: CFRP above a primary GFRP layer (Table 2) 

▪ comparison with: experimental and finite segment results 

eo= 0.5 mm eo= 2.4 mm 

L refers to FRP layer 

bare 1-L 3-L 2-L 

defines the simulation ID in a simulations group 

bare 2-L 4-L bare 2-L 4-L 
x- prescribes the number of FRP layers 
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was ignored in the analysis. BEAM188 has two nodes with 

six degree of freedom at each node (three translations and 

three rotations). Also, BEAM188 supports orientation 

optional node K (Fig. 2-c). FRP was defined as an elastic 

material similar to its behavior. The Young’s modulus was 

set according to Table 2. 

 

 

 

LINK180 element (Fig. 2-d) was used to form the 

conical links simulating the rigid hinge at tube ends (Fig. 4- 

a). LINK180 is 3D truss element with two nodes. Each node 

has three translational degrees of freedom. Elastic material 

with large value of Young’s modulus was defined for these 

caps to eliminate their axial deformation. 

 
Fig. 2 The finite elements (ANSYS, 2011) used to model the steel tubes, FRP and the conical caps 

 
Fig. 3 The finite element model and data for the elephant foot buckling simulations 

(a) SHELL181 (b) SHELL281 

(c) BEAM188 (d) LINK180 
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4.2 Meshing and cross-sections 
 

The shell element sizes (circumference×vertical) were 

set equal to 10×5 mm and 2.5×10 mm for elephant foot and 

overall buckling models, respectively. The longer 

dimension (10 mm) was aligned in the hoop direction for 

the elephant foot buckling study because the number of 

waves in circumferential direction was small unlike the 

vertical direction. However, it was aligned in the vertical 

direction for the overall buckling study to decrease the 

element number through the vertical direction (2400 mm). 

Figs. 3-a and 4-a illustrate the steel tube models of the 

elephant foot and overall buckling simulations, respectively. 

Uniform shell thickness of 4.2 and 4 mm was defined for 

the elephant foot and overall buckling tubes, respectively. 

The FRP beam elements were aligned with the shell 

joints in circumference direction for elephant foot study, 

and in vertical direction for overall buckling study. Whereas 

the beam length was 10 mm constant for both simulations, 

the beam width was set equal to 5 and 2.5 mm, for the 

elephant foot and overall buckling simulations, respectively. 

The thickness was set equal to that of FRP given in Table 2 

times the number of layers in addition to the equivalent 

thickness representing the overlap length averaged over the 

perimeter. For the overall buckling simulations, the 

thickness of GFRP primary layer was replaced with 

equivalent CFRP thickness according to Young’s modulus 

ratio. The orientation node was defined for BEAM188 to 

orient the cross section properly (the width and thickness 

must be tangent and perpendicular to the tube surface, 

respectively). Figs. 3-b and 4-b illustrate the FRP meshing 

for the elephant foot and overall buckling simulations, 

respectively. 

The length of link elements was equal to the geometric 

distance between the cap vertex and the joints of the  

 

 

corresponding tube end as shown in Fig. 6-a. The link 

cross-section area was set to a large value to provide rigid 

non-deformable links. 

 

4.3 Boundary conditions and loading 
 

For the elephant foot buckling models, the top and 

bottom ends were fully restrained (translations and 

rotations) except the axial translation of the top end which 

was left unrestrained to allow the application of load. Axial 

displacement of 5, 11, 13 and 15 mm was applied at the top 

end of the bare, 1-L, 2-L and 3-L tubes, respectively. Details 

of loading sequence will be presented in section 4.5.2. 

For overall buckling models, rigid conical caps were 

added on the two ends as shown in Fig. 4-a to simulate the 

hinge behavior. These caps consist of rigid links connecting 

the edge joints with the cone vertex. The translations (not 

the rotations) at the cone vertex were restrained to represent 

the hinge behavior. Axial shortening of 6 mm was applied at 

the apex of the upper conical cap in small increments to 

track the overall buckling deformation and to detect the 

buckling load. Details of loading sequence will be presented 

in section 4.5.3.  

 

4.4 Geometric imperfections 
 

The loading on the tubes is perfectly axial and is resisted 

by the membrane stiffness.  Therefore, out-of-plan 

imperfections (perturbations) are necessary to initiate the 

out-of-plan deformations and to guide to the desired 

buckling shape. For the elephant foot buckling models, non-

axisymmetric imperfection was applied for all the simulated 

tubes. This initial geometric imperfection guides the     

tube to the expected outward and inward buckling.       

Fig. 3-c illustrates the imperfect strengthened tube after 

 
Fig. 4 The finite element model and data for the overall buckling simulations 

(a) Dimensions, tube mesh 

     and boundary conditions 

(e) Steel stress-strain curve (d) Imperfection flowchart 
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imposing imperfections according to the formula 
 sin ( (450 ) / ) cos (  )i o iw Z L n  = −  given by Teng and 

Hu (2007). The procedure of applying the imperfection and 

the definitions of Δ, wo, H, L, θ, and n are given in Fig. 3-d. 

The imperfection amplitude wo, the half wave length of 

imperfection in vertical direction L, and the number of 

circumferential waves of imperfections n were set equal to 

0.01, 31.75 and 2, respectively. 

For the overall buckling models, out-of-straightness 

(initial imperfection eo) in the form of simple half sine wave 

Δ  sin ( / )i o ie Z L= was applied for all simulated tubes. 

Figs. 4-c and 4-d illustrate the imperfect tube and the 

procedure of applying imperfections, respectively. Two 

values of eo were investigated, 0.5 and 2.4 mm. 

 

4.5 Nonlinear buckling analysis 
 

Nonlinear large deflection static analysis with fine load 

increments was employed to track the deformation of the 

simulated tubes. Von Mises yield criterion and multi-linear 

isotropic hardening material model was adopted to 

represent the steel plastic deformation given in Figs. 3-e and 

4-e, respectively, for the elephant foot buckling and the 

overall buckling simulations. The values of the yield stress 

and ultimate stress were introduced in Table 1 for the two 

tested steel types. For large deflection analysis (NLGEOM,  

 

 

ON), ANSYS formulates the consistent stiffness matrix for 

all used elements to enhance the convergence of nonlinear 

analysis. Again, it is worth mentioning that the full 

integration with incompatible modes option of SHELL181 

is necessary in order to enhance the bending deformation as 

discussed in section 4.1. 
 

4.5.1 Solution of nonlinear equations 
In most of the available FEA softwares, Newton-Raphson 

method is the default for the solution of nonlinear equations 

because of its quadratic convergence rate. However, it is not 

without limitations. In post-buckling analysis phase, 

Newton-Raphson method may fail to accurately track the 

load-displacement curve when the load value remains 

unchanged or decreases with continuous increasing 

deformation. Using displacement-controlled loading can 

circumvent (in many cases) this drawback for overall 

buckling simulations. For more sophisticated buckling 

problems comprising snap-through and snap-back 

instabilities, the arc-length method becomes a better choice 

as it causes nonlinear iterations to converge along an arc 

and prevents the divergence even if the slope is zero (or 

negative). Thereby, the arc-length method was the proper 

choice to simulate the elephant foot buckling. Table 3 

summarizes the preferences of the presented nonlinear 

analyses for both elephant foot and overall buckling 

conducted simulations. 

Table 3 The nonlinear preferences of the presented simulations 

 Elephant foot buckling simulations Overall buckling simulations Section 

Integration scheme full integration with incompatible modes full integration with incompatible 

modes 

4.1 

Solution of nonlinear equations arc-length method full Newton-Raphson method 4.5.1 

Loading 5-15 mm (refer to Table 4) 6 mm (refer to Table 5) 4.5.2-3 

Automatic load stepping arc-length procedure (Table 4) ON for eo=0.5 mm simulations 

OFF for eo=2.4 mm simulations 

4.5.3 

Limits for controlling the iterations and bisection 

of substeps 
  4.5.4 

Iterations number per substep (NEQIT) 200 100  

Prediction of the number of iterations per 

substep 
ON ON  

Effective plastic strain increment
p  1% 1% (2%)*  

Upper limit of arc-length 0.25-1.50 mm (Table 4) ------  

Maximum vertical displacement
Zu  5-15 mm (Table 4) ------  

Convergence criteria   4.5.5 

criterion force and (moment) displacement  

norm 2 2  

tolerance 5% 0.01% (0.1%)*  

minimum reference 600 kN (200 kN.m) ------  

minimum criterion 30 kN (10 kN.m) ------  

Termination criteria in case of non-convergence   4.5.6 

reaching the cumulative iterations number 25,000 1000  

reaching both the minimum size of load 

increment and NEQIT 

0.0013-0.005 mm (Table 4) 0.20-0.025 mm (Table 5) 
 

*for the bare-eo =0.5 simulation in which more inelastic deformation and convergence difficulties are expected. 
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4.5.2 Loading for the elephant foot buckling 
simulations (Arc-length method)   

The procedure of controlling the load is given in Table 

4. In the first increment, ANSYS calculates the reference 

arc length equal to the prescribed displacement divided by 

the given total number NSUBST of increments (substeps); 

for example 15/100=0.15 mm for 3-L simulation. 

Subsequently, a new arc-length is calculated for each 

substep based on that of the previous substep. ANSYS uses 

two multipliers MINARC and MAXARC to adjust the 

recent calculated arc length within upper limit (MAXARC× 

reference arc length) and lower limit (MINARC×reference 

arc length). For example, setting MAXARC and MINARC 

to 10 and 0.001, respectively, for 3-L simulation will 

provide a loading range of 1.5-0.0015 mm for the 

increments subsequent to the first 0.15 mm increment. More 

interpretation for the concept of setting the arc-length 

parameters will be explained in section 5.1 in view of the 

results. 

 

4.5.3 Loading for overall buckling simulations 
(Newton-Raphson method) 

Typical axial shortening of 6 mm was applied for all the 

six tubes. For the three imperfect tubes with eo of 0.5 mm, 

the automatic time stepping was urgent (AUTOTS, ON) 

because of the small imperfection value which makes the  

 

 

tubes structural behavior sensitive to the applied 

displacement loading besides the presence of significant 

inelastic deformation from the beginning of the simulation. 

The automatic time stepping comprises an internal 

algorithm that enables ANSYS to ensure that the load 

increment size is neither too large nor too small. Also, it 

predicts the size of the increment based on the number of 

iterations, imminent yield of elements, and equivalent 

plastic strain increment in the preceding load increment. 

The first load increment was 0.05 mm with factorization 

range from 0.5 to 4 (0.025-0.2 mm) for subsequent 

increments. On the contrary, constant thirty increments of 

0.2 mm displacement loading were acceptable to achieve 

the total load (6 mm) without divergence for the other three 

tubes whose eo is 2.4 mm. The load increments data for the 

six overall buckling simulations are given in Table 5. 
 

4.5.4 Control of the iterations and bisections 
ANSYS provides automatic cutback procedure (with 

many criteria) to reduce the size of the load increment to 

overcome the convergence difficulties (if any) during the 

nonlinear analysis. Table 3 lists and defines the prescribed 

criteria for both elephant foot and overall buckling 

simulations. The load increment (substep) is automatically 

bisected when any prescribed limit (criterion) is violated. 

The specified plastic strain limit of 1% is very important to 

Table 4 The loading procedure using Arc-length method for the elephant foot buckling simulations 

 bare 1-L 2-L 3-L Comment 

Total displacement loading (mm) 5* 11* 13* 15* set on the top end of the tube; refer to Figs. 3-4. 

Preliminary number of load increments 

(substeps); NSBSTP 

20 338 100 100 ANSYS input to estimate the initial (reference) arc-

length. 

MAXARC 1 25 10 10 ANSYS input to adjust the arc-length factor. 

MINARC 0.02 0.1 0.001 0.001 ANSYS input to adjust the arc-length factor. 

The size of first load increment 0.2 0.0325 0.13 0.15 reference arc-length = total load/NSBSTP 

The size of maximum load increment 

(mm); upper limit of the arc-length 

0.25 0.8125 1.3 1.5 MAXARC×reference arc-length 

the substep is bisected if this limit was exceeded. 

The size of minimum load increment (mm); 

lower limit of the arc-length 

0.005 0.00325 0.0013 0.0015 MINARC×reference arc-length 

the solution terminates if this limit was violated 
* the same value was prescribed as a displacement limit. 

 

Table 5 The loading procedure using the full Newton-Raphson method for the overall buckling simulations 

 eo=0.5 mm simulations eo=2.4 mm simulations  

 bare 2-L 4-L bare 2-L 4-L Comment 

Total displacement load (mm) 6 6 6 6 6 6 set on the apex of the top cap (Fig. 4-a) 

Automatic load stepping ON ON ON OFF OFF OFF  

Preliminary number of load 

increments (substeps);NSBSTP 

120 120 120 30 30 30 ANSYS input to control the loading and to 

estimate the first load increment 

Maximum number of load 

increments (substeps); NSBMX 

240 240 240 30 30 30 ANSYS input to control the loading, the iterations 

and termination of solution. 

Minimum number of load 

increments;  NSBMN 

30 30 30 30 30 30 ANSYS input to control the loading and the 

iterations procedure. 

The size of the first load 

increment (mm) 

0.05 0.05 0.05 0.2 0.2 0.2 total load/NSBSTP 

The size of the maximum load 

increment (mm) 

0.2 0.2 0.2 0.2 0.2 0.2 total load/NSBMX 

The size of the minimum load 

increment (mm) 

0.025 0.025 0.025 0.2 0.2 0.2 total load/NSBMN 

the solution terminates if this limit was violated 
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perform such complicated nonlinear buckling analysis 

comprising significant plastic deformation. It is worth 

mentioning that the ANSYS default is 15% which is 

extremely large and does not lead to a converged solution or 

correct deformations in the considered problems. 
 

4.5.5 Convergence criteria 
Table 3 defines the convergence criteria for the 

conducted simulations. The convergence criteria should be 

carefully set for each buckling analysis, otherwise        

a converged solution and a correct deformation may not be 

possible. Moreover, setting the convergence criteria 

inappropriately may result in extremely long computation 

time which is needless. 

 For elephant foot buckling simulations (arc-length 

method), force and moment convergence criteria with norm 

2 were set. The tolerance was set to 5%. The default 

minimum reference (0.01) was replaced with 600,000 N for 

the force criterion and 200,000,000 N mm for the moment 

criterion. These values are reasonable because of the 

considered units (N and mm) in the models. Based on the 

previous data, the maximum limit for the residual norm will 

be 30 kN for the force criterion and 10 kN m (1.0 ton m) for 

the moment criterion (or 5% of the reaction norm which 

greater). Re-writing in view of the 52 nodes forming the 

tube end, the minimum reference for the force and moment 

per every reaction node will be approximately equal to 0.58 

kN and 0.19 kN m, respectively. These limits are, 

appropriately enough, to perform correct analysis. 

For the overall buckling simulations (Newton-Raphson 

method), the displacement criterion was suitable for such 

simply supported (no moment reaction) tubes that 

experiencing large deformation. The norm 2 was used to 

represent all the nodes. Rigorous tolerance of 0.01% was set 

for all the simulations except the bare-eo=0.5 tube whose 

tolerance was slightly released for convergence purpose. 

 
4.5.6 Analysis termination criterion 
The nonlinear analysis ends successfully when the 

prescribed load is fully analyzed within the prescribed 

convergence limits. There should be criterion for stopping 

the analysis if the solution does not converge in order to 

adjust the input parameters. The termination criterion is 

shown in Table 3. It is worth mentioning that all the 

presented analyses were successfully completed. 

 

 

5. Results 
 

Table 6 lists the number of actually executed load 

increments, iterations and bisections for all the presented 

simulations. 

For the elephant foot buckling simulations, Tables 7 and 

8 declare the increment of axial shortening and the restraint 

of deformation, respectively, for the strengthened tubes 

compared with the bare one. Figs. 5 and 6 illuminate the 

deformations, and the load-axial displacement histories, 

respectively, compared with the experimental results. 

For the overall buckling simulations, Figs. 7 and 8 show 

the displacement histories of eo =0.5 and eo=2.4 mm tubes, 

respectively, compared with the corresponding results    

of Gao et al. (2013). Fig. 9 illuminates the deformation and 

propagation of the plastic strain. Fig. 10 demonstrates the 

axial strain variation for at the mid-height of the tubes 

compared with the corresponding experimental results. 

 
5.1 Elephant foot buckling simulations 
 

The total number of increments, the total number of 

bisections, and the total cumulative number of iterations are 

significantly increased with the increase of confinement by 

adding a new FRP layer according to Table 6. It could be 

argued that the significant propagation of inward 

deformation for 2-L and 3-L simulations (Fig. 5) magnified 

the gap between 1-L and 2-L simulations (101 to 1388, 68 

to 1336 and 655 to 20045 for the increments, bisections and 

total iterations numbers, respectively). This observation 

coincides with the reduction of the lower limit of the arc-

length with the increase of confinement (number of FRP 

layers) as shown in Table 4. The smaller lower limit of the 

arc-length allows extremely fine load increments (starting 

approximately from the middle of simulation) to track the 

reversible radial displacement (turn from outward “yellow” 

to inward “blue” as Fig. 5 displays). Also, this coincides 

with the monitored violated bisection limits (Table 6) which 

show that the maximum arc-length was the predominated 

 

 

Table 6 The number (No) of actual executed load increments, iterations and bisections 

 
Elephant foot buckling simulations 

Overall buckling simulations 

 eo=0.5 mm simulations eo=2.4 mm simulations 

 bare 1-L 2-L 3-L bare 2-L 4-L bare 2-L 4-L 

Total No of load increments 44 101 1,388 1,742 33 33 38 30 30 30 

Maximum iterations No per 

increment 

4 9 186 50 15 44 14 15 12 6 

Total No of bisections 35 68 1,336 1,705 ----- ----- 3 ----- ----- ----- 

Total No of cumulative iterations 227 655 20,045 22,670 88 167 480 101 142 132 

Limits violated to cause bisections in 

descending order according to the 

violating No. 

1- p  

2-upper limit of arc-

length 

1- upper limit of arc-

length 

2- ZU  

3- p  

4- NEQIT 

----- ----- NEQIT ----- ----- ----- 
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Fig. 5 Deformation of the elephant foot buckling tubes; initiation and propagation of the out-of-plane buckling and plastic 

strain (plotted on deformed shape; scale factor 1.5-2) 
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R Radial displacement (outward is + “yellow to red” &  inward is – “lemon to blue”) 

X Experimental deformed shape (Teng & Hu, 2007) 

H Hoop strain, all colors are tensile except blue (if any) representing compressive strain 

Z Value of axial shortening (Uz ) in mm at which this deformation was captured 

o initiation of localized outward buckling (+ exceeded 1 mm) 

i initiation of inward buckling (-ve out-of-plane deformation initiation) 

e equality of both max. outward 

and max. inward deformations 

I at the start zone of the descending curve 

III at the end zone of the descending curve 

II in the middle zone of the descending curve 

development of excessive buckling along the descending 

part of the load displacement curve (Fig. 6) 
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Table 7 The axial shortening increment (buckling delay)   

for the strengthened elephant foot buckling tubes 

 bare 1-L 2-L 3-L 

Axial shortening at 

ultimate load (before 

the descending part) 

mm 0.8 7 11 12 

%  775 1,275 1,400 

Axial shortening at 

localized outward 

buckling initiation1 

mm 1.5 4 5.7 7.5 

%  167 280 400 

Axial shortening at 

localized inward 

buckling initiation 

mm ---- 6 7.7 8.5 

%   28 42 

•  * underlined value is the reference for % calculations. 

•  % indicates the percentage of the increment compared 

with the reference value. 

•  1outward buckling exceeded 1 mm in a local ring. 

 

Table 8 The constraint of deformation for the strengthened 

elephant foot buckling tubes 

Maximum deformation 

b
ar

e 

1
-L

 

2
-L

 

3
-L

 

type 
UZ 

mm 

absolute 

or % 

T
en

si
le

 

h
o

o
p

 s
tr

ai
n
 

5 absolute 0.062 0.017 0.012 0.009 

%  -73 -81 -85 

13 absolute ---- 0.082 0.044 0.030 

%   -46 -63 

O
u

tw
ar

d
 

b
u

ck
li

n
g

 

(m
m

) 

5 absolute 5.341 1.44 0.901 0.816 

%  -73 -83 -85 

13 absolute ---- 7.35 5.058 4.327 

%   -31 -41 

In
w

ar
d

 

b
u

ck
li

n
g
 

(m
m

) 

13 absolute ---- 0.288 10.296 7.211 

% 
   

-30 

•  * underlined value is the reference for % calculations. 

•  % indicates the percentage of the decrement compared 

with the reference value 

  

 
Fig. 6 The load-axial displacement curves for the 

simulated elephant foot buckling tubes 

 

 

reason for bisection in 2-L and 3-L simulations. On the 

contrary, the upper limit of arc-length is increased with the 

increase of confinement as evident in Table 4. This 

contradiction can be interpreted in view of plastic strain 

propagation (Fig. 5 and Table 8). The increment of 

FRPlayers number reduces the plastic strain propagation 

especially in the beginning of the simulation (before the 

inward buckling initiation) and therefore, it allows higher 

upper limit for the arc-length. Again, this new observation 

was confirmed with the monitored violated bisection limits 

(in Table 6) which show that the plastic strain increment is 

the predominant reason for bisection in the bare and 1-L 

simulations (lower confinement and higher plastic strain 

flow), and a secondary reason for 2-L and 3-L simulations 

(higher confinement and lower p ) as shown in Fig. 5 

and Table 8. The violated bisection limits (either p for the 

first two simulations or the maximum arc-length for the last 

two simulations) were observed intensively on the 

descending part of the load displacement curves. 

 

5.1.1 Ultimate load and deformation 
Figs. 5 and 6 show high consistency between the results 

of both the presented FEA and Teng and Hu (2007) 

experiments. The percentage of error in the estimated 

ultimate load was 3.21%, 0.75%, 0.03% and 1.87% for the 

bare, 1-L, 2-L and 3-L simulations, respectively, compared 

with the experimental results. The increment in load 

capacity (compared with the bare simulation) was minor 

and approximately equal to 3.7% for each extra FRP layer 

unlike the significant improvement in ductility as revealed 

by the experimental results (Teng and Hu 2007). 

The deformation consistency between the FEA and the 

experimental results is obvious in Fig. 5. The outward 

buckling is formed near the tube ends, and is more 

noticeable in the bare and 1-L simulations unlike the inward 

buckling which is more noticeable in the 2-L and 3-L 

simulations. Table 7 and Fig. 6 show that adding only one 

FRP layer results in 775% increase in the axial shortening 

(at the ultimate load), and that adding one more layer results 

in additional 500% increase unlike the third layer which 

provides minor additional increase in axial shortening 

(125%). 

The presented FEA shows advantages over the 

experimental results. FEA made it possible to capture the 

localized outward bulge initiation, and the subsequent 

inward buckling initiation if any. Fig. 5 shows the captured 

deformations at these two successive stages (Ro and Ri). 

Table 7 reveals that the increment in axial shortening before 

Ro stage (suspension of outward localization) has linear 

relationship with FRP layers number, and approximately 

equal to 133% (compared with the bare tube) for each extra 

layer. However, the increment in axial shortening before Ri 

stage (suspension of inward buckling initiation) was slightly 

smaller compared with that of Ro, and moreover it is 

decelerated with adding extra FRP layer according to the 

monitored results in Table 7. Besides the determination of 

the buckling initiations, FEA made it possible to estimate 

the constraint in the hoop strain and the out-of-plane 

deformation for each extra FRP layer as given in Table 8. 

Adding the first FRP layer reduces the tensile hoop strain 

and the outward deformation with about 73% (compared 

with the bare tube) but initiates the inward deformation.  
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Adding the second FRP layer increases slightly (with 

average 9%) the constraint on the tensile hoop strain and the 

outward deformation but magnifies the inward deformation 

to the extent that its magnitude exceeds the outward 

deformation. The third FRP layer constrains of the inward 

deformation and reduces it to about 30% (compared with 2-

L simulation) in addition to the continuity of restraining the 

outward deformation. Another benefit of the provided FEA 

is the presentation of the hoop strain distribution (Fig. 5). It 

is noticeable that attaching FRP layers mitigates the hoop 

strain localization (concentration) at the ends and increases 

the uniformity of the distribution. Therefore, the FRP 

rupture at the ends is eliminated and more axial shortening 

could be sustained with the increase of FRP layers number. 

Finally, Fig. 5 presents explanation for the process of the 

buckling propagation. The process comprises three stages as 

follows; 1) the initiation of localized outward buckling Ro, 

2) the initiation of inward buckling Ri if any, and 3) the 

development of excessive buckling Rd along the descending 

part of load displacement curves. The last stage is 

subdivided into three zones Rd,I, Rd,II and Rd,III at the start, 

middle and end of the descending curve, respectively. For 

2-L and 3-L simulations, it was monitored that the absolute 

maximum of the inward deformation equalizes that of the 

outward deformation at Rd,I, and then it exceeds the outward 

deformation in the subsequent zones (Rd,II and Rd,III). On the 

other hand, the 1-L tube has shown minor inward 

deformation (especially near the support) whereas it was 

absent in the bare simulation whose Ro stage starts at the 

ultimate load and coincides with Rd,I stage. 

Although the presented simulations assume no rupture 

of FRP and full contact between the FRP and the steel tube, 

the presented hoop strain and radial displacement 

distributions in Fig. 5 can overcome these limitations. The 

FRP rupture can be read in view of its ultimate strain 

(0.0228 as given in Table 2) which is marked with dash line 

on the hoop strain legend in Fig. 5. FRP rupture is expected  

 

 

at the circular strips (rings) that exhibit tensile hoop strain 

equal to (or higher than) the marked color of 0.0228 

contour. Also, the delamination of FRP is expected at the 

extreme inward buckling spots where high inward 

deformation (compressive hoop strain) is localized and 

bounded with high outward deformation (tensile hoop 

strain). The elastic FRP material might not be flexible 

enough to follow such abrupt change from positive to 

localized negative deformation unlike the ductile steel 

material. It could be argued that the absence of the real 

imperfection data for the investigated tubes followed by the 

discussed two modeling limitations (no FRP rupture and the 

full contact with the steel) were the reasons for the 

noticeable small inconsistency of the descending part of 

load-displacement histories especially for 3-L simulation. 

 

5.2 Overall buckling simulations 
 

Table 6 shows that the number of load increments and 

iterations is slightly higher for eo=0.5 mm simulations 

compared with those of eo=2.4 mm simulations. This might 

be due to the higher flow of plastic strain in the tubes 

imperfect with smaller eo compared with those with eo=2.4 

mm which exhibit more elastic buckling. The smoothness 

of the analysis is evident in the prescribed narrow range of 

the size of load increments (the maximum load increment 

size is eight times the minimum), and the no need to 

bisection of load increments in most of the simulations as 

Table 5 and 6, respectively, confirm. Only three bisections 

were needed for 4-L (eo=0.5 mm) simulation in order to 

pick accurately the ultimate load of this stiff strengthened 

tube (four FRP layers and minor out-of-straightness). It 

could be argued that the relaxation in both the convergence 

criteria and the plastic strain increment limit for the bare 

simulation (eo=0.5 mm) as given in Table 3 results in 

unexpected relatively smaller number of cumulative 

iterations as recorded in Table 6. It is worth mentioning that  

 
Fig. 7 The load-displacement histories for the overall buckling tubes with eo=0.5 mm (FEA versus experiments) 
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the smoothness of the overall buckling simulations 

compared with elephant foot simulations is confronted with 

the huge number of elements in overall bucking model 

(about six times that of elephant foot buckling model as 

shown in Figs. 3-4). 
 

5.2.1 Ultimate load and deformation 
Figs. 7-10 reveal good agreement between the presented 

FEA results and Gao et al. (2013) results. It is worth 

mentioning that the assumed value eo=0.5 mm was 

determined after several numerical trials because there was 

no experimental measurements for the actual out-of-

straightness in the real specimens tested by Gao et al. 

(2013). 

Figs. 7 and 8 confirm that the increase of number of 

CFRP layers increases the ultimate load capacity and the 

stiffness with insignificant gain in the ultimate 

displacements. The two bare simulations resulted in 

overestimated stiffness and ultimate load (as FEA often 

does) with average error of 9.5% (for ultimate load) 

compared with Gao et al. (2013) results. On the contrary, 

the four simulations of the strengthened tubes resulted in 

under estimated ultimate load with average error of 4.1% 

compared with Gao et al. (2013) results. This might be back 

to aligning the BEAM188 elements of all FRP layers at the 

same distance (from the tube center) within the nodes of 

SHELL181 elements unlike the real successive FRP layers. 

The previous percentages and Figs. 7-8 reveal good 

agreement with the Gao et al. (2013) results except for the 

axial displacements of the three tubes with eo=0.5 mm as 

Fig. 7-a shows. Similar inconsistency was clear in the 

results of the finite segment analyses of the bare and 2-L 

tubes provided by Gao et al. (2013) without declaring the eo 

value (not shown in this paper). The displacement 

inconsistency observed in Fig. 7-a could be interpreted 

according to the following reasons: 1) there was no 

experimental measurements for neither the eo values nor  

 

 

any other imperfection data, 2) there might be real 

imperfections of different types either material or geometric 

with different shapes and values for the considered six 

tubes, 3) there might be minor misalignment with different 

values in the test setup of the different tubes, 4) the tangent 

modulus of the tested steel (after the onset of the yield) is 

not given in the considered experimental study (Gao et al., 

2013), and 5) the length of the cap has significant influence 

on the FEA results for given small eo values. 

Fig. 9 reveals the efficiency of the presented 

simulations. FEA made it possible to monitor the initiation 

and the propagation of the plastic strain. Fig. 9-d interprets 

the increase in ultimate load with the increase in the number 

of FRP layers. Adding FRP layer postpones the initiation of 

the plastic strain, reduces the maximum plastic strain 

magnitude, mitigates its localization in the mid-height of 

the tube, and increases the distribution area of the plastic 

strain along the tube height. Therefore, higher stiffness and 

ultimate load is reported for each extra FRP layer. 

Also, Fig. 10 highlights the merits of the presented FEA 

compared with the available experimental results. The 

strains on the four quadrant points (S1, S2, S3 and S4) of 

the simulated tubes were monitored at mid-height and 

compared with those recorded experimentally. Fig. 10 

demonstrates that the load-strain history might be divided 

into three stages or intervals as graphically shown on the 

FEA results. In the first stage, all the sides of the tube 

exhibit approximately equal increase in the compressive 

strains up to a certain load (150 kN for the bare tube and 75 

kN for the strengthened tubes). In the second stage, the rate 

of increase in compressive strains becomes higher for S2 on 

the compression side and smaller for S4 on the tension side, 

whereas it continues with the same rate for the other two 

sides (S1 and S3). This behavior manifests significant 

elastic buckling in this second stage as the strains on the 

four sides of the tube become unequal. Unexpected 

observation is that the bifurcation load (the start of this  

 
Fig. 8 The load-displacement histories for the overall buckling tubes with eo=2.4 mm (FEA versus finite segment) 
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Fig. 9 The deformation of the overall buckling tubes 

 

 

second stage) was smaller for the strengthened simulation 

(75 kN) compared with that of the bare simulation (150 

kN). This unexpected observation was also monitored in the 

available experimental histories. The interpretation for this 

observation is that the structural behavior of FRP in 

compression is different than in tension, and therefore 

strengthened tubes became more imperfect than the bare 

tube. This additional minor imperfection accelerated the 

start of stage 2. This stage continues until reaching the 

ultimate load point and before the steel material reaches its 

yield strain at approximately 0.17% on the compression 

side S2. Finally, the third stage represents the post-buckling 

behavior where the tube losses its stiffness, and the load 

capacity is reduced with excessive increase in compression 

strain on S2 side and cross over to tension on S4 side, 

whereas the compression strains on other sides (S1 and S3) 

exhibit insignificant increase. This last stage comprises steel 

inelastic buckling and Fig. 9-d shows its plastic strain 

propagation. Also, delamination and rupture of CFRP were 

observed experimentally on the compression side at 

compressive strain in the range 0.2-0.4%. The discrepancy 

between the tensile rupture strain limit (1.5%) and that 

observed experimentally (0.2 to 0.4%) for compressive 

strain confirms that the structural behavior of FRP is not 

similar for tensile and compressive loading. Any minor 

inconsistency between FEA and experimental results in Fig. 

10 might be interpreted according to the five reasons 

mentioned in the comment on Fig. 7-a in additional to the 

two following reasons: 1) the delamination and rupture of 

FRP was not considered in the presented FEA, and 2) strain 

gage problems during the experimental measurement. 
 

 

6. Conclusions 
 

Tubular steel compression members may exhibit 

elephant foot buckling or overall buckling under extreme 

loading because of the existence of geometric imperfections 

(such as out-of-roundness and out-of-straightness) in 

additional to the steel material imperfections. In this study, 

seven steel tubes was strengthened with two types of FRP 

(GFRP and CFRP) to resist the two studied buckling types 

(elephant foot and overall). Three-dimensional nonlinear 

FEA was performed for the strengthened seven tubes as 

well as three bare references to investigate the structural 

behavior under monotonic compression loading. Several 

parameters were used to successfully complete the 

presented ten nonlinear simulations and correctly track the 

buckling behavior. The results were compared with the 

available experimental results (Teng and Hu 2007 and Gao 

et al. 2013). The following conclusions can be drawn. 

•  Strengthening steel tubular compression members 

with bonding FRP in the hoop direction for resisting the 

elephant foot buckling, and in the longitudinal direction for 

resisting the overall buckling results in significant 

improvement in ductility and strength, respectively. 

•  Full integration with incompatible modes procedure, 

adaptive load increments multipliers, suitable nonlinear 

procedures, and bisection limits especially for the plastic 

strain increment must be set properly to successfully track 

the buckling behavior. 

•  The elephant foot buckling simulations are more 

complicated compared to those of overall buckling because 

of the sudden localized change in out-of-plane deformation 

from outward to inward, and the higher intensity of the 

effective plastic strain. 

•  FEA results have showed many advantages in 

monitoring the deformation over the experimental studies. 

•  The FRP layers mitigate both the intensity and 

localization of the plastic strain at the outward bulged rings, 

and at the mid-height of the compression side of the 

elephant foot and overall buckling tubes, respectively. The 

equivalent plastic strain distribution becomes more uniform 

with the increase of the number of layers. 

(a) Experiment 

Gao et al. (2013) 

(b) FEA – deformation 

& lateral displacement 

(c) FEA – vertical 

displacement 

bare tube 2-L tube 4-L tube 

(d) FEA-initiation & propagation of equivalent plastic 

strain (plotted on deformed shape; scale factor 5) 

-5.8 

-5.0 

-4.0 

-3.0 

-2.0 

-1.0 

0.0 

1.0 

2.0 

mm 

30.4 

26.6 

22.8 

19.0 

15.2 

11.4 

7.6 

3.8 

0 

mm 

0.70 

1.40 

2.10 

2.80 

3.50 

4.20 

4.90 

5.60 

6.70 

0.00 

 10-3 

581



 

Ahmed M. El-Kholy, Sherif A. Mourad, Ayman A. Shaheen and Yomna A. Mohamed 

 

 

•  The elephant foot buckling was interpreted into three 

stages; initiation of localized outward buckling, initiation of 

inward buckling if any, and finally development of 

excessive buckling along the descending part of the load- 

 

 

displacement curve. Although adding extra layer postpones 

the three buckling stages, the first FRP layer initiates the 

second stage (inward buckling). 

•  The inward buckling is more noticeable for the steel 

 
Fig. 10 The variation of axial strain with axial load for the overall buckling tubes (FEA versus experiments) 

▪ FEA ▪ experimental (Gao et al. 2013) 

(b) 2-L tube 

(a) Reference bare tube 

(c) 4-L tube 

▪ experimental (Gao et al. 2013) 

▪ experimental (Gao et al. 2013) ▪ FEA 
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Finite element simulation for steel tubular members strengthened with FRP under compression 

tubes strengthened with two layers and more, it becomes 

equal to the outward deformation at the start of the 

descending part of the load-displacement curve, and 

thereafter shows successive intensive increase along the 

descending curve. 

•  The overall buckling was interpreted into three 

stages; equal increase rate for compressive strains on the 

four sides of the tube, elastic buckling initiation and 

propagation with gradually increasing rate for the 

compressive strain on the compression side up to reaching 

the ultimate load at the yield strain, and finally the initiation 

of plastic strain with successive inelastic buckling and loss 

of strength. The second stage starts earlier in the 

strengthened tubes compared with the bare steel tube 

because of the existence of FRP layers which add minor 

geometry imperfection due to the dissimilarity of its tensile 

and compressive structural behavior. 

•  The assumptions of full contact between the steel 

and FRP, and the no rupture of FRP have limited drawbacks 

for the presented simulations compared with the 

computational time saving. However, including the epoxy 

resin interface and the FRP rupture in the simulations will 

provide more reliable results. 

• The fact that different meshes and different 

imperfections may result in minor changes in the ultimate 

load, the displacements, and the local buckling locations 

does not change the proposed interpretation for the local 

and overall buckling phenomena. 
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