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1. Introduction 
 

Bolted joints are widely used for fastening two or more 

parts together to constitute a component in mechanical 

products and engineering structures due to their properties 

of high load-carrying capacity, low cost and ease of 

disassembly for maintenance (Ksentini et al. 2015). The 

presence of connection interface of bolted joints in a 

structure inevitably leads to cut down the overall stiffness 

and introduce additional energy dissipation, which would 

influence natural frequencies and vibration amplitudes of 

the structure (Abid and Khan 2013, Lopez-Arancibia et al. 

2015). Moreover, rough surfaces at micro-scale make the 

contact mechanism more complex, and inaccurate modeling 

of bolted joints may cause unacceptable errors during 

dynamic analysis (Abad et al. 2012). Therefore, it is vital to 

investigate the joint interface modeling and construct an 

accurate model of bolted joints to determine the dynamic 

behavior of the structure. 

In order to characterise a bolted joint, researchers have  
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been developed a series of interesting techniques. Kim et al. 
(2007) presented four kinds of three-dimensional finite 
element models for the bolted joints, which were verified by 
static experiment. Then the proposed model was utilized for 
structure analysis of the marine diesel engine. Gantry et al. 
(2011) and Ahmadian and Jalali (2007a) simplified the joint 
interface region of bolted joints as the lumped mass-spring 
system, where the springs and viscous dampers were 
applied to describe the connection stiffness and damping. 
Ahmadian and Jalali (2007b) developed a nonlinear generic 
element formulation to represent the bolted joint. Song et 
al. (2004) presented an adjusted Iwan beam element for 
dynamic analysis of beam lap structure with bolted joints. 
The adjusted Iwan model is composed of a parallel 
combination of spring-slider elements that exhibits 
nonlinear behavior. Because of its ability to simulate the 
elastic-plastic behavior of the joint interface, the Iwan’s 
model has been extensively studied and discussed (Argatov 
and Bucher 2011, Mignolet et al. 2015, Brake 2017). In 
addition, dynamic parameters identification of bolted joints 
is also a widely studied technique (Iranzad and Ahmadian 
2012, Mehrpouya et al. 2013, Heller et al. 2009), which is 
implemented through minimizing the discrepancy between 
measured frequency response function (FRF) and the 
predicted FRF. However, the methods mentioned above are 
suitable for modeling of simple structural systems, but not 
for complex structural system containing large amount of 
joints and high degrees of freedom (Adele et al. 2017). 
Furthermore, it is difficult to apply these approaches to 
describe the relationships between the dynamic 
characteristics of bolted joints and the pretension torque, 
surface roughness of joint interface, and material properties. 
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Abstract.  Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted 

assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to 

describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure 

distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface 

around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering 

multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters 

for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics 

testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that 

the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and 

the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the 

effect of rough contact surface on dynamic characteristics of bolted joint. 
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Fractal contact theory can characterize the contact 

mechanism of rough surfaces at micro-scale, and the 

dynamic parameters of joint interface at macro-scale can be 

obtained by using elastic-plastic deformation of contact 

asperities and surface topography description. Greenwood 

and Williamson (1966) first presented the probability-

statistical contact model for two rough contact surfaces 

known as the GW model, which is then further developed 

by other researchers (Kogut and Etsion 2002, Jackson and 

Green 2005). Majumdar and Bhushan (1991) determined 

the radius of curvature of the deformed asperity through the 

asperity wavelength and amplitude, and then exploited a 

fractal based description method for contact surface. Zhang 

et al. (2014) modified the method and derived the contact 

stiffness and damping of rough connection interface. Jiang 

et al. (2010) studied the contact stiffness of two rough 

contact surfaces under different preloads and showed that 

the relationship between stiffness and contact pressure 

approximately follows a power low. 
There are three finite element analysis methods 

currently thought to be able to model the contact 
characteristics of rough interfaces (Bograd et al. 2011), i.e. 
node-to-node contact, thin-layer elements (Ahmadian et al. 
2006), and zero-thickness elements (Mayer and Gaul 2007). 
Among them, the thin-layer elements which is also called 
the virtual material model of joint interface can be 
conveniently integrated with commercial finite element 
software. The virtual material method has the advantage of 
performing finite element analysis of bolted joints with the 
contact properties of rough interfaces. For instance, Tian et 
al. (2011) applied the virtual material method to model the 
fixed joint interfaces in machine tools, and the method is 
verified by modal experiments. The acquisition of virtual 
material parameters depends on the contact pressure at the 
interface of bolted joints. However, the interface contact 
pressure is thought to be uniform distribution on the whole 
contact area in the present virtual material model, which 
will result in the homogeneous connection stiffness at the 
contact interface of bolted joints. This is suitable for very 
small contact area, but not for a large one and the sparse 
distribution of bolts. 

In this study, the contact pressure distribution at the 

interface of bolted joints is obtained by using the three-

dimensional finite element analysis. The contact surface 

around bolt is divided into several sub-layers according to 

the pressure distribution feature, and contact pressure in 

each sub-layer is assumed to be evenly. The virtual material 

parameters of each sub-layer can be deduced based on the 

Hertz contact theory and fractal theory. The virtual 

materials of all sub-layers are assembled to form a non-

uniform virtual material layer, which is then fixed 

connection with other parts of assembly structure. Finally, 

the theoretical and experiments are compared by impact 

response in both time- and frequency-domain, and the effect 

of surface roughness on dynamic characteristics of bolted 

joint is also discussed. 

 

 

2. Non-uniform virtual material model 
 

In this section, a three-dimensional finite element model 

for a double-bolted joint is established, on which nonlinear 

static analysis is implemented to investigate the contact 

pressure distribution at the joint interface. According to the 

Hertz contact theory and fractal theory, interface virtual 

material parameters are derived under contact pressure in 

different local regions. 

 

2.1 Contact pressure distribution of bolted joint 
 

Assembly structures are usually connected by multiple 

bolts that arranged at a certain distance. Without losing 

generality, a double-bolted joint is selected to analyse the 

contact pressure distribution. The three-dimensional finite 

element model of a typical double-bolted joint is developed 

using the finite element analysis software ANSYS as shown 

in the left part of Fig. 1, where the bolts head and nuts are 

simplified as cylinders. By neglecting the screw threads 

contact between bolts and nuts, nodes and elements for the 

bolts and nuts can be bonded together in the modeling, 

which not only improves the computation efficiency of 

finite element model but also has little influence on the 

analysis result for contact pressure distribution between two 

plates. All the joint components assume to be homogeneous 

and isotropic, and the material properties are initially set as 

the elastic modulus E is 210 GPa, the density is 7850 kg/m3, 

the Poisson’s ratio v is 0.3. The values of dimensional 

parameters for the double-bolted joint are illustrated in 

Fig.1, where the unit is mm. The model contains two 

identical steel plates with the thickness of 7.5 mm and the 

bolt hole diameter of 9 mm, while the bolt sizes of M8 are 

selected to clamp the plates together. 

In the finite element model, three contact pairs are 

defined by surface-to-surface contact using the contact 

element CONTA174 and the target segment element 

TARGE170, which are used to the interfaces between bolts 

head and upper plate, nuts and lower plate, and between the 

upper plate and lower plate. The friction coefficients of 

those contact pairs are set to be 0.15. The boundary 

condition of this model is unilateral fixed in the form of 

cantilever, i.e. all degrees of freedom of the nodes at the left 

surface for the lower plate are constrained. The pretension 

element PRETS179 is utilized to impose the pretightening 

force on the two bolts. 

This model is nonlinear considering the contact between 

connection components. The nonlinear static analysis of the 

finite element model is conducted to determine the contact 

pressure distribution for the double-bolted joint as shown in 

the middle right part of Fig. 1, where the preload of 5 kN is 

applied to the two bolts respectively. As can be seen that 

two circular bands of contact pressure generated by two 

pretightening bolts are around the two bolt holes 

respectively. To clearly observe the change of contact 

pressure in the radial direction of bolt hole, the contact 

pressure of all nodes on the x-axial are picked up and drawn 

into a curve as shown in the upper right corner of Fig. 1. It 

is obviously seen that the contact pressure reaches a peak 

near the hole edge and drops to zero in a distance to the bolt 

centerline. The variation feature indicates the non-uniform 

distribution of contact pressure on the interface of the 

double-bolted joint. 
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In order to construct more accurate virtual material on 

joint interface, the contact surface around the bolt holes is 

divided into several sub-layers by means of layering 

thought, as shown in the lower right corner of Fig. 1. Each 

sub-layer is considered to have evenly contact pressure, 

which corresponds to virtual material with particular 

properties. After that, non-uniform virtual material on the 

joint interface generated by assembling all of the sub-layers, 

of which material properties are different from each other. 

 

2.2 Analytic model of non-uniform virtual material 
 

A machined surface is always rough at the micro  

 

 
 

perspective and composed of randomly distributed 

asperities. Fractal geometry theory can effectively 

characterize surfaces with multi-scale roughness with the 

help of its scale-invariant parameters. The interfacial virtual 

material properties of rough surfaces for each sub-layer 

under contact pressure will be derived. 

Following the assumption that asperities are spherical 

near their summits, two rough contact surfaces can be 

further simplified as a smoothly rigid plane in contact with 

an equivalent rough surface containing a large number of 

spherical asperities (Tian et al. 2011), as shown in Fig. 2(a). 

The interaction between a typical asperity and a rigid plane 

under a normal concentrated force is shown in Fig. 2(b). It 

 

Fig. 1 Finite element model and contact pressure distribution of the double-bolted joint 

 

 
(a) Micro-contact of equivalent rough surface (b) Contact model of a spherical asperity 

Fig. 2 A simplified contact model for two rough contact surfaces 
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is assumed that the equivalent asperities are far apart from 

each other and the interaction between the equivalent 

asperities is negligible. According to the fractal theory, the 

deforming value δ of the micro-contact equivalent asperity 

can be given by 

1 (1 0.5 )D Dδ G a− −=  
(1) 

where D denotes the fractal dimension of contact 

surface and G represents the fractal roughness parameter of 

rough surface profile. 𝑎′ is the truncated area of the micro-

contact equivalent asperity. 

Considering the geometry of the equivalent asperity 

before and after elastic deformation and the asperity 

interference δ R , the relationship between the truncated 

area 𝑎′ and equivalent asperity radius R can be expressed 

as (Tian et al. 2011, Zhang et al. 2014) 

2a = πRδ  (2) 

Substituting Eq. (2) into Eq. (1), the relation of R and 𝑎′ 
can be also written as 

0.5

12

D

D

a
R

πG −


=

 

(3) 

Based on the Hertz contact theory, the normal force Pe 

imposing on the equivalent asperity at an elastic micro-

contact can be expressed as (Zhang et al. 2014) 

* 0.5 1.54

3
eP = E R δ

 

(4) 

where E* is the equivalent elastic modulus of equivalent 

rough surface and can be obtained by 

2 2

1 2

*

1 2

1 11 υ υ

E E E

− −
= +

 

(5) 

in which E1, E2 and υ1, υ2 are the elastic modulus and 

Poisson’s ratio, respectively. 

For the elastic deformation of the equivalent asperity, 

the stress and strain can be indicated as 

,           eP δ
σ = ε=

a R
 (6) 

where a πRδ=  is the real elastic micro-contact area 

of equivalent asperity and obtained on the basis of the Hertz 

contact theory. 

Introducing Eq. (4) into Eq. (6) yields 

* *4 4

3 3

δ
σ = E E ε

π R π
=

 

(7) 

The elastic modulus for a single micro-contact can be 

obtained by differentiating of Eq. (7), as follows 

*d 2

d 3
e

σ R
e E

ε π δ
= =

 

(8) 

Similarly, the shear modulus of each elastic micro-

contact can be described as 

*
3

16
1e

η
g G

π μ
= −

 

(9) 

where η is ratio of tangential load to normal load, μ is 

the static friction coefficient. G* refers to the equivalent 

shear modulus of two contacting rough surfaces with shear 

moduli G1 and G2, respectively, and can be expressed as 

1 2

*

1 2

2 21 υ υ

G G G

− −
= +

 

(10) 

Distinguishing elastic and plastic deformation of the 

asperities is used by the critical truncated area 𝑎𝑐
′  that can 

be written as (Tian et al. 2011) 

22
* 11

2 22 2
2 2

DD

C

E
a G G

q H

−−   
 = =   

     

(11) 

where q=H/σy is the relating factor of rough surface, and 

ϕ = σy/E* denotes the material property. H and σy are the 

hardness and yield strength of the softer material, 

respectively. 

The statistical distribution of the truncated area 𝑎′ for 

the asperity micro-contact can be taken the form (Wang and 

Komvopoulos 1994) 

( ) 1 0.5 0.5 1 0.50.5 D D D

Ln a Dψ a a− − −  =
 

(12) 

where 𝑎𝑐
′  denotes the maximum truncated area for 

asperity elastic micro-contact. ψ represents the domain 

extension factor of micro-contact size distribution and 

depends on fractal dimension D, and their relationship is 

( ) ( )
(2 )/

1 0.5 0.51 2 /
D D

D D D D 
− −

− −− + = −
 

(13) 

When the equivalent asperity is in contact with the rigid 

flat surface, the state of elastic or plastic deformation of the 

micro-contact asperity relies on its truncated area. If the 

truncated area satisfies C La a a    , the micro-contact 

asperity is in the state of elastic deformation, and the 

asperity is in plastic deformation regime if it satisfies 

Ca a  . For the asperities are in plastic deformation, the 

normal force Pp, the elastic modulus ep and shear modulus 

gp can be expressed as 

0.5 ,          0p p pP Ha e g= = =  (14) 

As viewed from macro-contact, the contact pressure of 

joint interface can be obtained by integrating the 

distribution of elastic and plastic asperities. Thus, the 

contact pressure Pi of the ith sub-layer shown in Fig. 1 can 

be expressed as 

0
( ) d ( ) d

C L

C

a a

i p e
a

P P n a a Pn a a
 


   = + 

 
(15) 

Substituting Eqs. (1)-(4), (12) and (14) into Eq. (15), 

result in 
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The elastic modulus Ei and shear modulus Gi of virtual 

material for the ith sub-layer at the joint interface can be 

obtained by integrating as 

( )
*

1 0.5 1 0.5 0.5 0.5

2

2
( )  d

3

L

C

a
D D D

i e i L L C
a

i

DE
E e n a a a A G a a a

A





− −


    = = −

 
(17) 

( )
( )

* 1 0.5
0.5 1 0.5 1 0.5

3
8

( )  d 1
2

L

C

D
a

D D D

i e i L L C
a

i

η DG
G g n a a a A a a a

μ D A





−


− −


    = = − −

−
 
(18) 

where Ai is the nominal interfacial area of the ith sub-

layer, and the contact pressure Pi is assumed to be 

uniformly distributed in the nominal area Ai. 

Considering Eqs. (17) and (18), the Poisson’s ratio υi of 

virtual material for the ith sub-layer at the joint interface 

shown in Fig. 1 can be calculated as follows 

1
2

i
i

i

E
υ

G
= −

 

(19) 

Because the interfacial mass is small compared to the 

assembly, the density of virtual material has little influence 

on the dynamic characteristics of bolted joints. A simplified 

density expression for the virtual material of each sub-layer 

is 

 

1 2

2
i

ρ ρ
ρ

+
=

 

(20) 

where ρ1 and ρ2 are the densities of two contact surfaces, 

respectively. 

Additionally, the normal contact stiffness Kni and shear 

contact stiffness Kτi of each sub-layer can be expressed by 

elastic modulus Ei and shear modulus Gi on the basis of 

Hooke’s Law, as follows 

,        ni i i i i iK E A t K G A t= =  (21) 

where t is the thickness of virtual material layer. 

At this point, the virtual materials properties containing 

elastic modulus, shear modulus, Poisson’s ratio and density 

for all sub-layers at the joint interface of double-bolted joint 

are determined on the basis of fractal topography theory. 

The flowchart diagram for the determination of virtual 

material properties is depicted in Fig. 3. To begin with, the 

contact surfaces of bolted joint is considered to be flat in the 

macro-scale, and contact pressure distribution can be 

obtained by finite element analysis. The contact interface is 

divided into several sub-layers, in which the contact 

pressure is assumed to be uniformly distributed. For each  

 
Fig. 3 Flowchart diagram of non-uniform virtual material modeling for double-bolted joint 

( )
( )
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*
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
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

− − −−
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− −   = 
 

  +
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(16) 

Contact surface of double-bolted joint is 

assumed flat in macro-scale

To obtain contact pressure distribution of 

double-bolted joint by finite element analysis 

The contact pressure at the interface is divided 

into several sub-layers around bolt hole 

The average contact pressure Pi

for each sub-layer 

Obtaining the truncated area     of the largest 

elastic micro-contact by solving Eq. (16)

Computing Eqs. (17)~(20), obtaining the 

elastic modulus Ei, shear modulus Gi, 

Poisson's ratio vi and density     of virtual 

material for each sub-layer

Computing the fractal 

dimension D and fractal 

roughness parameter G

Measuring the profile of 

surface in micro-scale 

Virtual materials of all sub-layers are 

assembled to form the non-uniform 

virtual material of double-bolted joint

La

iρ
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sub-layer, the relationship between contact pressure and 

virtual material parameters can be established through the 

truncated area of largest elastic micro-contact 𝑎𝐿
′  

Ultimately, virtual materials with different properties for all 

sub-layers are assembled to form the non-uniform virtual 

material on the joint interface of bolted joints. 
 

2.3 Determination of fractal parameters 
 

The fractal dimension D and fractal roughness 

parameter G are two fractal parameters that need to be 

determined by measuring the profile of rough contact 

surface in micro-scale. Mathematical expression of rough 

surface profile usually adopts the Weierstrass-Mandelbrot 

(W-M) function, which can be written as 

( )
( )1

0

cos 2 nD

n

πγ x LG
z x L

L γ

− 

=

 
=  

 


 

(22) 

where x is the lateral distance, z(x) is the height of 

surface profile, L is the length of fractal sample, while γ 

denotes the scaling parameter that can be used to obtain the 

spectral density and self-affine property. 

The structure function S(τ) of the W-M function can be 

expressed as (Jiang et al. 2010) 

( )  
2 4 2( ) ( ) DS τ z x z x τ Cτ −= − + =

 
(23) 

where τ is the displacement, 〈 〉 represents the average 

value of the statistical along the x-direction, and C denotes 

scaling coefficient and can be given by 

( ) 2( 1)
2 3 2 3

sin
2 2

D
D D

C G π
D

−
 − − 

=  
−    

(24) 

In the double logarithmic coordinates, Eq. (23) can be 

rewritten as 

( ) ( )log 4 2 log logS τ D τ C= − +
 

(25) 

 

 

It is found that the plot of logS(τ) as a function of logτ in 

Eq. (25) is a straight line, and the fractal dimension D is 

relate to the slope k of the straight line, while the fractal 

roughness parameter C can reflect the intercept b of the 

straight line. Thus, the fractal parameters can be obtained 

by 

2 0.5D k= −  (26) 

( )

( )

1

2( 1)

10 2

2 3
2 3 sin

2

D

b D
G

D
D π

− 
 −
 =

−   −       

(27) 

When two rough contact rough surfaces are equivalent 

to a rough surface and a rigid plane, the structure function 

of the equivalent rough surface is calculated by the structure 

functions of two rough contact surfaces, and their 

relationship as 

( ) ( ) ( )eq 1 2S τ S τ S τ= +
 

(28) 

where S1(τ) and S2(τ) are the structure functions of two 

contact surfaces, respectively. 

 

 

3. Experiment validation of non-uniform virtual 
material model 

 

3.1 Experiment set-up 
 

In order to verify the proposed contact pressure 

distribution based non-uniform virtual material model, the 

beam lap structure with double-bolted joint is designed as 

shown in Fig. 4, where dimensions and configurations are 

illustrated and the unit is mm. The diameter of bolt hole is 9 

mm. Two beams namely beam 1 and beam 2 are connected 

by two bolts, which sizes are M8 with grade 8.8. The left  

 
Fig. 4 Mesh grid of topographic model 
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Table 1 Mechanical properties of two connected beams 

Parameter Value 

Young’s modulus (GPa) 210 

Poisson’s ratio 0.3 

Density (kg/m3) 7850 

Hardness (MPa) 500 

Yield strength (MPa) 350 

 

 
Fig. 5 Experimental set-up of beam lap structure with 

double-bolted joint 

 

 

end of beam 1 is fixed to form a cantilever beam for the 

beam lap structure. The two beams are manufactured of 45# 

steel, and their material properties are listed in Table 1. 

Overlap area of the assembled structure is 60×60 mm. In 

fact, the dimensions and materials of the overlap joint 

shown in Fig. 4 are identical with that of Fig. 1. The finish 

milling processing is applied to the contact surfaces with 

roughness Ra = 0.2 μm. 

Experimental set-up of test system for the assembly 

structure is shown in Fig. 5. Five piezoelectric acceleration 

sensors are placed on the two beams to collect the vibration 

response signals. An impact hammer is utilized for 

excitement, and the excitation point is located at the mid-

span of beam 2. The data acquisition instrument LMS is 

adopted to collect the signals from the sensors and impact 

hammer. In the experiment, the torque wrench is used to 

control the value of tightening torque, and then the 

tightening torque applied to the bolt is converted to a 

pretension force. The relationship between the tightening 

torque T and pretension force F can be described as 

T=0.2dF, where d is the nominal diameter of bolt. 

 

3.2 Experiment validation 
 

The tightening torque of 8 Nm is applied to the two 

bolts, respectively, resulting in the preload of 5 kN for each 

bolt. Since the experimental double-bolted joint is the same  

 
(a) White-light optical interferometer system 

 
(b) Measured three-dimensional surface profile 

Fig. 6 Talysurf CCI 6000 white-light optical 

interferometer system and measured three-dimensional 

surface profile 

 

 

as that in Section 2.1, the contact pressure distribution 

shown in Fig. 1 will be used to determine the non-uniform 

virtual material of joint interface for the experimental 

assembled structure. 

In the micro-scale, the rough surface profile is measured 

by the Talysurf CCI 6000 white-light optical interferometer 

system for obtaining the fractal parameters of the rough 

contact surface, as shown in Fig. 6, where the sampling area 

of rough surface profile is 360×360 μm. According to Eq. 

(23), the structure function of the rough surface profile can 

be obtained. In the double logarithmic coordinates, the 

structure function of the profile is depicted in Fig. 7. The 

least squares method is employed for linear fitting of the 

structure function. The fractal dimension and fractal rough 

parameter of the equivalent rough surface are subsequently 

determined as Deq = 1.69, Geq = 2.4261×10-9 m in the light 

of Eqs. (26)-(28). 

In order to improve the calculation efficiency, the 

contact pressure distribution produced by each bolt is 

divided into five sub-layers (i.e., N = 5). According to 

flowchart diagram of the Fig. 3, the property parameters of 

virtual material in each sub-layer can be derived, and are 

listed in Table 2. The virtual material layer is used to 

describe the mechanical behaviors of joint interface, and is 

fixedly connected with the two beams. Finite element  
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Beam 1

Data acquisition 
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Computer
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Fig. 7 Structure function and its linear fitting function for 

the measured surface profile 

 

Table 2 Virtual material properties for each sub-layer 

Sub-layer number 1 2 3 4 5 

Contact force (N) 1845.3 1665.4 984.3 409 96 

Elastic modulus (GPa) 24.5 16.2 7.39 2.42 0.45 

Shear modulus (GPa) 20.2 13.3 6.09 2.00 0.37 

Poisson’s ratio -0.39 -0.39 -0.39 -0.39 -0.39 

Density (kg/m3) 7850 7850 7850 7850 7850 

 

 
Fig. 8 Finite element model containing non-uniform 

virtual material 

 

 

dynamic model for the beam lap structure with double-

bolted joint is developed as shown in Fig. 8, where the 

thickness of the non-uniform virtual material layer is 1 mm. 

In the finite element model, the two bolt holes are filled 

with actual bolt material to ensure the bolt stiffness, and 

bolt heads, nuts, and accelerometers are included in the 

model and replaced by the lumped mass applied on the 

nodes. The MASS21 element in ANSYS software is used to 

define the lumped mass, which is set to 20 g for each one in 

the model.  

For the sake of validating the effectiveness of proposed 

method, the simulated vibration response in time-domain 

and frequency-domain are compared with that of 

experiment results from impact excitation of hammer. The 

hammer excitation is performed manually at a 135 mm 

away for the free end of beam 2. A detailed view of 

measured input force in the experiment and the synthesized  

 
Fig. 9 A detailed view of measured input force and 

exciting force used for numerical simulation 

 

 

exciting force used for numerical simulation are shown in 

Fig. 9. The collected data from the accelerometer that is 

mounted on the beam 2 near the bolts. The comparison of 

experiment results and simulation results of vibration 

response in time-domain for the assembly structure is 

displayed in Fig. 10(a). As can be seen that the numerical 

simulation results show good correspondence with 

experiment results. Frequency response can be obtained by 

fast Fourier transform of vibration response in time-domain, 

and the comparison results in frequency-domain is show in 

Fig. 10(b). The computational and experimental results 

agree fairly well, which validates the effectiveness of 

proposed non-uniform virtual material method. 

Furthermore, it is observed that response amplitude of 

simulation results is a little larger than that of experimental 

results in both time- and frequency-domain. This 

phenomenon is mainly caused by setting errors of exciting 

force and damping ratio. 

To illustrate the accuracy of proposed method, three 

other approaches, i.e. the bonded assembly, the pre-stressed 

modal analysis, and the uniform virtual material, are 

introduced for comparison with the presented non-uniform 

virtual material. For the bonded assembly, the nodes and 

elements of the joint interface are fixed together, which 

means ignoring the effect of contact surface on dynamic 

characteristics. The pre-stressed modal analysis takes two 

steps to complete, the static structural analysis considering 

the frictional contact is first implemented to generate stress 

and strain of structure, which as initial condition for next 

modal analysis. For the uniform virtual material, the contact 

pressure at the joint interface is assumed to be evenly 

distributed. The value of contact pressure is equal to the 

sum of pretension force of two bolts for the double-bolted 

joint, i.e. Ptotal = 10 kN, and the corresponding property 

parameters of virtual material for the uniform case are Ez = 

2.62 GPa and Gxy = 2.16 GPa. 

The first four natural frequencies of the assembly 

structure adopting experiment and different approaches are 

illustrated in Table 3, where the experimental natural 

frequencies are obtained by hammering impact testing 

method. In order to reduce random error and improve 

signal-to-noise ratio, the average results of five trials are  
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used as the final experimental natural frequencies. The 

beam lap structure also needs to be disassembled and 

assembled five times in the experiment. As can be seen in 

Table 3, the errors of natural frequencies calculated by the 

bonded assembly method are relatively large due to the 

neglect of the joint interface. Although the pre-stressed 

modal analysis method considering initial static stress and 

strain decreases errors to a certain extent, the errors of first 

two natural frequencies are up to 24.65% and 10.76%, 

respectively. The maximum error for the uniform virtual 

material method appears at the first order with an error of 

20.07%, which still affects the accuracy of dynamic 

analysis for the joint structure. From the calculation results 

of the previous three methods, it can be observed that the 

contact interface of the double-bolted joint has a significant 

effect on the first-order natural frequencies. For the 

proposed non-uniform virtual material, the errors of first 

four natural frequencies are -0.02%, -0.04%, 0.53% and 

0.52%, respectively, which obviously reduces errors by 

comparing with the remaining three other methods. It 

should be emphasized here that the accuracy of proposed 

method depends on the division number of sub-layer of 

non-uniform virtual material on the joint interface. The 

accuracy improve with the number of divisions. Thus, 

contact pressure distribution of bolted joint must be 

considered to construct an accurate dynamic model. The 

presented non-uniform virtual material modeling method on 

contact interface can satisfy the accuracy requirement for 

predicting the dynamic characteristics of the assembly 

structure with bolted joints. 
 

3.3 Discussion 
 

In the micro-scale, the contact surfaces of bolted joints 

are always rough and composed of randomly distributed 

asperities. Consequently, rough contact surfaces is one of 

the main factors affecting the dynamic characteristics of 

joint structure. The rough surface can be described by the 

two fractal parameters, i.e. fractal dimension D and fractal 

roughness parameter G, on the basis of fractal geometry 

theory. Understanding the influence of surface roughness on 

the dynamic characteristics can be achieved by the two 

fractal parameters. 

 

Table 3 Comparison of the first four-order natural 

frequencies for the double-bolted joint beam under different 

methods 

Natural frequencies (Hz) f1 f2 f3 f4 

Experimental results 57.5 507.5 970 1323 

Bonded assembly 77.14 566.45 988.19 1549.70 

Pre-stressed modal analysis 71.68 562.09 911.54 1384.40 

Uniform virtual material 69.04 549.15 931.77 1354.80 

Non-uniform virtual material 57.49 507.25 975.13 1329.85 

Error of bonded assembly 

(%) 
34.15 11.62 1.88 17.14 

Error of pre-stressed modal 

analysis (%) 
24.65 10.76 -6.03 4.64 

Error of uniform virtual 

material (%) 
20.07 8.21 -3.94 2.40 

Error of non-uniform virtual 

material (%) 
-0.02 -0.04 0.53 0.52 

 

 

Tightening torques of 8 Nm, 12 Nm and 16 Nm, i.e. the 

corresponding pretension force are 5 kN, 7.5 kN and 10 kN, 

are applied to the assembly structure shown in Fig.4 

respectively. Then, by introducing different values of fractal 

dimension D and fractal roughness parameter G, the 

different properties of non-uniform virtual material layer 

are acquired, and finite element model shown in Fig. 8 is 

used to calculate the dynamic parameters. The relationships 

between first four natural frequencies and fractal dimension 

under different tightening torques are illustrated in Fig. 11. 

It can be seen that the natural frequency of each order is 

improved with the increase of tightening torque and fractal 

dimension, which indicates that the stiffness of bolted joints 

is affected by contact pressure and rough contact surfaces. 

Actually, increasing the fractal dimension implies that the 

contact surface becomes smoother and the contact stiffness 

of joint interface is improved as shown in Fig. 12, where the 

normal stiffness and shear stiffness for each sub-layer of the 

non-uniform virtual material layer are increased with the 

fractal dimension. When the value of fractal dimension is 

big enough, the natural frequency of each order shown in 

Fig. 11 change very little. The first and second order natural 

frequencies increase slightly with the fractal dimension,  

  
(a) Time-domain (b) Frequency-domain 

Fig. 10 Comparison of experiment results and simulation results for impulse response in time-domain and frequency-

domain 
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which means the fractal dimension has little effect on the 

low-order natural frequencies. 

Keeping other structural parameters unchanged, the 

relationships between the first four natural frequencies and 

fractal roughness parameter for different levels of the 

tightening torque are shown in Fig. 13. The increase of the 

fractal roughness parameter means that the contact surface 

is rougher, which leads to the decrease of contact stiffness 

as shown in Fig. 14. Thus, the first four natural frequencies 

shown in Fig. 13 are cut down along with the increase of 

the fractal roughness parameter. Meanwhile, it is more  

 

 

 

obviously to distinguish the natural frequencies under 

different tightening torques. Similar to the fractal 

dimension, the influence of the fractal roughness parameter 

on low-order natural frequencies is small. 
 

 

4. Conclusions 
 

A contact pressure distribution based non-uniform 

virtual material model on contact interface has been 

developed for dynamic analysis of bolted joints. The 

  
(a) The first order (b) The second order 

  
(c) The third order (d) The fourth order 

Fig. 11 Relationships between first four natural frequencies and fractal dimension under different tightening torques 

  
(a) Normal stiffness (b) Shear stiffness 

Fig. 12 Effect of the fractal dimension on normal stiffness and shear stiffness for each sub-layer of the non-uniform virtual 

material layer 
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proposed method can be applied to multi-bolt connection 

structure with sparse bolt distribution. The contact pressure 

distribution of bolted joints was first obtained by the 

nonlinear static analysis in the finite element software 

ANSYS. The contact surface around bolt was divided into 

several sub-layers, and contact pressure in each sub-layer 

was considered to be evenly. Using the virtual material 

hypothesis and fractal contact theory, the relationship 

between contact pressure and virtual material properties for  

 

 

 

each sub-layer was established. The theoretical results were 

compared with experimental results by impact response in 

both time- and frequency-domain. It was found that 

theoretical results were in good agreement with 

experimental results, and the maximum error of the first 

four natural frequencies was within 1%, which validated the 

effectiveness of the proposed method. The influence of 

rough contact surfaces on dynamic characteristics of bolted 

joints was also discussed, and the smoother contact surfaces 

  
(a) The first order (b) The second order 

  
(c) The third order (d) The fourth order 

Fig. 13 Relationships between first four natural frequencies and fractal roughness parameter under different tightening 

torques 

  
(a) Normal stiffness (b) Shear stiffness 

Fig. 14 Effect of the fractal roughness parameter on normal stiffness and shear stiffness for each sub-layer of the non-

uniform virtual material layer 
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can improve the contact stiffness, whereas it had little effect 

on the low-order natural frequencies. 
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