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1. Introduction 
 

Recently, intelligent structures and materials have 

received the attention of researchers because of their 

enormous application potentials. Functionally graded 

materials (FGMs) are among these materials. These 

materials have been widely used in several fields, with a 

focus on thermal engineering applications (thermal barrier 

structures subjected to severe thermal gradients). 

The notable development in the application of these 

materials as FG plates and FG beams with a micro or 

nanometric length scale due to their exceptional thermal, 

mechanical and electrical properties has led to a 

provocation in modeling of micro/nano scale structures. 

Buckling is a mode of failure that a structure can 

experiment in certain situations. 

Therefore, many scientific articles have been recently 

published on the thermal behavior of FG plates. 

Amiri Rad et al. (2014) have studied the buckling 

behavior of functionally graded plates under un-iaxial and 

bi-axial tension loads and containing a crack using classical 
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plate theory (CPT) in framework of finite elements. Using 

the same theory, Ma and Wang (2003) investigated the 

axisymmetric nonlinear bending and thermal post-buckling 

behavior of a functionally graded circular plate with simply 

and clamped boundary conditions. The plate has been 

subjected to mechanical, thermal and combining thermal–

mechanical loading. 

Avcar (2015) studied the combined effects of rotary 

inertia, shear deformation and material non-homogeneity on 

the values of natural frequencies of the simply supported 

beam. 

Using Euler-Bernoulli beam theory, Avcar and his co-

author (2016 b, 2018) have examined the free vibration of 

FG beams resting on elastic foundation with and without 

axial force. 

Zhao et al. (2009) studied the buckling behavior of FG 

plates under mechanical and thermal loading using a 

formulation based on the first-order shear deformation plate 

theory (FSDT) by employing the element-free kp-Ritz 

method. Based on the FSDT, Saidi and Hasani Baferani 

(2010) presented an analytical solution for thermal buckling 

of FG annular sector plates with simply supported radial 

edges. Using the FSDT and the Finite Element Method, 

Abolghasemi et al. (2014) studied the buckling of FG Plates 

with an elliptical cutout under combined thermal and 

mechanical loads. 

Trabelsi et al. (2018) investigate the thermal post-

buckling responses of FG shell structures. They use a 

geometrically nonlinear analysis based on a modified 
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FSDT. Ghiasian et al. (2014) analyzed the bifurcation 

behaviour of moderately thick heated annular FG plates 

using the FSDT. Bouazza et al. (2010) studied the thermo-

elastic buckling of plate using the FSDT. The plate was 

assumed to be subjected to two types of thermal loadings.  

Using the Timoshenko beam theory as well as the 

Euler–Bernoulli beam theory, Avcar (2016 a) studied the 

effect of material non-homogeneity and two-parameter 

elastic foundation on the fundamental frequency parameters 

of the simply supported beams.  

It should be noted that the FSDT violates the 

equilibrium conditions on the top and bottom surfaces of 

the plate, a shear correction factor is required to compensate 

for the error due to a constant shear strain hypothesis in the 

thickness (Huu-Tai and Dong-Ho 2011). Therefore, the 

FSDT depends on a shear correction factor that is difficult 

to estimate for composite materials. To overcome this 

handicap, various higher-order shear deformation theories 

(HSDT) have been developed and proposed by researchers. 

The theory of third order shear deformation (TSDT) 

does not require a shear correction factor and satisfies zero 

transverse shear stresses on the top and bottom surfaces of 

the plate attracted considerable research interest  (Baferani 

et al. 2011, Akbarzadeh et al. 2011, Shariat and Eslami 

2007, Bodaghi and Saidi 2010, Thai HT and  Kim 2013). 

Using Reddy’s third-order shear deformation plate theory, 

Cong et al. (2017) investigated the non-linear dynamic 

response of stiffened FGM plate in thermal medium 

subjected to mechanical and thermal loads considering the 

temperature-dependent materials properties. Also, Duc et al. 

(2016) studied the thermal stability of eccentrically 

stiffened FGM plate using the same theory. 

Tran et al. (2013) presented an iso-geometric finite 

element approach (IGA) in combination with the third-order 

deformation plate theory for thermal buckling analysis of 

FGM plates. Using a local Kriging meshless method, Zhang 

et al. (2014) studied the mechanical and thermal buckling 

behaviors of ceramic–metal functionally grade plates 

(FGPs). Lezgy-Nazargah, & Meshkani (2018) presented a 

finite element model based on a parametrized mixed 

variational principle for the static and free vibration analysis 

of functionally graded material (FGM) plates rested on 

Winkler-Pasternak elastic foundations. Applying Galerkin’s 

method, Sofiyev and Avcar (2010) investigated the stability 

of cylindrical shells subjected to axial load and resting on 

Winkler-Pasternak foundations.  

Tounsi et al. (2013) used a refined trigonometric shear 

deformation theory (RTSDT) for studying the thermo-

elastic bending response of FG sandwich plates. Using the 

HSDT, Zhang et al. (2017) studied the thermal post-

buckling of FG elliptical plates in different thermal 

environments. They use the Ritz method to determine the 

central deflection-temperature curves. Duc and Tung (2011) 

have used the HSDT theory to investigate the buckling and 

postbuckling behaviors of thick FG plates resting on elastic 

foundations and subjected to in-plane compressive, thermal 

and thermo-mechanical loads. Also, Duc and Quan (2013) 

presented an analytical solution for the non-linear post-

buckling of imperfect eccentrically stiffened P-FGM 

double-curved thin shallow shells in thermal environments. 

Using the HSDT in conjunction with the Green-Lagrange 

kinematics, Mahapatra et al. (2015a, 2015b, 2016a, 2016b, 

2016c) have studied different behavior of shells and 

laminated composite plates under hydro-thermal 

environment. 

Bachir Bouiadjra et al. (2013) investigated the non-

linear behavior of FG plates under thermal loads using an 

efficient sinusoidal shear deformation theory. Abazid et al. 

(2018) have presented a theory taking into account both 

shear and normal strains effects to study the static bending 

of various types of FGM sandwich plates resting on 

Pasternak foundations in hygrothermal environment. 

Bousahla et al. (2016) used a four-variable refined plate 

theory for thermal buckling analysis of plates with FG 

coefficient of thermal expansion and subjected to different 

temperature rises across the thickness direction. Beldjelili et 

al. (2016) studied the hygro-thermo-mechanical bending 

behavior of sigmoid FG plate resting on elastic 

foundations.  Sobhy (2017) studied the hygro-thermo-

mechanical vibration and buckling of exponentially graded 

nanoplates resting on Pasternak foundations. By using the 

same four-variable refined plate theory and by considering 

the concept of the neutral surface position, El Hassar et al. 

(2016) studied the thermal stability of solar FG plates 

subjected to uniform, linear and non-linear temperature 

rises across the thickness direction and resting on elastic 

foundation. 

Using a new displacement field that containing 

undetermined integral terms, Chikh et al. (2017) studied the 

thermal buckling of cross-ply laminated plates. Menasria et 

al. (2017) analyzed the thermal buckling response of 

functionally graded (FG) sandwich plate. Sekkal et al. 

(2017) used the same theory for studying the buckling and 

free vibration of FG sandwich plate. Mahmoudi et al. 

(2018) investigated the influence of the micromechanical 

models on the free vibration of simply supported FG plate 

resting on elastic foundation using the same displacement 

field. 

Based on the nonlocal strain gradient elasticity theory, 

Arani et al. (2019) studied the thermo-electro-mechanical 

buckling of a sandwich nano-beams with face-sheets made 

of FG carbon nano-tubes reinforcement composite. 

Zghal and his co-autors (Zghal et al. 2017, Zghal et al. 

2018a, Zghal et al. 2018b, Frikha et al. 2018a, Zghal et al. 

2018c, Frikha et al. 2018b, Trabelsi et al. 2019) have 

studied the mechanical, vibrational and buckling of FG 

plate, shells and its derivatives like FG-CNTRC. 

Porosities occurring inside the material structure during 

the production progress have an important effect on the 

mechanical behaviors of inhomogeneous structures (Barati 

2017). 

As for porous stuctures, Ait Atmane et al. (2017) have 

used a quasi 3D beam theory to analyze bending, buckling 

and free vibration characteristics of porous FG beams on 

elastic foundations. 

Shojaeefard et al. (2017) studied the free vibration and 

thermal buckling of micro temperature dependent FG 

porous circular plate subjected to a nonlinear thermal load 

using both CPT and the FSDT theories in conjunction with 

the modified couple stress theory. Using the HSDT, Cong et  
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Fig. 1 Coordinate system and geometry for rectangular FG 

porous plates resting on elastic foundation 

 

 

al. (2018) have presented a study for buckling and post-

buckling behavior of FG plate with porosities resting on 

elastic foundations and subjected to mechanical, thermal 

and thermo-mechanical loads. 

Gupta and Talha (2018) studied the flexural and 

vibration response of FG plates with porosity based on non-

polynomial higher-order shear and normal deformation 

theory. 

In this article, our aim is to extend the work of Bachir 

Bouiadjra et al. (2018) to study the effect of porosity on the 

thermal stability of FG plates on elastic foundation. For this 

purpose, the displacement field is expressed in the same 

manner as that reported in Bachir Bouiadjra et al. (2018). 

The present theory takes into account the stretching effect 

due to its quasi three dimensional nature.  Moreover, the 

model satisfied exactly stress boundary conditions on the 

top and the bottom of the plate. The proposed quasi 3D 

solution contains only four unknowns. Different porosity 

distributions are considered. The thermal loads are assumed 

to be uniform, linear and non-linear temperature rises 

through the thickness direction. 

To check the validity of the present quasi 3D theory, the 

obtained results are compared with the available data in the 

literature. Parametric study is performed to show the 

influences of the porosity distributions and the thermal 

loads on the buckling of the FG plate. 

 

 

2. Effective material properties of the FG porous 
plate   

 

Consider a FG thick rectangular porous plate of uniform 

thickness h, length a and width b as shown in Figure 1. The 

plate is assumed to rest on a Winkler-Pasternak elastic 

foundation. The mechanical characteristics of the porous 

plate are assumed to be vary according to a well-defined 

law as a function of the distribution of the porosity. In the 

following, five distributions of the porosity in the direction 

of the thickness are considered 

Porosity distribution 1 (Mouaici et al. 2016, 

Wattanasakulpong and Chaikittiratana 2015) 

( ) ( ) ( ) ( )
2

c m m c mE z E E V z E E E


= − + − +  (1) 

Porosity distribution 2 (Wattanasakulpong and 

Chaikittiratana 2015) 

( ) ( ) ( ) ( )
2

1
2

c m m c m

z
E z E E V z E E E

h

  
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(2) 

Porosity distribution 3 (Gupta and Talha 2018) 

( ) ( ) ( )

( )
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(3) 

Porosity distribution 4 (Chen et al. 2015) 
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(4) 

Porosity distribution 5 (Chen et al. 2015) 
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(5) 

Where ζ= z/h, the porosity coefficient 

0 0 1 0 11 1e E / E G / G= − = − ( )00 1e ,  the minimum and 

maximum values of Young’s modulus E0 and E1 are related 

to the minimum and maximum values of shear modulus G0 

and G1 by 

( ) ( )2 1 0 1 = + = i iG E / i ,  (6) 

The porosity coefficient for mass density is defined as 

( )0 11 0 1m me / , e = −    (7) 

0 1and  are respectively the minimum and maximum 

values of mass density. 

The relationship between density and Young’s modulus 

for an open-cell metal form is given by Gibson and Ashby 

(1982) and Choi and Lakes (1995) 

2

0 0

1 1

E

E





 
=  
 

 
(8) 

This can be used to obtain the relationship between e0 

and em as below 

01 1me e= − −  (9) 

V(z) is the volume fraction and it is assumed to follow a 

simple power law as follow Bourada et al. (2018), Attia et 

al. (2018), Bousahla et al. (2016), Achouri et al. (2019) 

( )
1

2

p
z

V z
h

 
= + 
 

 (10) 

where ‘‘p’’ is the power law index. Note that, when 0p = , 
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one obtains a fully homogeneous ceramic plate. Whereas, if 

p   , a fully metal plate is obtained. Em and Ec are the 

Young modulus of metal and ceramic, respectively. 

α is termed as porosity volume fraction (α<1). α=0 

indicates the perfect FG plate. 

 

 

3. Kinematics 
 

The displacement field satisfying the conditions of 

transverse shear stresses (and hence strains) vanishing at (x, 

y, ±h/2) on the outer (top) and inner (bottom) surfaces of the 

plate, is given as follows 

( ) ( )

( ) ( )

( )

0

0

, , ,

, , ,

, , , ( )

 
= − +

 
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 

= +

b s

b s

b s

w w
u x y z t u z f z

x x

w w
v x y z t v z f z

y y
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(11) 

With 

2

2

4 1 ( )
( ) 1 , ( )
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 (12) 

Where u0(x,y), v0(x,y), wb(x,y) and ws(x,y) are the four 

unknown displacement functions of the middle surface of 

the plate. 

The kinematic relations can be obtained as follows 
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Where 
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(14) 

4. Constitutive relations 
 

The linear constitutive relations are 
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where (σx, σy, σz, τxy, τyz, τyx) and (εx, εy, εz, γxy, γyz, γyx) are the 

stress and strain components, respectively. αt is the 

coefficient of thermal expansion, and T is the distribution of 

the temperature load. Using the material properties defined 

above, stiffness coefficients, Qij can be expressed as 
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5. Equations of motion 
 

Considering the static version of the principle of virtual 

work, the following expressions can be obtained 

(

) 0

x x y y z z xy xy
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Where Ω is the top surface. 

And fe is the density of reaction force of foundation, and 

for the Pasternak fundation model can be written as 
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(18b) 

Substituting Eqs. (13) and (18) into Eq. (17) and 

integrating through the thickness of the plate, we can obtain 


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(19) 

The stress resultants N, M, P, Q and R are defined by 

516



 

Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution 
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(20) 

The governing equations of equilibrium can be derived 

from eq. (19) by integrating the displacement gradients by 

parts and setting the coefficients where δu0, δv0, δwb, δws 

zero. 

Thus one can obtain the equilibrium equations 

associated with the present shear deformation theory 
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(22) 

The stability equations for FG plates may be obtained 

by means of the adjacent-equilibrium criterion. Let us 

assume that the state of equilibrium of plate under thermal 

loads is defined in terms of the displacement components
0 0 0 0
0 0, , and .b su v w w  The displacement components of a 

neighboring state of the stable equilibrium differ by 

1 1 1 1
0 0, , andb su v w w with respect to the equilibrium position. 

Thus, the total displacements of a neighboring state are 

0 1 0 1 0 1
0 0 0 0 0 0

0 1

, , ,b b b

s s s

u u u v v v w w w

w w w

= + = + = +

= +
 

(23) 

Accordingly, the stress resultants are divided into two 

terms representing the stable equilibrium and the 

neighboring state. The stress resultants with superscript 1 

are linear functions of displacement with superscript 1. 

Considering all these mentioned above and using Eqs. (21) 

and (23), the stability equations becomes 

11
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 (24) 

With 

2 1 1 2 1 1
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2

1
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(25) 

The terms
0 0 0, andx y xyN N N are the pre-buckling force 

resultants obtained as 

/2

0 0 0

/2

( ) ( )
, 0

1

h

t
x y xy

h

z E z T
N N dz N




−

= = − =
−  (26) 

Using Eq. (15) in Eq. (20), the stress resultants of the 

plate can be related to the total strains by 

1 0 0

1 0 ' 0
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(28) 

The stress and moment resultants, 

1 2 1 2 1 2 3, ,T T T T T T TN N M M P P and R= = =  due to thermal 

loading are defined by 
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6. Solution procedure 
 

For the analytical solution of Eqs. (24), the Navier 

method is used under the specified boundary conditions. 

The displacement functions are selected as the following 

Fourier series 

1 1
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1 1
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1 1
1 1

1 1
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   
      

  (30) 

Where 1 1 1 1, , andb sU V W W  are arbitrary parameters to 

be determined and α=mπ/a, β=nπ/b. 

Substituting Eq. (30) into Eq. (24), one obtains 

   0K  =  (31) 

Where {Δ}={U1,V1, Wb
1, Ws

1}t and [K] is the symmetric 

matrix given by 
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6.1 Thermal buckling solution 

 
In the following, the solution of the equation |K| = 0 for 

different types of thermal loading conditions is presented. 

The temperature change varies only through the thickness. 

 
6.1.1 Buckling of FG plates under uniform 

temperature rise 
The plate initial temperature is assumed to be Ti. The 

temperature is uniformly raised to a final value Tf in which 

the plate buckles. The temperature change is ΔT = Tf ‒ Ti. 

 
6.1.2 Buckling of FG plates subjected to a graded 

temperature change across the thickness 
For FG plates, the temperature change is not uniform in 

this case. The temperature is assumed to be varied 

according to the power law variation through-the-thickness 

as follows 

1
( )

2
m

z
T z T T

h


 

=  + + 
 

 (34) 

where the buckling temperature difference ΔT = Tc ‒ Tm 

where Tc and Tm are the temperature of the top surface 

which is ceramic-rich and the bottom surface which is 

metal-rich, respectively.  η is the temperature exponent (0 

< η < ∞). Note that the value of η equal to unity represents a 

linear temperature change across the thickness. While the 

value of η excluding unity represents a non-linear 

temperature change through-the-thickness. 

The following dimensionless expressions of Winkler’s 

and Pasternak’s elastic foundation parameters, as well as the 

critical buckling temperature difference are used in the 

present analysis 

4 2
3, , 10w W p P cr cr

a a
k K k K T T

D D

−= = =   

Where ( )3 2/ 12 1cD E h  = −
 

 

 
 

7. Numerical results and discussion 
 

In this section, thermal buckling of porous FG plate 

resting on elastic foundation is investigated based on a 

quasi 3D solution.  

The FGM plate is taken to be made of Aluminium and 

Alumina with the following material properties 

- Metal (Aluminium): 
91070=ME  N/m2; 3.0= ;

 
623 40 10M , . / K −= .  

- Ceramic (Alumina): 910380=CE ; N/m2; 3.0= ;
 

67 410 10c , . / K −= . 

For First, numerical tests are performed to confirm the  
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accuracy of the proposed model. For verification purpose, 

the obtained results are compared with those of the 2D 

solution of Tebboun et al. (2015) and the 3D model of Van 

do and Chin-Hyung (2018). 

Tables 1-3 present comparison of the critical buckling 

temperature for different temperature load and different 

case of elastic foundation. 

In Table 1, a comparative study is carried out between 

the results obtained by the present quasi 3D solution and 

those reported by Tebboun et al. (2015) and Van do and 

Chin-Hyung (2018). Results   are presented for perfect 

square FG plate under three cases of temperature rise across 

the thickness.  

The results of the present theory show very good 

agreement with the two mentioned solutions for both 

uniform and linear temperature load. For the case of the non 

linear temperature load, there is a slight difference. This is 

because the Tebboun et al. (2015) solution uses a 2D model 

that neglects the stretching effect. The latter has a 

significant effect in the case of thick plates. 

Another comparison between the results of this method 

and those of Tebboun et al. (2015) is shown in Table 2. The 

results are presented for the two cases of Winkler and 

Pasternak elastic foundations. 

It is found that the results are in very good agreement 

for both cases of thermal loading uniform and linear. The 

difference between the results increases slightly for the case 

of non-linear loading especially with the presence of 

Pasternak foundation. This is due to the quasi-3D solution 

elaborated in the present study, contrary to Tebboun et al. 

(2015) where the thickness stretching effect is neglected. 

To illustrate the accuracy of present theory for the case 

of non linear thermal loading, critical buckling temperature 

of FG perfected plate on elastic foundation with different 

values of the power law index are presented in Table3. The 

comparison is made with the results of Van do and Chin-

Hyung (2018). It can be seen that the results are almost 

identical. 

 

 

As can be seen, our results are in good agreement with 

the published ones, and it can be concluded that the present 

theory is accurate for the prediction of critical thermal 

buckling loads. 

Figure 2 shows the effects of the ratio a/h on the critical 

buckling temperature Tcr of a porous FG plates under a  

uniform, linear and non-linear temperature loads. Five 

different cases of porosity distribution are studied. 

It is observed that, with increasing the plate ratio a/h, 

the critical buckling temperature decreases regardless of the 

distribution of porosity and the thermal loading. From these 

figures, it is found that the critical buckling temperature 

max are obtained with distribution 1 (α = 0.2) and those 

min with distribution 5. Also, we can see that there is not a 

big difference between the values of the critical loads 

obtained by the different distributions and for the different 

modes of loading (uniform-linear-nonlinear). The exception 

is made for distributions 1 (α = 0.2) and 5 where the 

difference increases with the variation of thermal loading. 

In Figure 3, the influence of aspect ratio (b/a) and on the 

critical buckling temperature of a porous FGM plate is 

shown for different porosity distribution. The plate is 

subjected to three thermal loading through its thickness, 

uniform, linear and non-linear. It is observed from this 

figure that the critical buckling temperature decreases with 

increases in aspect ratio and this whatever the thermal 

loading and the porosity distribution. The same 

ascertainment noted above remains valid. Namely that all 

the distributions give more or less close values with the 

exception of the distribution 1 (α = 0.2) and 5 where a 

consequent difference is observed. 

Figure 4 represent the effect of porosity distribution on 

the critical buckling temperature versus the power law 

index for a porous FG plate resting on Pasternak 

foundation. It is observed that the critical buckling 

temperature increases as the power law index increase for 

all the porosity distribution considered here. 

Table 1 Critical buckling temperature of a square FG plate without elastic foundation (a/h = 10, a=b) under different 

temperature loads (η=3) 

p Theory Uniform Linear Non linear 

0 Tebboun et al. (2015) 2D 1,6188 3,2276 6,4553 

 Van do and Chin-Hyung (2018) 3D 1,6091 3,2082 / 

 Present 3D 1,6049 3,1999 6,3997 

1 Tebboun et al. (2015) 2D 0,7585 1,4131 2,8270 

 Van do and Chin-Hyung (2018) 3D 0,7548 1,4062 / 

 Present 3D 0,7529 1,4027 2,8062 

5 Tebboun et al. (2015) 2D 0,6790 1,1601 2,0152 

 Van do and Chin-Hyung (2018) 3D 0,6743 1,1520 / 

 Present 3D 0,6885 1,1765 2,0438 

10 Tebboun et al. (2015) 2D 0,6925 1,2184 2,0972 

 Van do and Chin-Hyung (2018) 3D 0,6871 1,2088 / 

 Present 3D 0,7039 1,2385 2,1319 
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(c) 

Fig. 2 Critical buckling temperature Tcr versus the 

thickness ratio a /h (a) Uniform temperature; (b) Linear 

temperature; (c) Non-linear temperature (η=3) (p = 1, a = 

b, kw = kp = 10)  
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(c) 

Fig. 3 Critical buckling temperature Tcr versus the ratio 

b/a (a) Uniform temperature; (b) Linear temperature; (c) 

Non-linear temperature (η=3) (p = 1, a /h = 10, kw = kp = 

10) 
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For the three figures above, we can say that the presence 

of an elastic foundation including that of Pasternak 

modified the overall behavior of the plate. If the plate 

wasn’t supported by a foundation or even supported by an 

elastic foundation but of Winkler type, the results would 

have been reversed. That is, the perfect plate gives the high 

values. Indeed, when the plate rests on a Pasternak 

foundation the stiffness of the system increases result of the 

incorporation of a shear layer leading to an increase in  

flexural stiffness. This same case has been observed in the 

work of Shahsavari et al. (2018) in particular in Table 5 

where the fundamental frequency for imperfect plates is 

greater than that of the perfect plates for the case of the 

Pasternak foundation. 

 

 

Concerning the difference between the values of the 

critical temperature between the imperfect plates, this can 

be related to the way of microvoids concentration within 

FG plate. 
 

 

8. Conclusion 
 

In this paper, we have developed a new refined quasi-

three-dimensional (3D) shear deformation theory for the 

solutions of static bending of FG plate. 

Thermal buckling of simply supported FG porous plates 

under different types of thermal loading (uniform, linear 

and non linear distribution through the thickness) and  

Table 2 Critical buckling temperature of a square FG plate (a/h = 10, a=b) on elastic foundation under different temperature 

loads 

p Theory 
Kw=10  Kp=0 Kw=10  Kp=10 

Uniform Linear Non linear Uniform Linear Non linear 

0 Tebboun et al. (2015) 2D 1,6627 3,3154 6,6308 2,5290 5,0479 10,0958 

 Present 3D 1,6512 3,2925 6,6585 2,5596 5,1091 10,2183 

1 Tebboun et al. (2015) 2D 0,7994 1,4898 2,9804 1,6067 3,0040 6,0098 

 Present 3D 0,7957 1,4830 2,9668 1,6315 3,0505 6,1027 

5 Tebboun et al. (2015) 2D 0,7356 1,2577 2,1847 1,8547 3,1839 5,5309 

 Present 3D 0,7479 1,2787 2,2213 1,8997 3,2613 5,6653 

10 Tebboun et al. (2015) 2D 0,7565 1,3318 2,2924 2,0196 3,5699 6,1449 

 Present 3D 0,7712 1,3578 2,3372 2,0723 3,6635 6,3059 
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(c) 

Fig. 4 Critical buckling temperature Tcr versus the power law index “p” (a) Uniform temperature; (b) Linear temperature; (c) 

Non-linear temperature (η=3) (a /h = 10, a=b, kw = kp = 10) 
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resting on elastic foundation has been analyzed by using a 

quasi 3D shear deformation theory. All comparison studies 

show that the critical buckling temperature obtained by the 

proposed quasi 3D solution with four unknowns is in 

perfect agreement with other shear deformation theories. 

From the results and comparisons between different 

porosity distributions, it has been found that the different 

distributions give values more or less close to with the 

exception of model 1( 0 2. = ) and 5 where a difference is 

found. 
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