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1. Introduction 
 

Plate is an important structure element in many 

engineering applications due to its key role as load bearing 

component. Representative practical examples include rigid 

pavements, building floor and roof, bridge deck, aircraft 

wings, wallboard of the launch vehicles, etc. The buckling 

problem of such structures causes reduction in structure 

stiffness, as a result reducing its load carrying capacity. 

Therefore, these structures must endure enough 

compressive forces such that buckling of the structures, 

which may cause premature failure, is avoided. This 

underscores the importance of understanding the 

performance and capacities of plates and further guiding the 

design of related engineering devices and structures. Hence, 

the buckling characteristics of plates need to be studied in 

order to develop an accurate and reliable design. In addition, 

the buckling solutions of higher order partial differential 

equations (PDE) are few, and the solving process is much 

more difficult than the present method. By the proposed 

analytical solution, the exact buckling solutions of the plate 

are obtained, which can be confidently used as a benchmark 

solution for the validation of other methods.  

Numerous methods have been proposed to solve 

buckling problems of plates in the past few decades. Here 

we briefly reviewed some of the latest numerical  
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developments in this field. The finite difference method is 

commonly used methods due to its simplicity and high 

versatility and has been utilized to obtain the approximate 

buckling solution of nanoplates (Karamooz Ravari et al. 

2014, Karamooz Ravari and Shahidi 2013). The buckling 

characteristics of thin plates are analyzed by differential 

quadrature method (Jiang et al. 2008, Wang et al. 2003, 

Wang and Huang 2009). The free vibration of the 

rectangular thick plate with point support is studied by 

introducing two-dimensional basic functions to describe the 

variation of three-dimensional displacement in a thin layer 

by finite layer method Zhou et al. (2000). The same method 

is utilized to investigate the three-dimensional dynamic 

response of functionally graded carbon nanotubes Wu and 

Lin (2015). The discrete singular convolution method is 

employed to examine the buckling problem of plate, the 

method is simple, which proves the applicability of the 

method to be used for such problems because of its 

simplicity (Civalek et al. 2010, Civalek and Yavas 2008). A 

meshless method is adopted to obtain the buckling solutions 

of composite laminated plates Wang et al. (2002), and 

Reissner–Mindlin plates subjected to in-plane edge loads 

Bui et al. (2011). A novel meshfree method is utilized to 

solve buckling and vibration problems of composite plates 

Bui and Nguyen (2011), and composite laminates under in-

plane compression loading Bui (2011). Taking into account 

the minimum total energy variational principle the vibration 

behavior of stepped plates are studied by extended 

Kantorovich method Singhatanadgid and Taranajetsada 

(2016). An exact finite strip method is used to find the 

buckling solution of a moderately thick plate by considering 

first order shear deformation theory (Ghannadpour and 

Ovesy 2009, Ovesy et al. 2013). In addition, the FEM 
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(Adany et al. 2018, Jeyaraj 2013, Komur and Sonmez 2015) 

and Ritz energy method (Huang et al. 2019, Lau and 

Hancock 1986, Mahendran and Murray 1986, Mijušković et 

al. 2015) have been applied to study the buckling and of 

various plate structures. 

The above method meets the engineering requirements, 

but an approximate solution is obtained, which is the main 

disadvantage of the numerical methods. Therefore, a 

benchmark analytical solution is still required for validation 

of other analytical and approximate methods. On the other 

hand, analytical solution of a plate is available for some 

specific boundary conditions, such as a plate with all edges 

simply supported or plate with two opposite edges simply 

supported, which is called Lévy-type solution. Using this 

approach the buckling solutions of rectangular plate 

subjected to uniaxial and intermediate loads are obtained 

(Xiang et al. 2003). The first attempt is made on the basis of 

the superposition method Timoshenko S.P.(1961), it 

provides many exact solutions, but working in the semi-

inverse method which needs trial functions to fulfill the 

boundary conditions, which do not always exist. A 

symplectic superposition method is applied for the buckling 

(Li et al. 2018, Wang et al. 2016) bending (Li et al. 2014, 

Liu and Li 2010) and free vibration (Li et al. 2015, 2016) 

analysis of rectangular thin plates, which is the combination 

of the superposition method and symplectic elasticity 

approach (Lim et al. 2007, 2009, Lim and Xu 2010) applied 

successfully to solve elastic plate problems. A closed-form 

solution (Liu and Xing 2011, Yufeng Xing and Zekun 

Wang 2017) and separation of variable method (Liu et al. 

2014, Xing and Liu 2009) is effectively implemented to 

obtain the exact free vibration solution of rectangular plates. 

Recently, two-dimensional generalized integral transform 

method is employed to determine the analytical bending and 

buckling solutions of rectangular thin plates (Ullah et al. 

2019, Zhang et al. 2018). 

Although many important achievements have been made, 

the research in this field is still vigorous. Researchers are 

looking for new analytical techniques to solve complex 

plate buckling problems because of its practical needs. In 

recent years, the finite integral transformation is efficiently 

implemented in solving partial differential equations, which 

provides a piece of new knowledge for analytical plate 

solutions. This method is utilized to the vibration and 

bending problems of plate with a class of complex 

boundary value problems (BVPs) (Li et al. 2009, Tian et al. 

2011, 2015, Zhang and Xu 2017, 2018, Zhang and Zhang 

2018, Zhong et al. 2014, Zhong and Yin 2008). The 

advantage of the integral transform method is that it is 

simple and general and can handle other elastic plate 

problems. However, there have been no reports available, to 

the best of our knowledge, by using finite integral 

transformation for buckling analysis of rectangular thin 

plates. 

This study presents double finite sine integral 

transformation to analytically solving the buckling 

problems of rectangular thin plates, focus on typical non-

Lévy-type plates. The buckling governing PDEs for thin 

plates are converted into a system of linear algebraic 

equations. Then, through the existence of non-zero  
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(a) a thin plate 

(b) the plate under biaxial 

compression along x and y 

direction 

Fig. 1 Schematic illustration of a thin plate the plate under 

biaxial compression along x and y direction 
 

 

solutions in the equations, the buckling solution can be 

easily determined. The analytical solutions are obtained for 

different boundary conditions and aspect ratios subjected to 

uniaxial compressive loads which are believed to provide 

benchmark solution for validation of other methods. The 

validity of the method is verified by the good consistency 

with the existing analytical solutions and the finite element 

analysis (FEA) using (ABAQUS) software. 
 
 

2. Application of finite integral transformation for the 
buckling analysis of rectangular thin plates 

 

Considering the rectangular thin plate with length a, 

width b and uniform thickness h, the coordinate system is 

shown in Fig. 1. 

According to the classical Kirchhoff plate theory the 

buckling equation of thin plate subjected to normal loads

xN and yN with uniformly distributed along x and y 

directions can be expressed as Timoshenko S.P.(1961) 

4 4 4 2 2

4 2 2 4 2 2
2 0

yx
NNW W W W W

D Dx x y y x y
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+ + + + =
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(1) 

Where 3 2/12(1 )D Eh = − is the flexural rigidity of plate, 

in which E is the Young’s modulus and μ is Poisson’s ratios 

of plate respectively. W(x,y) is the out-of-plane 

displacement and is a function of independent variables x 
and y defined within a rectangular domain 0 x a  and

0 y b  . The finite sine integral transformation is defined 

as 

( ) ( ) ( )
0 0

, sin sin d d
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The inversion is expressed as 
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where m m a = ; n n b = . 

The high order partial derivatives of W(x,y) in Eq. (1) are 

derived as 
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 Substituting Eqs. (4)-(8) into Eq. (1) which leads to 
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No matter the boundary conditions of the plate are 

simply supported or clamped, it is well known that

0
0

x x a
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= =
= = ,

0
0
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= = , Eq. (9) after further 

simplification one can get 
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(10) 

Some parts of Eq. (10) are definite integral, they are the 

constants. Let 
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(11) 

The unidentified constants Im, Jm, Kn and Ln have 

evident physical meaning. When the plate is clamped, or 

simply supported we can easily obtain 
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(12) 

Substitution of Eq. (12) into
mI ,

mJ ,
nK and

nL leads to 
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Obviously, the integrands of −DIm, −DJm, −DKn and 

−DLn are Fourier coefficients of the bending moments of 

edges y=b, y=0, x=a and x=0, respectively. The bending 

moments along the clamped edges can be easily obtained by 

using the following expressions 
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For simply supported plate, the corresponding unknowns 

will be zero. Accordingly Eq. (10) is expressed by an 

unidentified constants
mI ,

mJ ,
nK and

nL as 
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By substitution of Eq. (15) into Eq. (3), the expression for 

W(x,y) is obtained as follow, here 1,2,3,m = and 

n=1,2,3, 
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A class of complex three (BVPs) are studied, i.e. plate 

with all four edges clamped (CCCC), plate with three 

clamped edges and one simply supported edge (CCCS), and 

plate with two adjacent edges clamped and the other simply 

supported (CCSS), where C denotes the clamped and S 

denotes the simply supported edge. Here we consider the 

uniaxial uniform in-plane loads acted at the two opposite 

edges, thus a CCCS plate can be loaded in two ways, one 

with the two opposite edges clamped and the other with one 

clamped and other simply supported edge. Thus, total of 

four cases of boundary conditions are studied which are 

presented below. 
 

Case 1  

When the rectangular plate is fully clamped, uniform 

uniaxial in-plane loads are applied along the x direction at 

edge x=0 and x=a. Eq. (16) satisfy the boundary conditions 

of 
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Multiplying Eqs. (17) and (18) by ( )sin dn y y  then 

through integration from 0 to b produces Eqs. (21) and (22). 

Multiplying Eqs. (19) and (20) by ( )sin dm x x  then 

through integration from 0 to a yields Eqs. (23) and (24) 

and can be expressed as 
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for n=1, 2, 3, …, 

( )

( )

( ) ( ) 

2
21 2 2

1

1 1 0

m

m

m x m
m n

n m

n m m m n n

N

D

I J K L




 

 



=

−

+ −

    − − + − − =
   



 

(22) 

for n=1, 2, 3, …, 

( )

( ) ( ) 

2
21 2 2

1 1 0

n

n x m
m n

n m

n m m m n n

N

D

I J K L




 

 



=
+ −

    − − + − − =
   



 

(23) 

for m=1, 2, 3, …, and 

( )

( )

( ) ( ) 

2
21 2 2

1

1 1 0

n

n

n x m
m n

n m

n m m m n n

N

D

I J K L




 

 



=

−

+ −

    − − + − − =
   



 

(24) 

for m=1, 2, 3, …, 

Eqs. (21)-(24) are sets of four linear algebraic 

simultaneous equations in terms of 
mI ,

mJ ,
nK and

nL . The 

buckling load factor is achieved by taking the determinant 

of the matrix equal to zero. By Mathematica software the 

“Findroot” command is used to search for the numerical 

roots of the buckling load equation. Although an exact 

solution of the buckling load factors is observed from the 

derivation when m, n → ∞, practically a convergence 

solutions with desired accuracy is obtained by taking few 

number of terms ( , 20m n = ), which is the primary 

advantage of the present method. Putting the critical 

buckling load into the coefficient matrix of the Eqs. (21)-

(24) to obtain
mI ,

mJ ,
nK and

nL . Then, the associated 

buckling mode shapes are obtained from the inversion 

formula using Wolfram Mathematica11.3 software. 

 

Case 2  

When the rectangular plate clamped at edges x=0,a and 

y=0, simply supported at edge y=b,, and is exposed to 

uniform in-plane loads along the x direction. The deflection 

of the plate can be expressed as follow 

( ),W x y  (25) 
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Eq. (25) satisfy the boundary conditions of 
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(26) 
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(28) 

Eqs. (26)-(28) are sets of three linear algebraic 

simultaneous equations in terms of Jm, Kn and Ln. The 

buckling load factor is achieved by taking the determinant 

of the matrix equal to zero. Although an exact solution of 

the buckling load factors is observed from the derivation 

when m, n → ∞, practically a convergence solutions with 

desired accuracy is obtained by taking few number of terms 

( , 20m n = ), which is the primary advantage of the present 

method. Putting the critical buckling load into the 

coefficient matrix of the Eqs. (26)-(28) to obtain Jm, Kn and 
Ln. Then, the associated buckling mode shapes are obtained 

from the inversion formula using Wolfram 

Mathematica11.3 software. 

 
Case 3 

When the rectangular plate is clamped at edges x=0 and 
y=0, b, simply supported at edge x=a, and a plate under 

uniform uniaxial in-plane load along the x direction. The 

deflection of the plate can be expressed as follow 
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(29) 

Eq. (29) still needs to satisfy the boundary conditions of 
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(32) 

Eqs. (30)-(32) are sets of three linear algebraic 

simultaneous equations in terms of Im, Jm and Ln. The 

buckling load factor is achieved by taking the determinant 

of the matrix equal to zero. A convergence solutions with 

desired accuracy is obtained by taking few number of terms 

( , 20m n = ), which is the main advantage of the present 

method. Putting the critical buckling load into the 

coefficient matrix of the Eqs. (30)-(32) to obtain Im, Jm and 
Ln. Then, the associated buckling mode shapes are obtained 

from the inversion formula using Wolfram 

Mathematica11.3 software. 

 

Case 4 

When the rectangular plate is clamped at edges x=0 and 

y=0, simply supported at edge x=a and y=b, a uniaxial 

uniform in-plane load is applied in the x direction. The 

deflection of the plate reduce to 
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(33) 

Eq. (33) has to satisfy the boundary conditions of 

0
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(34) 

for n=1, 2, 3, …, 
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(35) 

for m=1, 2, 3, …, 

Eqs. (34) and (35) are sets of two linear algebraic 

simultaneous equations in terms of
mJ and

nL . Same 

solution procedure is adopted for Case 4. 
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3. Numerical and graphical results 
 

Using the method described in Section 2, the buckling 

solutions of rectangular thin plates are found for different 

boundary conditions and aspect ratios. The results are 

presented for aspect ratio’s 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 

and 5 respectively. To verify the correctness of the present 

method, the results are compared with the FEA using 

(ABAQUS) software Simulia (2013), with thickness to 

width ratio 
410−
, and convergence is achieved using 4-node 

thin shell element S4R and uniform mesh size with short 

edge length of 1 400 . Four complex BVPs of the plate with 

different aspect ratios are studied. Table 1 shows the 

buckling factor denoted by ( )2 2

xN a D  of rectangular 

thin plates under CCCC boundary condition with aspect 

ratios being 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5. Fig. 2  

 

 

shows the comparison of first ten mode shapes obtained by 

present method using Mathematica software and the FEA 

using (ABAQUS) software. The present results are 

validated by extensive numerical comparison with the FEA 

using (ABAQUS) software and the existing analytical 

solutions and show satisfactory agreement.  

Tables 2-4 present the buckling load factors for CCCS, 

CCSS rectangular thin plates subjected to uniaxial uniform 

in-plane compression load. The present results are very 

close to the numerical solutions obtained by commercial 

software (ABAQUS), and the existing analytical solution 

which verify the accuracy of the method. Figs. 3-5 show the 

buckling mode shapes comparison of the present method 

and the FEA which shows satisfactory agreement. Tables 1-

4 and Figs. 2-5 show that the present method is consistent 

with the finite element method and the existing literature, 

which verifies the accuracy and effectiveness of the method. 

Table 1 First ten buckling load factors, ( )2 2

xN a D , of the CCCC rectangular plates 

b/a Method 
Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

Present 31.468 32.348 41.123 46.201 60.818 69.886 90.330 90.692 91.213 92.178 

FEM 31.476 32.355 41.144 46.244 60.916 70.008 90.368 90.720 91.480 92.320 

Wang et al. (2016) 31.468 32.348 41.123 46.201 60.818 69.886 90.330 90.692 91.213 92.178 

1 

Present 10.074 11.610 19.465 24.891 26.373 26.833 36.089 38.712 40.651 47.704 

FEM 10.075 11.611 19.470 24.894 26.378 26.844 36.101 38.736 40.666 47.716 

Wang et al. (2016) 10.074 11.610 19.465 24.891 26.373 26.833 36.089 38.712 40.651 47.704 

1.5 

Present 5.8251 9.4230 13.319 13.574 17.198 21.812 22.797 24.814 25.256 28.617 

FEM 5.8253 9.4240 13.321 13.576 17.201 21.815 22.802 24.819 25.263 28.620 

Wang et al. (2016) 5.8251 9.4230 13.319 13.574 17.198 21.812 22.797 24.814 25.256 28.617 

2 

Present 4.8347 8.0673 8.8175 10.908 14.990 15.124 16.650 18.668 21.855 23.256 

FEM 4.8350 8.0675 8.8183 10.908 14.992 15.126 16.653 18.671 21.859 23.260 

Wang et al. (2016) 4.8347 8.0673 8.8575 10.908 14.990 15.124 16.650 18.668 21.855 23.256 

2.5 

Present 4.4740 6.1935 8.5680 9.7970 9.9347 12.088 15.786 16.253 16.379 17.639 

FEM 4.4742 6.1938 8.5688 9.7970 9.9363 12.089 15.789 16.257 16.382 17.642 

Wang et al. (2016) 4.4740 6.1935 8.5680 9.7979 9.9347 12.088 15.786 16.253 16.379 17.639 

3 

Present 4.3050 5.3609 7.5597 8.4415 9.2515 10.717 11.418 13.005 16.246 16.339 

FEM 4.3052 5.3611 7.5608 8.4420 9.2525 10.718 11.421 13.007 16.248 16.342 

Wang et al. (2016) 4.3050 5.3609 7.5597 8.4415 9.2515 10.717 11.418 13.005 16.246 16.339 

3.5 

Present 4.2127 4.9253 6.3509 8.3684 8.8054 8.9432 9.9624 11.516 12.596 13.728 

FEM 4.2129 4.9256 6.3514 8.3690 8.8065 8.9437 9.9633 11.518 12.599 13.731 

Wang et al. (2016) 4.2127 4.9253 6.3509 8.3684 8.8054 8.9432 9.9624 11.516 12.596 13.728 

4 

Present 4.1568 4.6701 5.6643 7.3323 8.3225 8.7519 9.5029 9.9028 10.628 12.200 

FEM 4.1571 4.6705 5.6649 7.3338 8.3238 8.7531 9.5044 9.9075 10.631 12.203 

Wang et al. (2016) 4.1568 4.6701 5.6643 7.3323 8.3225 8.7519 9.5029 9.9028 10.628 12.200 

4.5 

Present 4.1205 4.5080 5.2398 6.4281 8.2584 8.2918 8.6249 9.2019 10.055 10.858 

FEM 4.1206 4.5082 5.2400 6.4390 8.2602 8.2928 8.6257 9.2025 10.056 10.862 

Wang et al. (2016) 4.1205 4.5080 5.2398 6.4381 8.2584 8.2918 8.6249 9.2019 10.055 10.858 

5 

Present 4.0954 4.3986 4.9598 5.8595 7.2037 8.2702 8.5362 8.9938 9.1117 9.6642 

FEM 4.0956 4.3988 4.9600 5.8600 7.2052 8.2712 8.5372 8.9948 9.1148 9.6652 

Wang et al. (2016) 4.0954 4.3986 4.9598 5.8595 7.2037 8.2702 8.5362 8.9938 9.1117 9.6642 
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Fig. 2 First ten buckling mode shapes of CCCC square thin plate 

Table 2 First ten buckling load factors of the CCCS rectangular plates loaded at two opposite clamped edges 

b/a Method 
Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

Present 24.891 26.373 36.089 40.651 53.945 58.384 75.776 78.470 79.504 89.657 

FEM 24.892 26.376 36.095 40.660 53.960 58.408 75.820 78.488 79.520 89.724 

Wang et al. (2016) 24.891 26.373 36.089 40.651 53.945 58.384 75.776 78.470 79.504 89.657 

1 

Present 8.0673 10.908 18.668 21.855 24.005 26.524 34.535 34.833 38.437 43.448 

FEM 8.0675 10.909 18.672 21.856 24.008 26.532 34.544 34.840 38.454 43.455 

Wang et al. (2016) 8.0673 10.908 18.668 21.855 24.005 26.524 34.535 34.833 38.437 43.448 

1.5 

Present 5.3609 9.2515 11.418 13.005 17.054 20.819 20.973 23.164 25.164 28.273 

FEM 5.3613 9.2542 11.420 13.008 17.064 20.829 20.976 23.169 25.189 28.297 

Wang et al. (2016) 5.3609 9.2515 11.418 13.005 17.054 20.819 20.973 23.164 25.164 28.273 

2 

Present 4.6701 7.3323 8.7519 10.628 13.540 14.308 16.565 18.420 20.555 22.124 

FEM 4.6708 7.3333 8.7548 10.631 13.543 14.312 16.575 18.431 20.561 22.134 

Wang et al. (2016) 4.6701 7.3323 8.7519 10.628 13.540 14.308 16.565 18.420 20.555 22.124 

2.5 

Present 4.3986 5.8595 8.5362 9.1117 9.6642 11.769 14.942 15.178 16.353 17.470 

FEM 4.3989 5.8598 8.5370 9.1133 9.6651 11.771 14.947 15.182 16.355 17.474 

Wang et al. (2016) 4.3986 5.8595 8.5362 9.1117 9.6642 11.769 14.942 15.178 16.353 17.470 

3 

Present 4.2646 5.1845 7.1210 8.4237 9.1783 10.544 10.592 12.679 15.797 15.915 

FEM 4.2656 5.1854 7.1223 8.4279 9.1824 10.548 10.595 12.683 15.802 15.920 

Wang et al. (2016) 4.2646 5.1845 7.1210 8.4237 9.1783 10.544 10.592 12.679 15.797 15.915 

3.5 

Present 4.1886 4.8216 6.0949 8.3113 8.3576 8.8986 9.8581 11.322 11.803 13.407 

FEM 4.1892 4.8222 6.0957 8.3127 8.3608 8.9012 9.8612 11.325 11.805 13.410 

Wang et al. (2016) 4.1886 4.8216 6.0949 8.3113 8.3576 8.8986 9.8581 11.322 11.803 13.407 

4 

Present 4.1413 4.6042 5.5033 7.0212 8.3154 8.7227 9.3851 9.4352 10.503 11.995 

FEM 4.1423 4.6051 5.5043 7.0225 8.3194 8.7269 9.3869 9.4394 10.508 11.999 

Wang et al. (2016) 4.1413 4.6042 5.5033 7.0212 8.3154 8.7227 9.3851 9.4352 10.503 11.995 

4.5 

Present 4.1099 4.4635 5.1323 6.2316 7.9118 8.2869 8.6048 9.1555 9.9702 10.336 

FEM 4.1108 4.4645 5.1323 6.2326 7.9131 8.2909 8.6089 9.1595 9.9743 10.338 

Wang et al. (2016) 4.1099 4.4635 5.1333 6.2316 7.9118 8.2869 8.6048 9.1555 9.9702 10.336 

5 

Present 4.0879 4.3672 4.8846 5.7160 6.9630 8.2667 8.5218 8.7444 8.9606 9.6036 

FEM 4.0888 4.3680 4.8856 5.7168 6.9644 8.2708 8.5260 8.7460 8.9648 9.6076 

Wang et al. (2016) 4.0879 4.3672 4.8846 5.7160 6.9630 8.2667 8.5218 8.7444 8.9606 9.6036 
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Table 3 First ten buckling load factors of the CCCS rectangular plates loaded at simply supported edge and its opposite 

clamped edge 

b/a Method 
Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

Present 28.832 32.234 36.116 42.914 53.313 66.104 80.336 87.521 90.672 92.152 

FEM 28.835 32.242 36.127 42.948 53.380 66.220 80.508 87.548 90.704 92.300 

Wang et al. (2016) 28.832 32.234 36.116 42.914 53.313 66.104 80.336 87.521 90.672 92.152 

1 

Present 8.0870 10.281 15.205 22.673 22.803 25.187 30.891 32.602 39.225 44.477 

FEM 8.0874 10.281 15.207 22.676 22.811 25.191 30.898 32.602 39.239 44.509 

Wang et al. (2016) 8.0870 10.281 15.205 22.673 22.803 25.187 30.891 32.619 39.225 44.477 

1.5 

Present 3.9331 7.3748 10.811 13.200 13.318 17.390 20.598 21.124 23.533 24.681 

FEM 3.9332 7.3756 10.812 13.201 13.319 17.392 20.601 21.128 23.536 24.685 

Wang et al. (2016) 3.9331 7.3748 10.811 13.200 13.318 17.390 20.598 21.124 23.533 24.681 

2 

Present 2.9025 6.2226 6.7082 9.0222 12.232 12.644 14.596 15.151 18.774 19.618 

FEM 2.9025 6.2230 6.7088 9.0230 12.234 12.645 14.598 15.153 18.777 19.622 

Wang et al. (2016) 2.9025 6.2226 6.7082 9.0222 12.232 12.644 14.596 15.151 18.774 19.618 

2.5 

Present 2.5294 4.3002 6.4420 7.7470 8.0683 10.436 12.419 13.114 13.570 15.718 

FEM 2.5294 4.3006 6.4427 7.7477 8.0702 10.434 12.421 13.118 13.572 15.721 

Wang et al. (2016) 2.5294 4.3002 6.4420 7.7470 8.0683 10.436 12.419 13.114 13.570 15.718 

3 

Present 2.3558 3.4386 5.6993 6.3141 7.1541 8.7531 9.4458 11.639 12.297 13.077 

FEM 2.3558 3.4387 5.6998 6.3143 7.1547 8.7540 9.4478 11.641 12.299 13.079 

Wang et al. (2016) 2.3558 3.4386 5.6993 6.3141 7.1541 8.7531 9.4458 11.639 12.297 13.077 

3.5 

Present 2.2613 2.9891 4.4566 6.2363 6.8075 6.9854 7.9095 9.6653 10.462 12.225 

FEM 2.2614 2.9892 4.4571 6.2369 6.8078 6.9865 7.9095 9.6661 10.465 12.227 

Wang et al. (2016) 2.2613 2.9891 4.4566 6.2363 6.8075 6.9854 7.9099 9.6653 10.462 12.225 

4 

Present 2.2044 2.7269 3.7476 5.4637 6.1887 6.6310 7.4083 8.0548 8.6338 10.487 

FEM 2.2044 2.7271 3.7481 5.4653 6.1894 6.6319 7.4094 8.0594 8.6356 10.491 

Wang et al. (2016) 2.2044 2.7269 3.7476 5.4637 6.1887 6.6310 7.4083 8.0548 8.6338 10.487 

4.5 

Present 2.1674 2.5609 3.3099 4.5434 6.1562 6.4069 6.4979 7.1004 7.9983 8.9637 

FEM 2.1675 2.5610 3.3102 4.5441 6.1565 6.4084 6.4983 7.1012 7.9990 8.9674 

Wang et al. (2016) 2.1674 2.5609 3.3099 4.5434 6.1562 6.4069 6.4979 7.1004 7.9983 8.9637 

5 

Present 2.1420 2.4493 3.0220 3.9464 5.3296 6.1354 6.4057 6.8788 7.2588 7.5935 

FEM 2.1421 2.4494 3.0220 3.9470 5.3308 6.1356 6.4064 6.8792 7.2616 7.5944 

Wang et al. (2016) 2.1420 2.4493 3.0220 3.9464 5.3296 6.1354 6.4057 6.8792 7.2588 7.5935 

Method 
Mode 

1st 2nd 3rd 4th 5th 
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 6th 7th 8th 9th 10th 
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Fig. 3 First ten buckling mode shapes of CCCS square plate loaded at two opposite clamped edges 
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Fig. 4 First ten buckling mode shapes of CCCS square thin plate loaded at clamped edge with opposite simply supported edge 

 

Table 4 First ten buckling load factors of the CCSS rectangular plates 

b/a Method 
Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

Present 22.673 25.187 30.891 39.225 47.525 54.515 66.528 75.982 78.758 81.849 

FEM 22.674 25.189 30.895 39.233 47.536 54.532 66.560 75.996 78.776 81.904 

Wang et al. (2016) 22.673 25.187 30.891 39.225 47.525 54.515 66.528 75.982 78.758 81.849 

1 

Present 6.2226 9.0222 14.596 19.618 22.414 22.803 28.879 32.295 34.931 40.982 

FEM 6.2228 9.0228 14.598 19.619 22.420 22.805 28.884 32.309 34.939 40.988 

Wang et al. (2016) 6.2226 9.0222 14.596 19.618 22.414 22.803 28.879 32.295 34.931 40.982 

1.5 

Present 3.4386 7.1541 9.4458 11.639 13.077 16.606 18.680 21.032 22.105 24.220 

FEM 3.4387 7.1551 9.4462 11.640 13.080 16.608 18.682 21.040 22.108 24.228 

Wang et al. (2016) 3.4386 7.1541 9.4458 11.639 13.077 16.606 18.680 21.032 22.105 24.220 

2 

Present 2.7269 5.4637 6.6310 8.6338 11.228 12.597 13.558 14.396 17.919 18.231 

FEM 2.7270 5.4640 6.6320 8.6350 11.229 12.601 13.560 14.400 17.923 18.233 

Wang et al. (2016) 2.7269 5.4637 6.6310 8.6338 11.228 12.597 13.558 14.396 17.919 18.231 

2.5 

Present 2.4493 3.9464 6.4057 7.2588 7.5935 9.9329 12.304 12.393 13.473 14.925 

FEM 2.4494 3.9467 6.4072 7.2594 7.5950 9.9347 12.306 12.399 13.479 14.928 

Wang et al. (2016) 2.4493 3.9464 6.4057 7.2588 7.5935 9.9329 12.304 12.393 13.473 14.925 

3 

Present 2.3129 3.2512 5.2433 6.2911 7.0683 8.5055 8.7375 11.052 12.284 13.012 

FEM 2.3131 3.2514 5.2437 6.2929 7.0701 8.5073 8.7387 11.054 12.291 13.018 

Wang et al. (2016) 2.3129 3.2512 5.2433 6.2911 7.0683 8.5055 8.7375 11.052 12.284 13.012 

3.5 

Present 2.2358 2.8791 4.1863 6.2226 6.4579 6.7794 7.7837 9.3823 9.8419 12.029 

FEM 2.2360 2.8793 4.1865 6.2242 6.4584 6.7810 7.7852 9.3837 9.8433 12.031 

Wang et al. (2016) 2.2358 2.8791 4.1863 6.2226 6.4579 6.7794 7.7837 9.3823 9.8419 12.029 

4 

Present 2.1880 2.6570 3.5770 5.1388 6.1805 6.5952 7.3292 7.5446 8.4778 10.167 

FEM 2.1883 2.6574 3.5774 5.1394 6.1835 6.5981 7.3325 7.5463 8.4813 10.171 

Wang et al. (2016) 2.1880 2.6570 3.5770 5.1388 6.1805 6.5952 7.3292 7.5446 8.4778 10.167 

4.5 

Present 2.1562 2.5139 3.1960 4.3255 6.0501 6.1522 6.4749 7.0417 7.8971 8.4726 

FEM 2.1562 2.5141 3.1963 4.3259 6.0509 6.1546 6.4770 7.0440 7.8993 8.4736 

Wang et al. (2016) 2.1562 2.5139 3.1960 4.3255 6.0501 6.1522 6.4749 7.0417 7.8971 8.4726 

5 

Present 2.1341 2.4161 2.6423 3.7946 5.0784 6.1311 6.3893 6.8329 6.9030 7.5103 

FEM 2.1343 2.4163 2.6426 3.7949 5.0779 6.1332 6.3916 6.8348 6.9040 7.5124 

Wang et al. (2016) 2.1341 2.4161 2.6423 3.7946 5.0784 6.1311 6.3893 6.8329 6.9030 7.5103 
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Tables 1-4 show that when the aspect ratio increases the 

buckling load factor is decreases vice versa. Consequently, 

the buckling load factor has the minimum value at aspect 

ratio (0.5) for all boundary conditions. It is also observed 

that when the aspect ratio is 1 or less, the buckling load 

coefficient decreases rapidly. However, when the aspect 

ratio increases from 1 to 5, very small changes are observed. 

Therefore, it can be stated that the aspect ratio has a great 

influence on the buckling load coefficient. From Tables 1-4, 

it can be seen that the buckling load factor of plate with 

aspect ratios 0.5 are about 3, 5.5 and 6.5 times higher than 

plates with aspect ratios of 1, 1.5 and 2, respectively. 

It can also be seen that the boundary conditions also 

affect the buckling loads. When the aspect ratio is less than  

 

 

1, the buckling loads under all boundary conditions are 

higher. The buckling load factor of CCCC is always greater 

than that of CCCS and CCSS for all aspect ratios. 

In addition, the buckling load coefficient of CCCS is 

always higher than that of CCSS. The results show that the 

clamped edges can improve the mechanical buckling 

strength of the plate more efficiently than the simply 

supported edges. 

Tables 5-8 present the convergence results of all four 

types of boundary conditions. The result shows that the 

convergence is very fast. The high accuracy of five 

significant figures is attained by taking only 20 numbers of 

terms in our solution.  
 

Table 5 Convergence study for CCCC plates, with b/a=0.5 and 4.5 

b/a 
No of series 

terms 

Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

10 31.468 32.348 41.122 46.195 60.812 69.863 90.319 90.691 91.180 92.174 

15 31.468 32.348 41.123 46.201 60.817 69.885 90.330 90.692 91.211 92.178 

20 31.468 32.348 41.123 46.201 60.818 69.885 90.330 90.692 91.213 92.178 

30 31.468 32.348 41.123 46.201 60.818 69.885 90.330 90.692 91.213 92.178 

4.5 

10 4.1203 4.5076 5.2382 6.4361 8.2529 8.2916 8.6241 9.1991 10.051 10.854 

15 4.1204 4.5080 5.2397 6.4378 8.2580 8.2918 8.6246 9.2015 10.054 10.858 

20 4.1204 4.5080 5.2398 6.4381 8.2584 8.2918 8.6249 9.2019 10.055 10.858 

30 4.1204 4.5080 5.2398 6.4381 8.2584 8.2918 8.6249 9.2019 10.055 10.858 

Table 6 Convergence study for CCCS plates loaded at two opposite clamped edges, with b/a=0.5 and 4.5 

b/a 

No of 

series 

terms 

Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

10 24.891 26.373 36.089 40.650 53.945 58.381 75.764 78.470 79.500 89.644 

15 24.891 26.373 36.089 40.651 53.945 58.384 75.776 78.470 79.504 89.656 

20 24.981 26.373 36.089 40.651 53.945 58.384 75.776 78.470 79.504 89.657 

30 24.981 26.373 36.089 40.651 53.945 58.384 75.776 78.470 79.504 89.657 

4.5 

10 4.1098 4.4633 5.1317 6.2304 7.9098 8.2868 8.6043 9.1544 9.9680 10.333 

15 4.1099 4.4635 5.1323 6.2314 7.9116 8.2869 8.6047 9.1553 9.9698 10.336 

20 4.1099 4.4635 5.1323 6.2315 7.9118 8.2869 8.6048 9.1555 9.9702 10.336 

30 4.1099 4.4635 5.1323 6.2315 7.9118 8.2869 8.6048 9.1555 9.9702 10.336 

Table 7 Convergence study for CCCS plates loaded at simply supported edge and its opposite clamped edges, with 

b/a=0.5 and 4.5 

b/a 
No of series 

terms 

Mode 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

0.5 

10 28.831 32.233 36.116 42.913 53.310 66.096 80.320 87.520 90.685 92.149 

15 28.832 32.234 36.116 42.914 53.313 66.104 80.335 87.521 90.673 92.152 

20 28.832 32.234 36.116 42.914 53.313 66.104 80.336 87.521 90.672 92.152 

30 28.832 32.234 36.116 42.914 53.313 66.104 80.336 87.521 90.672 92.152 

4.5 

10 2.1674 2.5608 3.3095 4.5431 6.1561 6.4063 6.4976 7.0991 7.9968 8.9636 

15 2.1674 2.5609 3.3099 4.5434 6.1562 6.4069 6.4978 7.1003 7.9979 8.9647 

20 2.1674 2.5609 3.3099 4.5434 6.1562 6.4069 6.4979 7.1004 7.9983 8.9637 

30 2.1674 2.5609 3.3099 4.5434 6.1562 6.4069 6.4979 7.1004 7.9983 8.9637 
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5. Conclusions 
 

This research explores the analytical buckling solutions 

of the thin rectangular plates by adopting the finite integral 

transform method. The governing high order partial 

differential equation is converted into a system of a linear 

algebraic equation, and the analytical solution is obtained 

elegantly. The main advantage of the proposed method is its 

simplicity and generality and does not need to pre-

determination the deflection function which makes the 

solving procedure much reasonable. The method can also 

be extended to bending and vibration as well as thick and 

moderately thick plate problems. The method can be easy 

for both engineers and scientists to implement. The present 

results are believed to provide a benchmark reference for 

validation of other numerical and analytical methods. 
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