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1. Introduction 
 

Sandwich structures have been used in many 

engineering applications since the middle of the 20th 

century. These structures are characterized by impact and 

heat resistance, acoustic and vibration reduction and easy 

assembly. Because of their high strength and stiffness, low 

weight and durability, these structures are widely used in 

aerospace, automobile and shipbuilding industries 

(Doddamani et al. 2011 and Cunedioglu 2015). Sandwich 

structures generally consist of two stiff face sheets and a 

soft core, which are bonded together. (Frostig et al. 1995, 

1996, 2004) proposed the higher order sandwich panel 

theory for investigation of free vibration and bending 

analyses of sandwich structures. They considered two 

models for expressing the governing equations of the core. 

The second model assumed a polynomial description of the 

displacement fields in the core that was based on the 

displacement fields of the first model. Frostig and Thomsen 

(2004) presented a new high-order sandwich plate theory 

(HSAPT) for the free vibration analysis. In this theory, the 

cubic and quadratic polynomials were used for in-plane and 

transverse displacements of the core and CLPT model was 

used for the face sheets. Analytical solutions were presented 

for simply supported sandwich plates, but the transverse 

stress continuity conditions were neglected. (Jam et al. 

2010) second model of by Frostig and Thomsen (2004)  
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extended by shear deformation theory instead of classical 

plate theory for the face sheets. The in-plane normal and 

shear stresses in the core are considered, whereas this 

solution method not considered by Frostig and Thomsen 

(2004). (Huang et al. 2015) developed the finite element 

model of a three-layer viscoelastic sandwich beam based on 

the first-order shear deformation theory and the Hamilton 

principle. Petras and Sutcliffe (1999) used the higher order 

sandwich beam theory and studied the bending of sandwich 

beams. In their theory, the shear stress in thickness 

directions was assumed to be uniformly distributed; 

however, a second order function was considered for the 

vertical displacement of the core. The improved higher 

order sandwich plate theory, applying the first order shear 

deformation theory for the face sheets, was introduced by 

(Malekzadeh et al. 2005). Zenkour (2005) presented the 

comprehensive analysis of FG sandwich plates. The face 

sheets were assumed to be isotropic and two-constitutional 

material distribution through the thickness was assumed to 

vary according to the power law distribution. Bending, 

buckling, and free vibration of simply supported FG 

ceramic-metal sandwich plates were also investigated. 

(Malekzadeh et al. 2015) used an improved higher-order 

sandwich panel theory (IHSAPT) and studied the dynamic 

response of a sandwich beam with arbitrary cores (foam or 

functionally graded materials) subjected to single impact at 

arbitrary impacted face sheet. They used the first-order 

shear deformation theory for the face sheets and a 

polynomial description of the displacement fields in the 

core which was based on the displacement field of the 

second Frostig’s model (Frostig and Thomsen 2004). 

Malekzadeh Fard (2014) investigated free vibration of a 

sandwich curved beam with a functionally graded (FG) 
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Abstract.  The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam 
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face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. 
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core. (Bennai et al. 2015) developed a new refined 

hyperbolic shear and normal deformation beam theory is 

developed to study the free vibration and buckling of 

functionally graded (FG) sandwich beams under various 

boundary conditions. (Qin et al. 2017, 2018, and 2019) 

investigated free vibrations of shells with arbitrary 

boundary conditions. (Huang et al. 2015) developed two 

finite element formulations using different laminate plate 

theories for the elastic-viscoelastic-elastic sandwich plates. 

(Safaei et al. 2018) investigated the effect of loading 

frequency on the dynamic behavior of nanocomposite 

sandwich plates under periodic thermo-mechanical 

loadings. Fattahi and Safaei (2017) investigated Axial 

buckling characteristics of nanocomposite beams reinforced 

by single-walled carbon nanotubes (SWCNTs). They used   

various types of beam theories namely as Euler---Bernoulli 

beam theory, Timoshenko beam theory and Reddy beam 

theory to analyze the buckling behavior of carbon nanotube-

reinforced composite beams. Demir (2017) investigated free 

vibration and damping behaviors of multilayered symmetric 

sandwich beams and single layered beams made of 

Functionally Graded Materials investigated, experimentally 

and numerically.  

The classical theory is no longer valid when one uses 

foam-like core materials (Frostig and Baruch 1990) and 

hence, a higher order theory is used which takes both the 

nonlinear displacement fields of the core material and 

realistic supports into account. Frostig and Baruch (1994) 

and Frostig (1998) used this theory to study the behavior of 

a symmetric and non-symmetric sandwich beam with a 

flexible core. Frostig (1998) developed a theory using the 

Kirchhoff-Love model (CLPT) for the face sheets and a 

postulated stress distribution in the core for overall and 

local buckling analysis of soft core sandwich plates. In 

many applications, these sandwich structures are subjected 

to parametric excitation, where a small excitation can 

produce a large response when the frequency of the 

excitation is closer to twice the natural frequencies 

(principal parametric resonance) or combination of different 

modal frequencies (combination resonances). The 

investigation about this phenomenon in elastic systems was 

first studied by Bolotin (1956), who found the dynamic 

instability regions. The study of parametric instability is 

well known and can be found in detail in various textbooks, 

e.g., (Reddy 2004). One may use several methods to study 

the parametric instability regions. Kar and Sujata (1991) as 

well as Ray and Kar (1995, 1996) studied the parametric 

instability regions for simple and combination resonances 

for different types of sandwich beams with viscoelastic core 

by using the modified Hsu’s procedure. In these works, 

classical sandwich beam theory was used, and the core was 

assumed to be rigid in transverse direction. Recently, 

(Dwivedy et al. (2007) studied the dynamic instability 

regions of a soft-cored sandwich beam using the higher-

order theory. (Bremen et al. 2001), (Sokolinsky et al. 2004), 

Sokolinsky and Nutt (2004), Yang and Qiao (2005) as well 

as Liu and Zhao (2006) studied sandwich beams with soft 

core using the higher-order theory. In all these cases, the 

study was limited to free vibration analysis of the systems. 

In many applications, these sandwich structures are 

subjected to parametric excitation. Unlike the forced 

vibration in which the resonance occurs only when the 

excitation frequency is equal to one of the modal 

frequencies, in case of parametric excitation, a small 

excitation can produce a large response when the frequency 

of the excitation is close to twice the natural frequencies 

(principal parametric resonance) or combination of different 

modal frequencies (combination resonances). (Ghosh et al. 

2005) investigated the parametric dynamic stability of an 

asymmetric sandwich beam with viscoelastic core on 

viscoelastic supports at the ends and subjected to an axial 

pulsating load. Smyczynski and Magnucka (2018) analysed 

the stability of a simply supported five layer sandwich beam 

subjected to an axial compression. The main goal was to 

elaborate a mathematical and numerical model of beam. 

Mohanty et al. 2010 investigated the dynamic stability 

of functionally graded ordinary beam and functionally 

graded sandwich beam on Winkler’s elastic foundation 

using finite element method. Effect of elastic foundation 

and proportional damping on the dynamic instability was 

analysed by Boss et al. 2012. They used the FEM to 

investigate the dynamic instability of isotropic cantilever 

and simply supported beams. (Patel et al. 1999) analyzed 

the dynamic instability of laminated composite plates on 

elastic foundations, using C1 eight-noded shear-flexible 

plate element. (Pourasghar et al. 2015) analysed the 

dynamic behavior of rotating nanobeam subjected to 

follower force using the nonlocal elasticity theory. (Pradhan 

et al. 2016) analyzed free vibration of a three layered 

asymmetric sandwich beam resting on a variable Pasternak 

foundation subjected to a pulsating axial load by the 

computational method. (Tornabene et al. 2014) presented 

the static and dynamic analyses of laminated doubly-curved 

shells and panels of revolution resting on the Winkler-

Pasternak elastic foundation. Pourasghar and kamarian 

(2013) presented the dynamic behavior of a non-uniform 

column reinforced by single-walled carbon nanotubes 

resting on an elastic foundation and subjected to follower 

force. The method of solution was the differential 

quadrature method.  Pourasghar and Chen (2016) presented 

the investigation of the free vibration response of a carbon 

nanotube-reinforced cylindrical panel resting on elastic 

foundation in thermal environments. The response of the 

elastic medium is formulated by the Winkler/Pasternak 

model. (Safaei et al. 2018) studied the effect of thermal 

gradient load on natural frequencies of sandwich plates with 

polymer-based nanocomposite face sheets reinforced by 

functionally graded (FG) single-walled carbon nanotubes 

(SWCNTs) agglomerations. They developed First-order 

shear deformation theory and a moving least square (MLS) 

shape function based mesh-free method for free vibration 

and steady state thermal analysis on sandwich plates on 

two-parameter elastic foundations. 

Pourasghar and Chen (2019) used the combined 

application of the differential quadrature method (DQM) 

and the Newton-Raphson method to solve the hyperbolic 

heat conduction equations  to obtain temperature, 

displacements and nonlinear frequency in the functionally 

graded (FG) nanocomposite Timoshenko microbeam. 

Moradi-Dastjerdi and Momeni-Khabisi (2018) studied free  
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and forced vibrations, and also resonance and pulse 

phenomena in sandwich plates based on a mesh-free 

method and first order shear deformation theory (FSDT). 

The sandwich plates are resting on Pasternak elastic 

foundation and subjected to periodic loads. In the 

equivalent single layer (ESL) theories, transverse stresses 

are obtained as discontinuous functions at the interface 

between the layers with different stiffness properties. In 

layer-wise theories, the number of unknowns depends on 

the number of the layers and large computational efforts 

needed. In the present work, an effort was made to develop 

the governing equation of motion of soft-core sandwich 

beams using a higher-order theory and Hamilton’s principle, 

and then to obtain the parametric instability regions for 

different system parameters. In this theory, the Reddy’s 

third-order shear deformable plate theory was used for the 

face sheets and a polynomial description of the 

displacement fields in the core was considered, which was 

based on the displacement field of the second Frostig’s 

model (Frostig and Baruch 1996). The compatibility 

conditions at the interfaces and the conditions of zero 

transverse shear stresses on the upper and lower surfaces of 

the sandwich beam were satisfied. Transverse flexibility as 

well as transverse normal strain and stress of the core were 

studied. This study could be highly useful for 

researchers/designers to suppress vibration and instability 

using soft-cored sandwich structures.  

The purpose of this work was to study the parametric 

instability of a simply supported sandwich beam with soft-

core, subjected to a periodic axial loading resting on 

nonlinear elastic foundation. Equations of motion were 

reduced to a set of coupled Mathieu’s equations with 

complex coefficients in the time domain. The regions of 

instability were obtained by Bolotin’s method (Bolotin 

1956). 

The results obtained from the free vibration and 

dynamic instability analysis were compared with previous 

works in the literature. The effects of various parameters 

were studied on the natural and excitation frequency of the 

sandwich beams. Moreover, the effects of elastic 

foundation, static and dynamic load factor, and length to 

beam thickness ratio upon the zones of instability or 

excitation frequencies were investigated. 

 

 
 

2. Mathematical formulation  
 

A sandwich beam with soft-core and face sheets as 

dissimilar materials is shown in Fig. 1(a). The beam was 

hinged at the both ends subjected to a dynamic axial load

0( ) cos( )tP t P P t= +  , where t  is time, 
0P  is the static 

component, 
tP  is the amplitude of the dynamic component 

and   is the frequency of the applied dynamic load 

component of ( )P t . The periodic load P can also be 

expressed in terms of the linear static buckling load 
crP  as 

( ) coscr crP t P P t = +   (1) 

where 
0 crP P =  and 

t crP P =  are termed as the static 

and dynamic load factors, respectively.  

A rectangular sandwich beam with the in-plane 

dimensions of L b  and the total thickness of h  was 

considered as shown in Fig. 1(b) (Khalili et al. 2015). The 

coordinates are also shown in this figure. In the following, 

the indices t and b refer to the top and bottom face sheets of 

the beam, respectively (Malekzadeh et al. 2015). The 

sandwich beam was considered as simply supported. The 

sandwich was composed of three layers: the top and bottom 

face sheets as well as the core layer. All the layers were 

assumed with uniform thickness and the z coordinate of 

each layer was measured downward from its mid-plane. 

The face sheets were generally unequal in thickness, i.e., 
th  

and 
bh  were the thicknesses of the top and bottom face 

sheets, respectively. The face sheets were assumed to be 

laminated composites. The core was also assumed as a soft 

material with thickness 
ch (Malekzadeh et al. 2015).  

 

2.1 Kinematic relations 
 

The mathematical formulations consisted of derivation 

of the governing equations of motion along with the 

appropriate boundary conditions for the face sheets and the 

core through Hamilton’s principle. This principle was 

extremized the Lagrangian consisting of the kinetic energy, 

strain energy, and external work (Frostig and Baruch 1996). 

In the present structural model for sandwich beams, the 

Reddy’s third order shear deformable theory was adopted 

for the face sheets (Malekzadeh Fard et al. 2011). Based on 

 

 

(a) (b) 

Fig. 1 (a) Sandwich beam resting on the elastic foundation and subjected to dynamic axial load; (b) Sandwich beam with 

laminated face sheets along with the coordinates and dimensions of the beam 
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this theory, the displacements u and w of the face sheets in 

the x (longitudinal) and z (thickness) directions with small 

linear displacements were expressed through the following 

relations (Reddy 2004) 

30

0 2

0

4
( , , ) ( , ) ( , ) ( )

3

( , , ) ( , )   (i=t,b)

i

i i i

i i x x i

i

i

i

w
u x z t u x t z x t z

xh

w x z t w x t

 


= + − +


=

 (2) 

where i

x  (i = t, b) are the rotation components of the 
transverse normal along the x-axes of the mid-plane of the 
top and bottom face sheets. Moreover, 

0

iu  and 
0

iw  (i=t,b) 
are displacement component in the x direction and vertical 
deflection of the top and bottom face sheets, respectively. 

iz  is the vertical coordinate of each face sheet (i = t, b) and 
is measured downward from the mid-plane of each face 
sheet as shown in Fig.1 (b).  

The displacement fields were based on the second 

model of Frostig for the core and a cubic pattern for the in-

plane displacements and a quadratic one for the vertical 

ones can be taken as (Malekzadeh et al. 2015) 

2

0 1 2

3

3

2

0 1 2

( , , ) ( , ) ( , ) ( , )

( , )

( , , ) ( , ) ( , ) ( , )   

c c c

c c c

c

c

c c c

c c c

u x z t u x t z u x t z u x t

z u x t

w x z t w x t z w x t z w x t

= + +

+

= + +

 (3) 

where c

ku  (k = 0, 1, 2, 3) are the unknowns of the in plane 

displacement components of the core and c

kw  (k = 0, 1,2) 

are the unknowns of its vertical displacements. Finally, in 

this model, there were thirteen displacement unknowns. In 

this study, the core was perfectly bonded to the face sheets. 

The interface displacement continuity requirements in each 

face sheet-core interface were defined by (Kheirikhah et al. 

2011). Moreover, the transverse shear stresses on the upper 

and lower surfaces of the sandwich beam were zero (Reddy 

2004). 
 

2.2 Strains 
 

The kinematic equations for the strains in the face sheets 

can be defined as 

(4) 

3

0 1 3

i i i i

xx xx i xx i xxz z   = + +
 

0i i i i

zz yy xy zy   = = = =
 

2

0 2

i i i

xz xz i xzz  = +
 

0 0, 1 , 3 , 0,2

4
, , ( )

3

i i i i i i i

xx x xx x x xx x x xx

i

u w
h

    = = = − +

 

0 0, 2 0,2

4
, ( )

3

i i i i i i

xz x x xz x x

i

w w
h

   = + = − +  

and the strain displacement relations for the core can be 

expressed as 

(5) 

2 3

0 1 2 3

c c c c c

xx xx c xx c xx c xxz z z    = + + +
 

0i i i

yy xy zy  = = =
 

0 1

c c c

zz zz c zzz  = +
 
2

0 1 2

c c c c

xz xz c xz c xzz z   = + +

 
0 0, 1 1, 2 2, 3 3,, , ,c c c c c c c c

xx x xx x xx x xx xu u u u   = = = =
 

0 1 1 2, 2c c c c

zz zzw w = =
 

0 1 0, 1 2 1, 2 3 2,, 2 , 3i c c c c c c c c

xz x xz x xz xu w u w u w  = + = + = +  

The compatibility conditions were presented by 

assuming perfect bonding between the core and face sheets 

(Kheirikhah et al. 2011) 

(6) 

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( )
2 2

c t

c c t t

c b

c c b b

c t

c c t t

c b

c c b b

h h
u z u z

h h
u z u z

h h
w z w z

h h
w z w z

= − = =

= = = −

= − = =

= = = −

 

Using the displacement fields of the core Eqs. (3) and 

(2) and some simplifications, the compatibility conditions 

from Eq. (6) can be written as 

(7) 

2 3

0 0 1 2 3 0,
2 4 8 3 6

t c c c c t tc c c t t

x x

h h h h h
u u u u u w= − + − − +

 

2 3

0 0 1 2 3 0,
2 4 8 3 6

b c c c c b bc c c b b

x x

h h h h h
u u u u u w= + + + + −

 

2

0 0 1 2
2 4

t c c cc ch h
w w w w= − +

 
2

0 0 1 2
2 4

b c c cc ch h
w w w w= + +

 

It can be seen from Eq. (7) that the number of unknowns 

in the core and face sheets was reduced to seven and two, 

respectively. These unknowns were
0

cu ,
1

cu ,
2

cu ,
3

cu ,
0

cw ,
1

cw ,

2

cw , t

x and b

x . 

 

2.3. Governing equations 

 

The equations of motion for the face sheets and the core 

were derived through the principle of the minimum 

potential energy: 

2 2

1 1

( ) 0
t t

ext
t t

Ldt U T W dt   = − + = 
 

(8) 

where T is the kinetic energy, extW  is the external work 

energy, U is the strain energy, t is the time coordinate 

between the times 
1t  and

2t , and  denotes the variation 

operator. The first variation of the internal potential energy 

for the sandwich beam is: 

( ) (

) ( )

, ( , , )

t b

t

t t t t b b

xx xx xz xz t xx xx
v v

b b c c c c c c

xz xz b zz zz xz xz xx xx c
v

i i i i i

U dV

dV dV

dV dA dz dx dz i t b c

      

       

= + +

+ + + +

= = =

 

  (9) 
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where 
ii  and 

ii  (i = x) are the normal stresses and 

strains in the x direction, respectively; the superscripts t and 

b correspond, respectively, to the top and bottom face 

sheets; c

iz  and c

iz  (i = x) are the vertical shear stresses 

and strains in the core, respectively; c

zz  and c

xz are the 

normal and shear stresses in the core, respectively; c

xx is 

plane normal stress in the x direction of the core; 
tV , 

bV , 

and 
cV  are the volumes of the top and bottom face sheets 

as well as the core, respectively. The first variation of the 

kinetic energy, upon assuming the homogeneous conditions 

for the displacement and velocity with respect to the time 

coordinate, is: 

2

1

2
0 0

0
2

2
0 0

0
2

2

0
2

( )

( )

( )

t

t

b

b

c

c

h
L

h t t ot t ot

h
t L

h b b ob b ob
t

h
L

h c c c c c

u u w w dxdz

T u u w w dxdz dt

u u w w dxdz

  

   

  

−

−

−

−

−

−

 
+ 

 
 
 = + +
 
 
 
+ +
 
 

 

  

 
 

(10) 

where
t ,

b  and 
c  are the densities of the bottom face 

sheet, top face sheet, and core, respectively. In all the cases, 

the u component was horizontal while the w component 

was vertical. Moreover, (..) denoted the second time 

derivative. The variation of the external work is: 

( )( )2 2

0 , ,
0 0

1 2 ( )( )
L L

ext s t x b xW F w dx P t w w dx  = − − + 
 

(11) 

where
3

1 0 2 0, 3 0s xxF K w K w K w= − + − ; 
1K ( )2N m and 

3K

( )4N m are linear and nonlinear coefficients of elastic 

foundation, respectively and 
2K ( )N  is the coefficient of 

shear stiffness of the elastic foundation. Here 

,t x tw w x=    and ,b x bw w x=   . The stress resultants for 

the two face sheets and the core (i= t, b, c) can be defined as: 

(12) 
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2

2 3

2
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i

i

h
T T
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h
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2

2 3

2
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i

i

h
T T

i i i i i

xz xz xz xz xz i i i i

h

Q M P S z z z dz
−

 =  

 Using Hamilton’s principle (Eqs. (9)-(11)) and 

kinematic relations (Eqs. (2)-(6) and (8)), the equations of 

motion can be obtained as: 

0 0 0 0

2 2

0 0 1 1 0 0 2 2

( ) ( )

( ) ( )
2 2 4 4

t c b
t b c cxx xx xx

t b c c t b c cc c c c
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I I I u
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h h h h
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− + + + + + +

− + + + + + +
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 In Eqs. (13-21), i

nI  (n = 0, 1, 2,3,4,5,6) (i = t, b, c) are the 

moments of inertia for the top and bottom face sheets as 

well as for the core and can be given as follows 

2

2

   (i=t,b,c)

i

i

h

i n

n i i i

h

I z dz

−

=   

The resultants of Eqs. (13-21) can be related to the total 

strains. 

 

 

3. Analytical solution 
 

The exact analytical solutions of Eqs. (13)-(21) existed 

for the simply supported sandwich beam with cross-ply face 

sheets. Both the face sheets were considered as a cross-ply 

laminated composite. The boundary conditions of a simply 

supported beam can be defined as 

0 0(0, ) ( , ) 0, (0, ) ( , ) 0xx xxw t w L t M t M L t= = = =  

As the above equations of motion (Eqs. (13)-(21)) are in 

space and time coordinates, generalized Galerkin’s 

principle was used to reduce these equations to their 

temporal form. For multimode discretization, one may take 

(22) 
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Here, N is a positive integer representing the number of 

modes taken in the analysis; , , , , , , ,i i i i i i i ia b c d e f g l
 
and 

im are the generalized coordinates; and 

, , , , , , ,ai bi ci di ei fi gi li       
 
and

mi  are the shape functions 

chosen to satisfy boundary conditions as many as possible. 

For the simply supported beam 
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(23) 

These shape functions satisfied all the boundary 

conditions.  

The resulting equation of motion became 

(24)         cos 0crM f K f P t H f + − =

 
where 

  
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and 

      1 cr fK K P H K  = − −    

To solve the nonlinear eigenvalue problem, an iterative 

scheme was used (Sarma and Varadan 1983). First, the 

amplitude was set an equal to zero and was solved the 

resulting linear eigenvalue problem. The linear eigenvalues 

and eigenvectors were then used to obtain nonlinear 

coefficients. The eigenvalue problem was solved again - to 

obtain nonlinear eigenvalues and eigenvectors and the 

process repeated. It did not take too many times to get 

convergence of eigenvalues and eigenvectors. 
 

 
4. Dynamic instability analysis 

 

The periodic motion of the system is usually the 

boundary case of vibrations with unboundedly increasing 

amplitudes (Nayak et al. 2014). Therefore, it is important to 

study the dynamic instability of the system and 

determination of the boundaries of dynamic instability 

regions. Eq. (24) is a set of Mathieu type equations 

governing the instability behavior of the beam structure. For 

the given values of the three parameters α, β and Ω, the 

solution of this equation may be either bounded or 

unbounded. The spectrum of these values of parameters had 

unbounded solutions for some regions of the planes due to 

parametrically excited resonance. This phenomenon is 

known as dynamic instability and these regions are named 

as dynamic instability regions (DIRs). The boundaries of 
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DIRs were determined by the periodic solutions having the 

periods T and 2T according to Bolotin’s approach. The 

instability region at the boundaries of the period 2T had 

great practical importance and hence, the solution of Eq. 

(24) was achieved by presenting the components {f} in 

trigonometric series form as follows 

     
1,3,5,...

sin cos
2 2

i i
i

i t i t
f a b



=

  
= +  

   
(25) 

with period 2T, 

where T = 
2𝜋

Ω
  

Here,  ia  and  ib are vectors independent of the 

time t. The above equations were substituted in Eq. (24) and 

the sums of the coefficients of each sine and cosine terms 

were equated to zero which led to a series of algebraic 

equations for determining instability regions. The principal 

instability region corresponding to i=1 had practical 

significance and hence, the dynamic instability equation for 

this case yielded to 

(26)      
2

0.5 0
4

e tK M P H


−  =

 where
eK and M are the stiffness matrix and mass matrix, 

respectively. 

Eq. (26) was basically a generalized eigenvalue problem 

of the systems for the known values of α, β and
crP . The two 

conditions under a plus and minus sign indicated two 

boundaries of the DIR. The eigenvalue problem was solved 

and the excitation frequencies Ω were obtained for the 

given values of α and β. 

 

 

5. Results and discussion 
 

In this section, some examples were considered and the 

obtained results were validated and discussed. The dynamic 

characteristics such as fundamental frequency and dynamic 

stability of the system were studied using various system 

parameters. A MATLAB code was developed for this 

purpose and to validate the developed code, the natural 

frequencies without considering the axial load were 

compared with those obtained from the previous literature. 

The results were validated with the recent theoretical and 

numerical results found in the literature. The agreement 

between the results was quite good. 

 

Example 1: Free vibration of a sandwich beam with soft 

core 

Since there were few researches about dynamic 

instability analysis of sandwich beams to validate the 

obtained results, the fundamental non-dimensional natural 

frequencies were calculated for the beam with simply 

supported boundary conditions and compared with the 

result of (Khdeir et al. 2016). The mechanical and 

geometrical properties of the sandwich beam are given in 

Table 1.  

Table 1 Materials and geometrical properties of the 

sandwich beam (Khdeir et al. 2016) 

Face sheet 
3E=10658 Mpa,  G=4000 Mpa, =1446 kg m  

Core 
3115 MPa,  =199 ,  =0.3cE kg m =  

Geometry 
t b c254 ,  h h 0.762 ,  h 12.7 ,

 b=25.4mm

L mm mm mm= = = =
 

 

Table 2 Comparison of nondimensional natural frequencies 

 for simply supported sandwich beam 

Present 

Malekzadeh 

et al. 2015 
Mode no. Difference 

(%) 

Difference 

(%) 

Higher 

order 

theory 

ABAQUS 

0.0 0.0 282.5 282.5 282.5 1 

0.02 0.04 932.7 932.3 932.5 2 

0.0 0.06 1697.6 1696.5 1697.6 3 

-0.05 0.08 2478.7 2476.7 2480 4 

-0.14 0.08 3252.2 3249.6 3256.8 5 

 

Table 3 Materials and geometrical properties of the 

sandwich beam (Yang and Qiao 2005) 

Face sheet 
336 GPa,  =4400 ,  =0.3E kg m =  

Core 
c

3

0.05 GPa, G 0.02 GPa, 

=52.06 , =0.3

cE

kg m 

= =
 

Geometry t b c300 ,  h h 0.5 ,  h 20 ,  
b=20mm
L mm mm mm= = = =  

 

 

Table 2 provides the comparison of the first five modal 

frequencies of vibration for the beam model, derived using 

the higher order beam theory and ABAQUS FE code, 

against the results from (Khdeir et al. 2016) The zigzag 

theory and experimental tests were used in (Khdeir et al. 

2016). The natural frequencies were performed in 

ABAQUS/Standard software, which used a central 

difference rule to integrate the governing equations of 

motion explicitly. In this study, the face sheets and foam 

core were meshed using S8R elements, respectively. There 

was quite good agreement between the results. 

 

Example 2: Free vibration analysis of a sandwich beam 

with isotropic core and face sheets 

In this example, the free vibration analysis of a 

sandwich isotropic beam with SS B.Cs was performed. The 

properties of the model with the detailed geometry are 

presented in Table 3.  

In Table 4, the results of the presented method for the 

first four natural frequencies are compared with those 

obtained by ABAQUS FE code and the ones presented in 

Frostig and Baruch (1994), Yang and Qiao(2005) and 

(Rahmani et al. 2009) which demonstrated good 

correspondence. Moreover, difference between the higher 

order beam theory results and the references (Frostig and 

Baruch 1994, Yang and Qiao 2005 and Rahmani et al. 

2009) is presented in Table 4. There was quite good 

agreement between the results, and only little difference 

was observed between them. 
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Table 4 Comparison of the natural frequencies of sandwich 

beam 

Present 
(Rahmani 

et 

al.2009) 

Yang,Qiao 
(2005) 

Frostig 

and 

Baruch 

(1994) 

Mode 
no. Difference 

(%) 

Higher 

order 

theory 

Difference 
(%) 

ABAQUS 

-0.72 323.63 0.02 323.57 326.39 325.98 325.98 1 

-1.3 814.21 -0.05 814.65 826.62 824.96 825.30 2 

-1.3 1291.4 -0.2 1294.3 1311.84 1308.90 1310.38 3 

-1.2 1755.4 -0.4 1763.8 1780.25 1776.11 1779.83 4 

 

Table 5 Materials and geometrical properties of the 

sandwich beam (Khdeir et al. 2016) 

Face sheet 

Cross-ply (graphite/epoxy orthotropic laminate

(0 / 90 )  : 

1 2 3

12 13 23

3

12 13 23

131 , 10.34 GPa, 

6.895 , 6.205

0.22, 0.49, 1627

E GPa E E

G G GPa G GPa

v v v kg m

= = =

= = =

= = = =

 

Core 
Isotropic material: 

36.90 MPa, G=3.45 MPa,  =97 ,  =0E kg m =  

Geometry 
Core/face thickness ratio: 

( 10L h = ), 10:1, ( , )c ih h i b t= = . 

 

 

Fig. 2 Variation of the nondimensional natural       

frequency of the sandwich beam with the core       

thickness for 10L h =  , 0.5 = and 0.012h m=  

 

 

Example3: Dynamic instability analysis of a composite-

faced sandwich beam with soft core on elastic foundation 

In this example, the dynamic instability analysis of a 

sandwich beam with SS B.Cs was performed. The 

properties of the model with the detailed geometry are 

presented in Table 5. The first natural frequencies of the 

sandwich beam with different foundation’s modulus and 

different thickness ratios are shown in Fig. 2. 

It can be seen in the picture that with the increase of the 

thickness ratio ( ch h ), the frequencies was first declined 

but then increased gradually. It was because in the first 

period, the increase of the ratio ( ch h ) reduced the stiffness 

of the sandwich beam, but when exceeding a critical value, 

the mass matrix of the beam played a major role. As shown  

 

(a) 

 

(b) 

 

(c) 

Fig. 3 The effects of (a) Winkler’s coefficient (K1) (b) 

Pasternak’s coefficient (K2) (c) nonlinear’s coefficient 

(K3) with 10L h =  on the nondimensional fundamental 

natural frequency of sandwich beam 

 

 

in Fig. 2, According to this example, in the values of

0.35ch h  , K3 had the least effect on the variation of the 

natural frequency and in the values of 0.35ch h  ; K1 had 

the lowest effect on the natural frequency. In the values of

0.92ch h  , K3 had the highest effect and in the values of

0.92ch h  , K2 had the highest effect on the variation of the 

natural frequency.  

Figs. 3(a)-(c) respectively show the effects of linear 

(K1), shear (K2) and nonlinear (K3) coefficients of elastic 

foundation on the first natural frequencies of the sandwich 

beam. It was found that the natural frequency increased 

with the coefficients of elastic foundation. This was due to 

the fact that the foundation increased the effective stiffness 

of the beam, which made the beam more stable. It was 

observed that the coefficient of shear stiffness (K2) had the 

greatest effect on the natural frequency. Fig. 3 also shows  
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(a) (b) 

 

(c) 

Fig. 4 Effect of the coefficients of elastic foundation on nondimensional fundamental excitation frequency of sandwich 

beam with ( 10L h = ), 0 = and 0.5 =  
 

  

(a) (b) 

  

(c) (d) 

Fig. 5 Effect of the linear coefficient (K1) on the dynamic instability regions of sandwich beam with 10L h = , 0 = , and

0.5 =  
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that as K2 was increased, natural frequencies variations 

were reduced. However, K2 changed the natural frequency 

nonlinearly and K1 and K3 had almost linear variations of 

natural frequencies. Further, the effect of elastic foundation 

was verified on the dynamic stability analysis of the 

sandwich beam. The dynamic instability regions for the 

nondimensional excitation frequencies are obtained via 

varying the coefficients of foundation from 0 to 710  and 
810  while assuming the L h

 ratio as ten; the instability 

regions are featured in Fig. 4 and the static factor of load 

was considered as 0. The figure signified that by increasing 

the coefficients of foundation, the onset of instability 

occurred later with narrower instability regions. By 

increasing the coefficients of foundation, the excitation 

frequency was decreased and the sandwich beam was stable 

at higher excitation frequencies, as shown in Fig. 4. Also, 

by increasing the coefficients of K1, K2, and K3, the range 

of excitation frequencies, which is the cause of instability, 

decreased.  

Fig. 5 shows that the increase of K1 resulted in a 

narrower instability region and a more stable sandwich 

beam. Moreover, K3 had a negligible effect on the 

instability of sandwich beam compared to K2. Also, by 

increasing K2, the instability region became narrower and 

the sandwich beam was more stable as shown in Fig. 6. 

Furthermore, K1 had less effect on reducing instability of 

sandwich beam compared to K3. By increasing K3, the 

instability of sandwich beam has been reduced if K3, alone, 

or with K1 is considered as shown in Fig. 7. Also, the 

variations of K3 have no effect on the dynamic instability of 

the beam if K1, K2, and K3 are considered. 

 

 

The above results can be interpreted ( 0.833ch h = ) 

according to the results of the Fig. 2. 

Fig. 8 shows the effect of the elastic foundation on the 

instability regions of the sandwich beam for two frequency 

modes. Similar results were obtained as shown in Figs. 5-7. 
It was observed that the instability regions of the beam 

resting on the foundation were shifted toward the axis of the 

dynamic load factor except the first instability region and 

had lower width as the foundation modulus increased. This 

was due to the fact that the foundation increased the 

effective stiffness matrix of the beam, which made the beam 

more stable. The shaded area is an unstable region for

0.5 = , as shown in Fig. 8.  

The variation of the fundamental natural frequency of 

the beam loaded with static buckling factor with L/h = 10 is 

shown in Fig. 9. The natural frequency of the beam 

decreased with increase of the static load factor, whereas 

the natural frequency increased with increase of the 

coefficients of foundation. Also, by increasing the static 

load factor, the difference of the natural frequencies 

decreased in different conditions of the elastic foundation.  

Fig. 10(a) shows the effect of the static load factor on 

the first mode excitation frequency of the sandwich beam. It 

was found that the excitation frequencies decreased with the 

static load factor. It was also observed that the shaded area 

was an unstable region for 0.5 = . To validate the 

instability regions, one may numerically solve Eq. (23) for a 

wide range of system parameters. Although actually 

checked for several points, here, the time response curves 

(Figs. 11-14) were plotted for the two points marked A and 

B corresponding to the system parameters in Fig. 10(b). 

  

(a) (b) 

  

(c) (d) 

Fig. 6 Effect of the shear stiffness coefficient (K2) on the dynamic instability regions of sandwich beam with 10L h =  ,

0 = , and 0.5 =  
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Fig. 8 Instability regions of sandwich beam for the first 

and second modes: (-) Beam without the elastic 
foundation, (-) beam on the foundation with (K1, K2, 
K3) = ( 610 , 610 , 0) for 0 =  with 10L h =  

 

 

Fig. 9 Variation of the nondimensional natural        

frequency of the sandwich beam with the static       

buckling factor for 10L h =  

 

 

As seen from Fig. 10(a), the width of the instability 

regions increased with an increase in the static load factor. 

The first instability regions are presented for the thick 

sandwich beam in Fig. 10(b), where the parametric ratio 

1
2  was plotted with respect to the static load factor 

  for the fixed values of the dynamic parameter  . The 

parametric ratio was obtained by dividing the parametric 

resonance frequency   resulting from Eq. (25) by 12 , 

the natural frequency of the loaded beam obtained by 

neglecting the harmonic term in Eq. (23). The quantity 

t crP P=  defined the amplitude of the dynamic component 

of the compressive force, whereas the static parameter 

0 crP P=  defined the magnitude of the static component 

of the compressive force (Eq. (1)). As seen from Fig. 10(b), 

the width of the instability regions increased with an 

increase in the static and dynamic loads. Fig. 10(b) 

emphasizes that a sandwich beam resting on the nonlinear 

elastic base is more stable than the sandwich beam without 

elastic foundation. By increasing the static buckling 

coefficient, the dynamic stability of the beam on the 

foundation was increased compared to the beam without the 

foundation For example, for the system parameters of the 

point marked A, ( 0.6 = , 0.5 = ) and ( 0.6 = , 0.25 = ) 

clearly corresponding to 2 0.644 = , the system was 

found to be stable and, for the point marked B, ( 0.6 = ,

2 0.841 = ) corresponding to 0.5 = , the system was 

found to be unstable. Similarly, for 0.25 =  from Fig. 

10(b), the system was found to be stable. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 7 Effect of the nonlinear coefficient (K3) on the dynamic instability regions of sandwich beam with 10L h =  , 0 =  ,  

and 0.5 =  
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(a) (b) 

Fig. 10 (a) Variation of the nondimensional excitation frequency of the sandwich beam with the static buckling factor for 

0.5 =  and 10L h = ; (b) Variation of the parametric ratio of the sandwich beam with the static buckling factor for 

0.25 =  and 0.5 =  with 10L h =  

 

(a) 

 

(b) 

Fig. 11 Time response of the soft cored sandwich beam at 0.5 =  (at the point marked A in Fig. 10(b)): (a) Response of 

core and face sheets in the horizontal direction (U), (b) Response of core and face sheets in the vertical direction (W) for 

0.6 =  with 10L h =  and 6 5 6( 1, 2, 3) (10 ,10 ,10 )K K K =  

 

(a) 

 

(b) 

Fig. 12  Time response of the soft cored sandwich beam at 0.25 =  (at the point marked A in Fig. 10(b)): (a) Response 

of core and face sheets in the horizontal direction (U), (b) Response of core and face sheets in the vertical direction (W) for 

0.6 =  with 10L h =  and 6 5 6( 1, 2, 3) (10 ,10 ,10 )K K K =  
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This was in good agreement with the observations in 

Fig. 10(b). It may be noted that obtaining the instability plot 

by solving Eq. (24) requires a huge memory space and 

computational time. Hence, the developed simplified 

equation may be used for plotting the instability plot. 

 
 
6. Conclusions 
 

In this work, the governing equations of motion of a 

soft-cored symmetric sandwich beam subjected to periodic 

axial end load resting on the nonlinear elastic foundation 

was derived using a higher-order beam theory. These  

 

 

 

equations were reduced to that of a Mathieu-Hill’s type of 

equations, which was used to find the parametric instability 

regions by applying the modified Bolotin’s method. A code 

was developed and validated by comparing the obtained 

results with those found in the earlier literature. The 

instability regions were plotted for simply supported 

conditions for the sandwich beam. Moreover, these regions 

were plotted for systems with principal parametric 

resonances of different types. The correctness of the 

instability regions was verified by finding the time response 

from the temporal equation of motion and they were found 

to be in good agreement. The developed equations will have 

a range of applications in finding vibration attenuation 

 

(a) 

 

(b) 

Fig. 13 Time response of the soft cored sandwich beam at 0.5 =  (at the point marked B in Fig. 10(b)): (a) Response of 

core and face sheets in the horizontal direction (U), (b) Response of core and face sheets in the vertical direction (W) for 

0.6 = with 10L h =  and 6 5 6( 1, 2, 3) (10 ,10 ,10 )K K K = . 

 

(a) 

 

(b) 

Fig. 14 Time response of the soft cored sandwich beam at 0.25 =  (at the point marked B in Fig. 10(b)): (a) Response of 

core and face sheets in the horizontal direction (U), (b) Response of core and face sheets in the vertical direction (W) for 

0.6 =  with 10L h =  and 6 5 6( 1, 2, 3) (10 ,10 ,10 )K K K = . 
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methods and increasing the system dynamic stability on the 

elastic foundation in a sandwich beam when subjected to 

periodic axial loading. 

Validation of the evaluated results with various 

analytical and FEM solutions was performed. The well 

agreed results with the compared results, excellent mesh 

convergence, and accurate analysis of dynamic instability 

behavior ensured that the present theory was quite efficient 

to handle the dynamic stability analysis of sandwich beams. 

The variation of fundamental natural and excitation 

frequency for different system parameters such as 

coefficients of foundation, dynamic and static load factor 

and core thickness was investigated. The natural frequency 

of the sandwich beam increased with coefficients of 

foundation. It was found that the foundation enhanced the 

stability of the sandwich beam. The instability region 

became wider with increasing values of the dynamic load 

and static buckling factor. 
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