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1. Introduction 
 

The parabolic type of heat conduction equation, as was 

used initially in the study of thermoelastic behavior was 

found to yield some unrealistic situation in the sense that 

the velocity of heat signals was infinite. At present, various 

generalized thermoelasticity theories are being proposed to 

get rid of this physically inadmissible situation. Lord and 

Shulman (1967) postulated a generalized theory by 

incorporating thermal relaxation time with heat flux term in 

Fourier’s law of heat conduction. Green and Lindsay (1972) 

also developed a beautiful theory of generalized 

thermoelasticity with two relaxation times. This theory does 

not violate classical Fourier’s law in case of centrally 

symmetric bodies. But it includes temperature-rate in the 

constitutive relation and thus modifies all the equations of 

the coupled theory, not the heat conduction equation only. 

That’s why, this theory is generally referred as temperature-

rate-dependent thermoelasticity. 

The problems of rotating bodies are more important than 

the corresponding problems of non-rotating bodies as most 

of the large bodies such as the earth, the moon and other 

planets have an angular velocity. Inspired by this idea, some 

researchers have investigated different problems of rotating 

media. Schoenberg and Censor (1973) concerned the effect 

of rotation on elastic waves. Sharma et al. (2008) analyzed 

the effect of rotation on different type of waves propagating  
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in a thermoelastic medium. By employing the linear theory 

of thermoelasticity, Bayones and Abd-Alla (2018) studied 

the effect of time and rotation parameter on the stresses, 

displacement and temperature field in a thermoelastic half-

space with heat source. Kalkal et al. (2018) employed 

normal mode analysis to analyze the effects of rotation and 

phase-lag parameters on the considered field variables in a 

micropolar generalized thermo-viscoelastic medium. 

Recent years have seen an ever growing interest in 

investigation of the problems related to initially stressed 

elastic medium, due to its numerous applications in various 

fields, such as earthquake engineering, seismology and 

geophysics. The earth is assumed to be under high initial 

stresses. It is therefore of great interest to study the 

influence of these stresses on the propagation of stress 

waves. The elastodynamics of a body under initial stress is 

exposed in the treatise of Biot (1965). Montanaro (1999) 

developed the linear theory of thermoelasticity with initial 

stress for an isotropic medium. Yadav et al. (2017) studied 

the problem of reflection of plane waves from an initially 

stressed surface of the generalized electromicrostretch 

thermoelastic solid rotating with a uniform angular velocity 

in the context of Lord-Shulman (L-S) and Green-Lindsay 

(G-L) theories. 
The study of dynamical problems of magneto-

thermoelasticity has received much attention in literature 
during the past few decades. Knopoff (1955) and Chadwick 
(1957) introduced the theory of magneto-thermoelasticity. 
Paria (1962) discussed the development of magneto-
thermoelasticity and also studied the propagation of plane 
magneto-thermoelastic waves in an isotropic unbounded 
medium. Nayfeh and Nemat-Nasser (1972) studied the 
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propagation of plane waves in a solid under the influence of 
an electromagnetic field. Said and Othman (2016) 
investigated the wave propagation in a fiber-reinforced 
magneto-thermoelastic medium under two-temperature 
three-phase-lag Green-Naghdi theory without energy 
dissipation. Deswal et al. (2017) studied the magneto-
thermo-viscoelastic interactions in a homogeneous, 
isotropic medium under generalized thermoelasticity theory 
without energy dissipation with fractional order strain. 
Biswas and Abo-Dahab (2018) studied the effects of initial 
stress and magnetic field on Rayleigh waves in a 
homogeneous magneto-thermoelastic orthotropic medium 
in the context of three-phase-lag model. Jain et al. (2018) 
discussed the propagation of plane waves in a fiber 
reinforced thermoelastic medium in the presence of moving 
internal heat source and gravity under the fractional order 
two-temperature theory. 

Thermodiffusion, in an elastic solid, results from 
coupling of the fields of temperature, mass diffusion and 
strain. Nowacki (1974a,b,c) put forward the theory of 
thermoelastic diffusion by using a coupled thermoelastic 
model. Sherief et al. (2004) extended the theory of 
thermoelastic diffusion and derived the governing equations 
for the generalized thermoelastic diffusion problem in an 
elastic solid, which allows the finite speeds of propagation 
for thermoelastic and diffusive waves. Sharma et al. (2008) 
studied the dynamical behaviour in generalized 
thermoelastic diffusion medium under Green-Lindsay 
theory using Fourier transform method. Deswal and her co-
workers (2009, 2011) examined some problems employing 
the theory of generalized thermoelastic diffusion under 
different kinds of loads. The fundamental solution for two-
dimensional problem in an orthotropic magneto-
thermoelastic diffusive medium was investigated by Kumar 
and Chawla (2013). By using Laplace and Hankel 
transforms, an axi-symmetric generalized thermoelastic 
diffusion problem with two-temperature and initial stress 
under fractional order heat conduction was discussed by 
Deswal et al. (2016). Under Green-Naghdi (G-N) theory of 
type II and III, Othman et al. (2017) studied the effect of 
gravitational field and temperature-dependent properties in 
an isotropic micropolar thermoelastic diffusive medium. 

Keeping in view the above stated facts and applications 
of reflection phenomenon in a homogeneous, orthotropic, 
initially stressed, magneto-thermoelastic rotating medium 
with diffusion, the present paper is devoted to discuss the 
reflection phenomenon of plane waves at the boundary 
surface. The formulae for amplitude ratios and energy ratios 
corresponding to various reflected waves have been 
presented, when a set of coupled waves strikes obliquely at 
the boundary surface of the assumed model and their 
variations with angle of incidence are presented graphically. 
Effects of rotation, initial stress, magnetic and diffusion 
parameters on the reflection coefficients of thermoelastic 
waves are observed. It has been verified that at each angle 
of incidence, there is no dissipation of energy at the 
boundary surface during reflection. Moreover, the effect of 
anisotropy is also depicted on velocities of various reflected 
waves. 
 
 

2. Basic governing equations 
 

Following Sherief et al. (2004), the constitutive 

relations and field equations for a homogeneous, 

anisotropic, initially stressed, thermally and perfectly 

conducting elastic medium with rotation and diffusion in 

the context of L-S model, are given as 

(i) the constitutive equations 

( )     = − − − +ij ijkl kl ij ij ij ijC e c P
 

(1) 

( ), ,

1

2
ij i j j ie u u= +

, 
( ), ,

1

2
ij j i i ju u = −

 
(2) 

(ii) the equation of motion 

( ) ( ), 2ji j i
i

F u u u   + = +  + 
   

(3) 

 (iii) heat conduction equation 

( ) ( ) ( ), 0 0 , 0 , 0 0ij ij E ij i j i jK c T u u aT c c       = + + + + +
 
(4) 

 (iv) equation of mass diffusion 

( ), , ,ij ij ij km km ij ij ijbD c D e aD c c  = + + +
 

(5) 

where Cijkl(Cijkl=Cklij=Cjikl=Cijlk) are the elastic parameters, 

Kij=Kiδij (Kij=Kji) are thermal conductivity, βij= βiδij(βij=βji), 

γij= γiδij(γij=γji) are the thermal and diffusion elastic coupling 

tensors, σij’s are the components of stress, eij’s are the 

components of strain, ui are components of displacement 

vector, δij is the Kronecker delta, θ=T−T0, where T is 

absolute temperature, T0 is temperature of the medium in its 

natural state assumed to be |
𝜃

𝑇0
| ≪ 1 and c= C−C0, where C 

is non-equilibrium concentration, C0 is mass concentration 

at natural state, a is measure of thermodiffusion effect, b is 

measure of diffusion effect, Dij=Diδij(Dij=Dji) are 

thermodiffusion constants, ρ is the mass density, cE is the 

specific heat at constant strain, τ0, τ are thermal and 

diffusion relaxation times respectively, P is initial stress, 

  is angular velocity, Fi are the components of body 

force. In the above equations, a comma denotes material 

derivative and the summation convention is used. 

Following Nayfeh and Nemat-Nasser (1972), the 

variation of the magnetic and electric fields for a perfectly 

conducting medium are given by linearized Maxwell’s 

equations as 

curl 
0

E
h J

t



= +
  

(6) 

curl 
0

h
E

t



= −

  
(7) 

0
 

= −  
 

u
E H

t  
(8) 

div 0h =  (9) 

The constitutive equations in an orthotropic, initially 

stressed thermoelastic medium can be written in matrix 

form as 
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
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    

          

1 1

2 2

3 3

1

1

1

0 0

0 0

0 0

yz

xz

xy

c P

 

 

 








    
    
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− − −     
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    
    

            

where 

1 11 1 12 2 13 3t t tC C C   = + +
, 

2 12 1 22 2 23 3t t tC C C   = + +
, 

3 13 1 23 2 33 3   = + +t t tC C C
, 

1 11 1 12 2 13 3   = + +c c cC C C
, 

2 12 1 22 2 23 3c c cC C C   = + +
, 

3 13 1 23 2 33 3c c cC C C   = + +
, 

(10) 

and ( ), 1, 2, 3it ic i  =  are coefficients of linear thermal 

and diffusion expansion respectively. 

 
 
3. Problem formulation 

 

Consider a homogeneous, orthotropic, initially stressed, 

thermally and perfectly conducting elastic medium with 

rotation and diffusion in the context of L-S model. We shall 

use the rectangular Cartesian co-ordinate system (x,y,z), 

having the surface of the half-space as the plane x = 0, with 

x-axis pointing vertically into the medium, so that the half-

space occupies the region 0x  . The orientation of the 

primary magnetic field ( )00, 0,H H=  is taken towards the 

positive direction of z-axis. Due to the application of this 

magnetic field, there arises in the medium an induced 

magnetic field h  and an induced electric field E . Further 

h  and E  are small in magnitude in accordance with the 

assumptions of the linear theory of thermoelasticity. We 

restrict our analysis to xy-plane. Thus all the quantities in 

the medium are independent of the variable z. So the 

displacement vector u  and angular velocity   will have 

the components respectively. 

( ) ( ), , 0 , 0, 0,u u v=  = 
 

(11) 

The components of the initial magnetic field vector H  

are 

00, 0,x y zH H H H= = =
 (12) 

The electric intensity vector is normal to both the 

magnetic intensity and the displacement vector. Also, the 

electric intensity vector E  is parallel to the current density 

vector J , thus 

1xE E=
, 2yE E=

, 
0zE =

,  

1xJ J=
, 2yJ J=

, 
0zJ =

 

(13) 

From (6)-(9), one can obtain 

1 0 0

v
E H

t



= −

 , 
2 0 0

u
E H

t



=

 , 3 0E =
 

(14) 

1 0h =
, 2 0h =

, 3 0h H e= −
 (15) 

2

1 0 0 0 0 2

e v
J H H

y t
 

 
= − −

  , 
2

2 0 0 0 0 2
 

 
= −



e u
J H H

dx t , 3 0J =
 

(16) 

Lorentz’s force F  is given by the relation 

( )0F J H= 
 

(17) 

Inserting (12) and (16) in (17), we can obtain the 

components of the body force F  as 

2
2

0 0 0 0 2x

e u
F H

x t
  

  
= − 

   , 

2
2

0 0 0 0 2y

e v
F H

y t
  

  
= − 

   , 
0zF =

 

(18) 

Taking into consideration (1), the requisite stress 

components are given as 

11 12 1 1xx

u v
C C c P

x y
  

 
= + − − −

   
(19) 

12 22 2 2yy

u v
C C c P

x y
   

 
= + − − −

   
(20) 

66 66
2 2

xy

P u P v
C C

y x


    
= + + −   

      
(21) 

66 66
2 2

yx

P u P v
C C

y x


    
= − + +   

      
(22) 

By using summation convention and inserting the 

components of the body force and the stresses defined in 

(18)-(22) into (3) along with the consideration of two-

dimensional problem, the equation of motion takes the form 

2 2
2

112 2
2

u v u
u C

t t x

   

− −  = 
     

(23) 
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2 2

12 66 66 22 2

P v P u
C C C

x y y

    
+ + + + −   

       

2
2

1 1 0 0 0 0 2

c e u
H

x x x t


    

    
− − + − 

     , 

2 2
2

662 2
2

2

v u P v
v C

t t x

    

− +  = −   
      

2 2

12 66 22 222

P u v
C C C

x y y y




   
+ + + + − 

      

2
2

2 0 0 0 0 2

c e v
H

y y t
   

   
− + − 

     

(24) 

In xy-plane, equation of heat conduction (4) and 

equation of mass diffusion (5) are reduced to the forms 

2 2

1 22 2
K K

x y

  
+

   

2

0 0 1 0 2 02 E

u v
c T T aT c

t t x y
    

     
= + + + +  

       

(25) 

2 2

1 22 2

  
+ 

  

c c
b D D

x y
 

2 2 3 3

1 2 1 1 1 22 2 3 2

u v
a D D D D

x y x x y

 
 

    
= + + + 

       
3 3 2

2 1 2 22 3 2

u v
D D c

x y y t t
  

    
+ + + + 

       

(26) 

To facilitate the solution, we introduce non-dimensional 

variables as follows 

( ) ( )0 0, , , , , ,x y u v c x y u v    =
, 

( ) ( )2

0 0 0 0, , , ,t c t       =
 

( ) ( )2

0

1
, ,ij ijP P

c
 


  =

, 
2

0 0c 


 =

,  

1

2

0c


 


 =

, 

1

2

0

c c
c




 =

 

(27) 

where 

0

1

Ec

K


 =

, 

2 11
0

C
c


=

 

Now, in terms of the non-dimensional quantities defined 

in (26) and (27), eqs. (19)-(26) along with some 

simplifications, provide the following relations 

1xx

u v
B c P

x y
 

 
= + − − −
   

(28) 

1 2 3 4yy

u v
B B B B c P

x y
 

 
= + − − −

   
(29) 

6 5xy

u v
B B

y x


 
= +

   
(30) 

5 6yx

u v
B B

y x


 
= +

   
(31) 

( )
2 2 2

2

7 92 2
2 1

   
− −  = + +

    

u v u v
u B B

t t x x y  

2 2

5 82 2

u c u
B B

y x x t

   
+ − − −

     

(32) 

( )
2 2 2 2

2

5 9 2 72 2 2
2

v u v u v
v B B B B

t t x x y y

    
− +  = + + +

     

2

3 4 8 2

c v
B B B

y y t

  
− − −

    

(33) 

2 2 2

11 0 12 13 142 2 2

u v
c

t x yx y t

 
     

       
+ = + + + +  

       
 (34) 

2 2 2 2 3

21 22 21 232 2 2 2 3

c d c u

x y x y x

 
   

    
+ = + + 

       

3 3 3 2

24 25 26 272 2 3 2

v u v c c

x y x y y t t
    

     
+ + + + + 

         

(35) 

where 

2
3

1

B



=

, 

2
4

1

B



=

, 

66
5

11 2

C P
B

C
= −

, , 

9 1 6 7B B B B= + +
, 

66
6

11 2

C P
B

C
= +

, 

( ) ( )2 2 2 2

1 2 7 8 12 22 0 0 0 0 0 0

11

1
, , , , , ,B B B B C C H H c

C
  =

, 

2
11

1

K

K
 =

, 

( ) 0 1 11
12 13 14 1 2

11 1 0 1

, , , ,
T aC

C K


    

 

 
=  

  , 

2
21

1

D

D
 =

, 

1
22

1

a

b





=

, 

( ) ( )1
23 24 25 26 1 2 1 21 2 21

11

, , , , , ,
bC


         =

, 

27

0 1

1

b D



=

 

 

 
4. Solution of the problem 

 

For the analytic solution of eqs. (32)-(35) in the form of 

the harmonic traveling waves, we suppose the solution of 
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the form 

 ( )   ( )1 1 1 1, , , , , , , , exp cos sinu v c x y t u v c k x y t     = − + −    (36) 

where k is the wave number, ω is angular frequency 

having the definition ω=kV, V being the phase velocity and 

(sinθ, cosθ) denotes the projection of wave normal onto the 

xy-plane. 

Substituting from (36), into eqs. (32)-(35), we obtain the 

following set of equations 

( ) ( )2 2

11 12 1 13 14 1 15 1 16 1 0F V F u F V F v F V F Vc+ + − − − =
 

(37) 

( ) ( )2 2

13 14 1 11 16 1 17 1 18 1 0F V F u F V F v F V F Vc+ − + − − =
 

(38) 

( )2 2

22 1 23 21 24 1 25 1 0F Vu F Vv F V F F V c− − − − =
 

(39) 

( )2

31 1 32 1 33 1 34 35 1 0− − − − =F u F v F V V F V F c
 

(40) 

where 

( )2 2 2

11 8F B = − + +
, 

( ) 2 2 2

12 7 51 cos sinF B B   = + +  , 13 2F  = 
. 

( ) 2

14 7 9 cos sinF B B  = +
, 15 cosF  =

, 

( )2 2 2

16 5 2 7cos sinF B B B   = + +  , 

17 3 sinF B =
, 18 4 sinF B =

, 
2

21 0F   = +
, 

22 12 21 cosF F =
, 23 13 21 sinF F =

, 

( )2 2 2

24 11cos sinF    = +
, 25 14 21F F=

, 

( )3 3 2

31 23 25cos cos sinF      = +
, 

( )3 2 3

32 24 26cos sin sinF      = +
, 

( )2 2 2

33 22 21cos sinF     = +
, 

( )2

34 27F   = +
, 

( )2 2 2

35 21cos sinF    = +
 

It can be seen that eqs. (37)-(40) are coupled in u1,v1, θ1  

and c1. The condition for existence of non-trivial solution of 

the homogeneous system of above four equations provides 

us the characteristic equation satisfied by V as 

8 6 4 2 0V AV BV CV D+ + + + =  (41) 

where 

71 85 72 84 81 75 82 74

71 84 81 74

F F F F F F F F
A

F F F F

+ − −
=

−
 

71 86 72 85 81 76 82 75 83 74 84 73

71 84 81 74

F F F F F F F F F F F F
B

F F F F

+ + − + −
=

−
, 

72 86 76 82 83 75 85 73

71 84 81 74

F F F F F F F F
C

F F F F

+ + −
=

−
, 

( )76 83 86 73

71 84 81 74

F F F F
D

F F F F

− +
=

−
, 

81 41 67 45 61F F F F F= +
, 82 45 62 41 68 42 67F F F F F F F= − +

, 

83 42 68 45 63F F F F F= +
, 84 43 67 45 64F F F F F= +

, 

85 44 67 43 68 45 65F F F F F F F= − −
, 86 45 66 44 68F F F F F= −

, 

71 41 55 45 51F F F F F= −
, 72 42 55 41 56 45 52F F F F F F F= − −

, 

73 42 56F F F=
, 74 43 55 45 53F F F F F= −

, 

75 44 55 43 56 45 54= − −F F F F F F F
, 76 44 56F F F=

, 

61 11 34=F F F
, 62 12 34 11 35F F F F F= −

, 63 12 35 15 31F F F F F= +
, 

64 13 34=F F F
, 65 13 35 14 34F F F F F= +

, 66 14 35 15 32= +F F F F F
, 

67 15 34F F F=
, 

( )68 15 33 35= +F F F F
, 51 13 25F F F=

, 

52 14 25 18 22F F F F F= −
, 53 11 25F F F= −

, 

54 18 23 16 25F F F F F= −
, 55 18 21 17 25F F F F F= −

, 56 18 24F F F=
, 

41 11 18 13 15F F F F F= −
, 42 12 18 14 15F F F F F= −

, 

43 13 18 11 15F F F F F= +
, 44 15 16 14 18F F F F F= −

, 

( )45 15 17 18F F F F= −
 

The roots of equation (41) give four values of V2 which 

correspond to four coupled plane waves qP, qT, qMD and 

qSV propagating with velocities V1,V2,V3 and V4 

respectively. Also, the velocity of these waves depends 

upon the frequency ω and wave number k. Hence, these 

waves are found to be dispersive and attenuated in nature. 

 

 
 
 
5. Reflection at the boundary surface 

 

Here we shall discuss the reflection phenomena, when a 

set of coupled waves becomes incident obliquely at the 

boundary of the half-space. We assume that a set of coupled 

plane qP wave propagating with velocity V1 and making an 

angle θ0 with the normal be made incident at the boundary 

surface x = 0. In order to satisfy the boundary conditions, 

459



 

Suresh Kumar Sheokand, Rajesh Kumar, Kapil Kumar Kalkal and Sunita Deswal 

we postulate that this incident qP wave gives rise to four 

reflected coupled plane waves qP, qT, qMD and qSV 

making an angle θ1, θ2, θ3 and θ4 respectively with the 

normal, as shown in Fig. A. Therefore, the full structure of 

the wave field consisting of the incident and reflected 

waves, can be written as 

( ) ( ) ( )
4

1 1 1 0 0

1

, , , 1, , , 1, , ,i i i i i

i

u v c A P A P      − +

=

= +
 

(42) 

where ( )0 1 0 0 1exp cos sinP k x y t   − = − + −    is the 

phase factor of the incident wave at angle θ0 with A0 as 

amplitude constant, ( )exp cos sini i i i iP k x y t   + = + −    

are the phase factors of the reflected waves corresponding 

to amplitude constants Ai at angles θi and ηi, ζi and ζi 

(i=1,2,3,4) are the coupling parameters between u1,v1, θ1 

and c1. The expressions of these coupling parameters are 

given by 

( )4 2

71 72 73

4 2

74 75 76


− + −

=
+ −

i i

i

i i

F V F V F

F V F V F
, 

( )
( )

4 2 4 2

61 62 63 64 65 66

2

67 68

i i i i i

i

i i

F V F V F F V F V F

V F V F




+ − + − +
=

−
, 

( )
( )31 32 33

2

34 35

, 1, 2, 3, 4
i i i

i

i i

F F F V
i

V F V F

 


− −
= =

−
 

 

 

6. Boundary conditions 
 

The amplitudes A0, A1, A2, A3 and A4 can be determined 

by imposing 

The proper boundary conditions at the surface x = 0. 

Since, the boundary of the half-space is adjacent to vacuum, 

it is free from mechanical stresses, temperature and 

concentration. Mathematically, these conditions may be 

expressed as 

0xx xx P + + =
 (43) 

0xy xy + =
 (44) 

0 =  (45) 

0c =  (46) 

where ( ), ,xj j x y z =  is the Maxwell stress given in 

the form 

( )0xj x j j x k k xjH h H h H h  = + −
 

(47) 

The boundary conditions prescribed above in equations 

(43)-(46) are identically satisfied if and only if 

1 2 3 4    = = = =  and satisfy Snell’s law, which gives 

the relation among angles of incident and reflected waves as 

1 0 1 1 2 2 3 3 4 4sin sin sin sin sink k k k k    = = = =
 (48) 

which can also be expressed as (extended Snell’s law) 

0 31 2 4

1 1 2 3 4

sin sinsin sin sin

V V V V V

   
= = = =

 
(49) 

From Snell’s law (49), we observe that θ0 = θ1, the other 

angles of reflection depend upon the phase speeds V1, V2, V3 

and V4 which are functions of material parameters. 

Inserting the expressions of u,v, θ and c from equation 

(42) into expressions (28) and (30) and using relations 

given in (47) and (49), we obtain a system of four non-

homogeneous equations in four unknowns by using the 

boundary conditions defined in (43)-(46). These four 

equations can be written in matrix form as 

4

1

, 1, 2, 3, 4ij j i

j

b Z Y i
=

= =
 

(50) 

where 

( ) ( )
( )

1 7 1 71 cos sin
j j

j j j j j

j

b k B B B
k

 
  



 +
 = + + + −
   , 

( )2 6 5sin cosj j j j jb k B B  = +
, 3 j jb =

, 4 j jb =
, 

0

j

j

A
Z

A
=

, 
( )1, 2, 3, 4j =

, and 

( ) ( )
( )1 1

1 1 7 1 1 7 1 1

1

1 cos sinY k B B B
k

 
  



+ 
= + − + + 

  , 

( )2 1 6 5 1 1sin cosY k B B  = − −
, 3 31Y b= −

, 4 41Y b= −
 

Here, Zj(j=1,2,3,4) represent the reflection coefficients 

(ratio of the amplitudes of reflected waves to the amplitude 

of incident wave) of the reflected waves. It is clear that the 

various reflection coefficients depend on the angle of 

incidence, frequency of the incident wave and on the 

material properties of the medium. 

 
 
7. Energy partition 

 

Following Achenbach (1967), the instantaneous rate of 

work of surface traction is the scalar product of the surface 

traction and the particle velocity. This scalar product is 

called the power per unit area, denoted by 
*P  and 

represents the rate at which the energy is transmitted per 

unit area of the surface. The time average of 
*P  over a 

period, denoted by 
*P  , represents the average energy 

transmission per unit surface area per unit time. For the 

present case, the rate of energy transmission at the free 

plane surface x = 0 is given by 

( ) ( )*

xx xx xy xyP P u v   = + + + +
 

(51) 

460



 

Propagation of plane waves in an orthotropic magneto-thermodiffusive rotating half-space 

where superposed dot denotes temporal derivative. We 

shall now calculate P* for the incident wave and for each of 

the reflected waves using the appropriate potentials. The 

energy ratios Ei(i=1,2,3,4) of the various reflected waves 

are defined as the ratios of energy corresponding to the 

reflected waves to the energy of the incident wave. The 

expressions for these energy ratios Ei(i=1,2,3,4) for 

reflected waves are defined as 

*

*

0

i
i

P
E

P

 
=
 

 

(52) 

where <𝑃0
∗> denotes the average energy carried along 

incident wave and <𝑃0
∗> (i = 1, 2, 3, 4) denote the average 

energy carried along reflected coupled waves. Thus, for an 

incident set of coupled wave, having phase speed V1, the 

energy ratios of reflected waves by using expression (52), 

are given by 

( ) ( )7 1 71 cos sini i i iE R B B B  = + + +  

( )
( ) 2

6 5

1

sin cosi i i
i i i i i

i

k
B B Z

k k

 
   



+
− + + 

, 

( ) ( )7 1 1 7 11 cos sinR B B B  = − + + +  

( )
( )

11 1

1 6 1 5 1

1

sin cos
 

   


−+
− + − B B

k
 

where i = 1, 2, 3, 4 

(53) 

 

 

8. Particular cases 
 

8.1 Transversely isotropic medium 
 

To discuss the problem of wave propagation and 

reflection phenomena for a transversely isotropic, initially 

stressed, thermally and perfectly conducting elastic rotating 

medium with axis of symmetry coinciding with x-axis 

under diffusion theory, it is sufficient to set the value of 

elastic parameters Cij in equation (10) as: 

12 13C C=
, 22 33C C=

, 55 66C C=
, 

( )44 22 23

1

2
C C C= −

, 

1 11 1 12 22C C   = +
, 

( )2 12 1 22 23 2  = + +tC C C
, 

1 11 1 12 22c cC C  = +
, 

( )2 12 1 22 23 2c cC C C  = + +
, 

2 3  =
, 2 3c c =

. 

In addition, if we also neglect magnetic, rotation and 

initial stress parameters in this particular case, then our 

results are concordant with Kumar and Kansal (2011), by 

making slight modifications in boundary conditions. 

 

8.2 Isotropic medium 
 

In order to study the problem of wave propagation and 

reflection phenomena for an isotropic, initially stressed, 

thermally and perfectly conducting elastic rotating medium 

with diffusion, it is sufficient to set the value of elastic 

parameters Cij in equation (10) as 

11 22 33 2C C C  = = = +
, 12 13 23C C C = = =

, 

44 55 66C C C = = =
, 

( )1 2 3 3 2      = = = +
, 

( )1 2 3 3 2 c     = = = +
, 1 2 3      = = =

, 

1 2 3c c c c   = = =
 and 1 2=K K

 

Neglecting the diffusion and initial stress effect also and 

making suitable changes in boundary conditions, our results 

coincide with those of Othman and Song (2011). 

 

8.3 Neglecting initial stress effect 
 

In the absence of initial stress, we shall be left with the 

relevant problem of reflection phenomenon in an 

orthotropic, thermally and perfectly conducting elastic 

medium with rotation and diffusion in the context of Lord-

Shulman model. In this case, it is sufficient to set the value 

of initial pressure as zero, i.e. P = 0. Taking into 

consideration the above mentioned modification, the 

corresponding reflection coefficients for the incidence of a 

set of coupled waves propagating with speed V1 can be 

obtained from the system (50). 
 

8.4 Neglecting magnetic field 
 

By setting magnetic parameter H0 = 0, in the equations 

of motion (23) and (24), we shall be dealing with a half 

space problem in an orthotropic initially stressed 

thermoelastic rotating medium with diffusion. Taking into 

consideration the above mentioned modification, system 

(50) will provide us the reflection coefficients for the 

corresponding problem. If we also remove initial stress and 

rotation effects and assimilate transversely isotropic 

medium instead of orthotropic medium in this particular 

case, then our results coincide with those of Bijarnia and 

Singh (2012) with appropriate changes in boundary 

conditions. 
 

8.5 Without diffusion 
 

If the diffusion effect is removed from the thermoelastic 

medium, then we shall be dealing a half-space problem in 

an orthotropic, initially stressed, thermally and perfectly 

conducting elastic medium with rotation. If we also 

assimilate Green-Lindsay model with isotropic medium 

instead of Lord-Shulman model with orthotropic medium 

and neglect rotation effect in this limiting case, then our 

results are in quite good agreement with those achieved by 

Abo-Dahab and Mohamed (2010), by making slight 

modifications in boundary conditions. In this particular 

case, the diffusive wave will disappear from the medium. 

So, by putting a = 0, b = 0, Dij = 0 and c = 0 in governing 

equations, the equations (37)-(39), take the form 

( ) ( )2 2

11 12 1 13 14 1 15 1 0F V F u F V F v F V+ + − − =
 

(54) 

( ) ( )2 2

13 14 1 11 16 1 17 1 0F V F u F V F v F V+ − + − =
 

(55) 
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( )2

22 1 23 1 21 24 1 0F Vu F Vv F V F − − − =
 

(56) 

It can be seen that eqs. (54)-(56) are coupled in u1,v1, θ1. 
The condition for existence of non-trivial solution of the 
system of above three equations, provides us 

6 4 2 0V A V B V C  + + + =  (57) 

where 

( )11 25 12 24 13 22 14 21

11 24 13 21

G G G G G G G G
A

G G G G

+ − −
 =

−
, 

( )11 26 12 25 13 23 14 22

11 24 13 21

G G G G G G G G
B

G G G G

+ + −
 =

−
, 

( )12 26 14 23

11 24 13 21

G G G G
C

G G G G

+
 =

−
, 11 11 17 13 15G F F F F= −

, 

12 12 17 14 15= −G F F F F
, 13 13 17 11 15= +G F F F F

, 

14 15 16 14 17= −G F F F F
, 21 11 21G F F=

, 

22 12 21 11 24 15 22G F F F F F F= − −
, 23 12 24G F F=

, 

24 13 21G F F=
, 25 15 23 13 24 14 21G F F F F F F= − −

, 

26 14 24G F F=
. 

The roots of equation (57) give three values of V2 which 

correspond to three coupled plane waves qP, qT and qSV 

propagating with velocities V1, V2 and V3 respectively. 
Considering the above appropriate changes and 

following the similar steps as in general case, we obtain a 
system of three non-homogeneous equations in three 
unknowns by using the boundary conditions defined in 
(43)-(45). These three equations can be written in matrix 
form as 

3

1

, 1, 2, 3ij j i

j

b Z Y i
=

  = =
 

(58) 

where 

( ) ( )1 7 1 71 cos sin
j

j j j j

j

b k B B B
k


  



 
 = + + + − 

   , 

( )2 6 5 3sin cos ,j j j j j j jb k B B b      = + =
, 

( ) ( ) 1
1 1 7 1 1 7 1 1

1

1 cos sinY k B B B
k


  



 
 = + − + + 

  , 

( )2 1 6 1 5 1 1 3 31sin cos ,Y k B B Y b     = − − = −
, 

( )2

11 12

2

13 14

i

i

i

G V G

G V G


− +
 =

+
, 

( )22 23

2

21 24

i i

i

i

V G G

G V G




−
 =

−
, 

( )
0

, , 1, 2, 3
j

j

A
Z i j

A


 = =


 

Here, 𝑍𝑗
′ represent the reflection coefficients (ratio of 

the amplitudes of reflected waves to the amplitude of 
incident wave) of the reflected waves. 

9. Computational results and discussion 
 

With an aim to illustrate the considered problem in 

greater detail, a numerical analysis is performed. Following 

Kumar and Kansal (2008) and Kumar and Singh (2009), we 

take the physical data of Cobalt material as: 

38836 kgm −=
, 

11 1 2

11 3.071 10C kg m s− −= 
, 

11 1 2

12 1.027 10C kgm s− −= 
, 

11 1 2

13 0.8 10C kgm s− −= 
, 

11 1 2

22 3.581 10C kgm s− −= 
, 

11 1 2

23 1.650 10C kgm s− −= 
, 

11 1 2

66 1.510 10C kgm s− −= 
, 

2 1 1

1 0.690 10K Wm K− −= 
, 

2 1 1

2 0.695 10K Wm K− −= 
, 0 298T K=

, 
6 1 2 1

1 7.04 10 kgm s K − − −= 
, 

6 1 2 1

2 6.90 10 kgm s K − − −= 
, 

2 1 14.27 10Ec Jkg K− −= 
, 

4 2 2 11.2 10a m s K− −= 
, 

6 5 1 20.9 10b m kg s− −= 
, 

8 3

1 0.85 10D kgsm− −= 
, 

8 3

2 0.8 10D kgsm− −= 
, 

4 1 3

1 2.1 10c kg m − −= 
, 

4 1 3

2 2.5 10c kg m − −= 
, 0 0.15 s =

, 
0.2 s =

, 
1

0 10H Am−=
, 

1

0 0.3 Hm −=
, 

1

0 0.7 Fm −=
, 0.01 = , 

0.5= , P = 1.0. 

Making use of above mentioned numerical values, we 

have computed the amplitude ratios and energy ratios 

corresponding to incident qP wave at different angles of 

incidence, varying from normal incidence to grazing 

incidence. 

Figs. 1 (a-d) depict the effect of rotation (Ω= 0.3,0.5, 

0.7) on the profile of reflection coefficients |Zi|(i=1,2,3,4) 

for a fixed value of initial stress P = 1.0 and magnetic 

parameter H0 = 10. 

In Fig. 1(a), we have illustrated the pattern of variation 

of reflection coefficient |Z1| versus angle of incidence for 

different values of angular velocity. From this figure, it can 

be noted that the reflection coefficient |Z1| corresponding to 

the reflected coupled qP wave dominates heavily over other 

reflection coefficients. Increase in the value of angular 

velocity results in decrease in numerical values of reflection 

coefficient Z1, which illuminates the fact that the angular 

velocity is having a noticeable decreasing effect on the 

profile of reflection coefficient |Z1|. It is evident from the 

plot that the reflection coefficient |Z1| has qualitatively 

similar behaviour for all the three values of angular 

velocity. The modulus values of Z1 show continuously 

decreasing behaviour with increasing angle of incidence. A 

similar effect of rotation parameter is observed on the 

profile of reflection coefficients |Z2| and |Z3| in Figs. 1(b, c). 

However, |Z2| and |Z3| attain small numerical values in 

comparison to |Z1|. Fig. 1(d) displays the effect of angular 

velocity on the profile of reflection coefficient |Z4|. As can 

be seen from the plot that the absolute values of Z4 for 

angular velocity (Ω=0.3) has large values in comparison to 

the values of angular velocity (Ω= 0.5, 0.7). It is also seen 

that all the curves show similar trend for the profile of 

reflection coefficient |Z4|. 
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Fig. 1 (a-d) Variations of moduli of amplitude ratios for reflected waves to observe the effect of rotation parameter 

 

Fig. 2 (a-d) Variations of moduli of amplitude ratios for reflected waves to observe the effect of initial stress 
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Fig. 3 (a-d) Variations of moduli of amplitude ratios for reflected waves to observe the effect of magnetic field 

 

 

Fig. 4 (a-d) Variations of moduli of amplitude ratios for reflected waves in presence and absence of diffusion 
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In Figs. 2(a-d), the variations of amplitude ratios 

( )1 4iZ i  , for incidence of coupled wave qP, have been 

shown graphically to observe the influence of initial stress 

for a fixed value of angular velocity 0.5=  and magnetic 

parameter 0 10H = . In these figures, the solid line and 

dotted line refer to general case and without initial stress 

respectively. Fig. 2(a) manifests the effects of initial stress 

on the profile of reflection coefficient |Z1|. Presence of 

initial stress increases the absolute values of reflection 

coefficient Z1. Hence it has an increasing effect on the 

profile of |Z1|. In Figs. 2(b, c), a similar trend is observed on 

the profile of reflection coefficients |Z2| and |Z3| as seen on 

the profile of reflection coefficient |Z1|, in Fig. 2(a). The 

absolute values of Z2 and Z3 continuously decrease with the 

increase in angle of incidence, for both the cases (with and 

without initial stress). In Fig. 2(d), we have plotted the 

modulus values of the reflection coefficient Z4 as a function 

of angle of incidence for both the cases. Presence of initial 

stress increases the values of reflection coefficient |Z4|, in  

the whole range, hence indicating the increasing effect. 

Figs. 3(a-d) display the absolute values of the amplitude 

ratios ( )1 4iZ i   for two different cases, with and 

without magnetic field, for a fixed value of angular velocity 

0.5=  and initial stress P = 1.0. The solid line and 

dashed line refer to general case and without magnetic field 

( )0 0.0H =  respectively. Fig. 3(a) shows the variations of 

reflection coefficient |Z1| versus angle of incidence for two  

 

 

different cases mentioned above. Presence of magnetic field 

decreases the absolute values of reflection coefficient, so it 

has a decreasing effect on the profile of this reflection 

coefficient, in the whole range. Figs. 3(b, c) reveal the 

variations of reflection coefficients |Z2| and |Z3| versus angle 

of incidence in the presence and absence of magnetic field. 

For both the cases, modulus values of Z2 and Z3 decrease in 

a similar fashion with increase in angle of incidence, but at 

different rates. Presence of magnetic field decreases the 

absolute values of reflection coefficients Z2 and Z3. Hence, 

it has a decreasing effect on the profile of both reflection 

coefficients. For the incidence of qP wave, the change in 

absolute values of reflection coefficient Z4 with angle of 

incidence are represented in Fig. 3(d), in the presence and 

absence of magnetic field. It is evident from the plot that the 

reflection coefficient |Z4| has qualitatively similar behaviour 

in the presence and absence of magnetic field and the 

presence of magnetic field decreases the absolute values of 

Z4. 

Figs. 4(a-d), are plotted to demonstrate the variations of 

amplitude ratios |Zi| (i = 1, 2, 3, 4) under two different 

models, namely, with and without diffusion. Fig. 4(a) is 

drawn with the purpose to display a comparison of variation 

of reflection coefficient |Z1| versus angle of incidence for 

two different models. It is clear from the figure that the 

modulus values of Z1 in the presence of diffusion are found 

to be larger as compared to without diffusion. Hence, it has 

an increasing effect. In Fig. 4(b), we have plotted the curves 

to exhibit the variations of reflection coefficient |Z2|, in the 

presence and absence of diffusion model. It can be noticed  

 

Fig. 5 (a-d) Variations of moduli of phase speeds against angle of incidence to observe the effect of anisotropy 
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from the figure that diffusion has a noticeable effect on the 

profile and its presence decreases the magnitude of 

reflection coefficient |Z2|. Hence, it has a decreasing effect 

on the profile of reflection coefficient |Z2|. In Fig. 4(c), we 

have plotted the modulus values of the reflection coefficient 

Z3 as a function of angle of incidence. In this figure, we 

have only one curve of reflection coefficient Z3 

corresponding to the presence of diffusion, because in the 

absence of diffusion, the quasi-longitudinal mass diffusive 

wave (qMD) will disappear from the medium. The behavior 

of variation of reflection coefficient |Z4| against angle of 

incidence has been expressed in Fig. 4(d), for two different 

cases with and without diffusion. This reflection coefficient 

experiences a similar pattern of variations in both the 

models. It can also be noticed that reflection coefficient 

starts with zero value for both the cases at normal 

incidence. In this figure, we have compared the profile of 

reflection coefficients Z3 and 3Z  , because they appear 

corresponding to quasi-transverse wave (qSV) in 

thermoelastic diffusive medium and thermoelastic medium 

respectively.  

In Figs. 5(a-d), the variations of the velocities of qP, qT, 

qMD and qSV waves have been shown graphically with the 

angle of propagation, when ω = 0.01. The velocities of 

propagation of these plane waves are also compared with 

those for transversely isotropic and isotropic thermoelastic 

medium. We can see from these figures that the values of 

velocities vary at every angle of incidence in orthotropic 

and transversely isotropic media while in isotropic media, 

these values remain constant throughout the whole range. 

Thus, it is evident from the figures that the medium has an 

observable effect on the variations of the velocities. It is 

noticed that there exist four waves propagating in medium. 

The fastest among them is the quasi-longitudinal wave and  

 

 

the slowest of them is the quasi-transverse wave. The 

variations of modulus of energy ratios of reflected waves 

with the angle of incidence of coupled wave propagating 

with velocity V1, are plotted in Fig. 6. In this figure, the 

comparisons of partition of energy between reflected qP, 

qT, qMD and qSV waves propagating with velocities V1, V2, 

V3 and V4 respectively for the incidence of qP wave are 

presented. The energy conversion in different ranges of 

angle of incidence is clearly noticed. We can see from the 

figure that the values of sum and E1 are approximately same 

and equal to 1.0 and the values of E2, E3 and E4 are very 

small. Since the reflection coefficients Z2, Z3 and Z4 were 

found to be very small, therefore the corresponding energy 

ratios E2, E3 and E4 are also very small. These energy ratios 

have been shown by curves III, IV and V in figure after 

multiplying their original values by the factors 106, 103 and 

104 respectively. It can be seen from the figure that the 

energy carried by reflected coupled wave propagating with 

velocity V1 is maximum in comparison to energy carried by 

other reflected waves. Thus the major portion of energy is 

transported through qP wave while a very small amount of 

energy is carried by coupled qT, qMD and qSV waves. In 

the calculation of energy ratios, it has been verified that the 

sum of energy ratios is equal to unity for a fixed angle of 

incidence. This shows that there is no loss of energy during 

reflection of waves. 

 
 
10. Concluding remarks 

 

This article presents an in-depth analysis of plane wave 

propagation in an orthotropic, initially stressed, magneto-

thermoelastic rotating medium with diffusion. From the 

analysis of the illustrations, we can arrive at the following 

conclusions: 

 

Fig. 6 Variations of moduli of energy ratios against angle of incidence of qP wave with speed V1 
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•  All the reflection coefficients Zi (i = 1, 2, 3, 4) are 

highly influenced by angular velocity. Increase in the value 

of angular velocity acts to decrease the absolute values of 

all the reflection coefficients. Hence, it has a decreasing 

effect on the profile of reflection coefficients. 

•  Presence of initial stress parameter increases the 

absolute values of all the reflection coefficients. Thus, all 

the reflection coefficients are significantly sensitive towards 

the initial stress. 

•  The modulus values of all the reflection coefficients 

are highly influenced by the presence of magnetic field. It 

acts to decrease the magnitude of all the reflection 

coefficients Zi (i = 1, 2, 3, 4). 

•  Significant impact of diffusion is observed on all the 

reflection coefficients Zi (i = 1, 2, 3, 4). Presence of 

diffusion parameters increases the absolute values of 

reflection coefficient Z1 and decreases the absolute values 

of Z2 whereas on Z4, its presence has both increasing and 

decreasing effects. 

•  In an anisotropic generalized thermoelastic medium, 

the velocities of propagation of reflected waves are found to 

depend upon the angle of incidence, whereas in an isotropic 

medium, velocities attain constant values. 

•  The numerical results reveal that the sum of the 

modulus values of energy ratios at the boundary surface is 

approximately unity at each angle of incidence. This shows 

that there is no dissipation of energy during reflection 

phenomena at the surface. 
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